organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-4-Hydr­­oxy-N′-(4-nitro­benzyl­­idene)benzohydrazide

aCollege of Science, Shenyang University, Shenyang 110044, People's Republic of China, and bSchool of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, People's Republic of China
*Correspondence e-mail: hongyan_ban@163.com

(Received 22 May 2009; accepted 26 May 2009; online 6 June 2009)

The mol­ecule of the title compound, C14H11N3O4, is approximately planar, the dihedral angle between the planes of the two substituted benzene rings being 2.54 (7)°. The mol­ecule exists in a trans configuration with respect to the central methyl­idene unit. In the crystal structure, mol­ecules are linked through inter­molecular O—H⋯O, N—H⋯O and C—H⋯O hydrogen bonds, forming layers parallel to (101). The O/N—H⋯O and C—H⋯O inter­actions form a pair of bifurcated acceptor bonds involving the cabon­yl/nitro O atom, generating an R21(6) motif.

Related literature

For the biological activity of hydrazones, see: Zhong et al. (2007[Zhong, X., Wei, H.-L., Liu, W.-S., Wang, D.-Q. & Wang, X. (2007). Bioorg. Med. Chem. Lett. 17, 3774-3777.]); Raj et al. (2007[Raj, K. K. V., Narayana, B., Ashalatha, B. V., Kumari, N. S. & Sarojini, B. K. (2007). Eur. J. Med. Chem. 42, 425-429.]); Jimenez-Pulido et al. (2008[Jimenez-Pulido, S. B., Linares-Ordonez, F. M., Martinez-Martos, J. M., Moreno-Carretero, M. N., Quiros-Olozabal, M. & Ramirez-Exposito, M. J. (2008). J. Inorg. Biochem. 102, 1677-1683.]). For related structures, see: Ban & Li (2008a[Ban, H.-Y. & Li, C.-M. (2008a). Acta Cryst. E64, o2177.],b[Ban, H.-Y. & Li, C.-M. (2008b). Acta Cryst. E64, o2260.]); Li & Ban (2009a[Li, C.-M. & Ban, H.-Y. (2009a). Acta Cryst. E65, o876.],b[Li, C.-M. & Ban, H.-Y. (2009b). Acta Cryst. E65, o883.]); Yehye et al. (2008[Yehye, W. A., Rahman, N. A., Ariffin, A. & Ng, S. W. (2008). Acta Cryst. E64, o1824.]); Fun et al. (2008a[Fun, H.-K., Patil, P. S., Jebas, S. R., Sujith, K. V. & Kalluraya, B. (2008a). Acta Cryst. E64, o1594-o1595.],b[Fun, H.-K., Patil, P. S., Rao, J. N., Kalluraya, B. & Chantrapromma, S. (2008b). Acta Cryst. E64, o1707.]); Yang et al. (2008[Yang, T., Cao, G.-B., Xiang, J.-M. & Zhang, L.-H. (2008). Acta Cryst. E64, o1186.]); Ejsmont et al. (2008[Ejsmont, K., Zareef, M., Arfan, M., Bashir, S. A. & Zaleski, J. (2008). Acta Cryst. E64, o1128.]).

[Scheme 1]

Experimental

Crystal data
  • C14H11N3O4

  • Mr = 285.26

  • Monoclinic, P 21 /n

  • a = 7.659 (1) Å

  • b = 13.587 (2) Å

  • c = 12.561 (2) Å

  • β = 92.784 (5)°

  • V = 1305.6 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 298 K

  • 0.20 × 0.20 × 0.18 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.979, Tmax = 0.981

  • 7862 measured reflections

  • 2835 independent reflections

  • 2109 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.111

  • S = 1.04

  • 2835 reflections

  • 195 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.13 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O1i 0.82 2.02 2.8131 (15) 164
N2—H2B⋯O4ii 0.90 (1) 2.22 (1) 3.0513 (17) 155 (2)
C7—H7⋯O4ii 0.93 2.41 3.235 (2) 148
C13—H13⋯O1i 0.93 2.35 3.0713 (19) 134
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{5\over 2}}, z-{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Schiff bases derived from the condensation of aldehydes with hydrazides have been demonstrated to possess excellent biological activities (Zhong et al., 2007; Raj et al., 2007; Jimenez-Pulido et al., 2008). Due to the easy synthesis of such compounds, a great deal of Schiff bases have been synthesized and structurally characterized (Yehye et al., 2008; Fun et al., 2008a,b; Yang et al., 2008; Ejsmont et al., 2008). Recently, we have reported a few such compounds (Ban & Li, 2008a,b; Li & Ban, 2009a,b). We report here the crystal structure of the title new compound.

The title Schiff base molecule (Fig. 1) is nearly planar, with the dihedral angle between the two benzene rings being 2.54 (7)°. The molecule exists in a trans configuration with respect to the central methylidene (C7N1) unit. The N2—N1—C7—C1 torsion angle is 179.12 (14)°.

In the crystal structure, the molecules are linked through intermolecular O—H···O and N—H···O hydrogen bonds (Table 1), forming layers parallel to the (101) (Fig. 2). Within the layer, C—H···O hydrogen bonds are also observed.

Related literature top

For the biological activity of hydrazones, see: Zhong et al. (2007); Raj et al. (2007); Jimenez-Pulido et al. (2008). For related structures, see: Ban & Li (2008a,b); Li & Ban (2009a,b); Yehye et al. (2008); Fun et al. (2008a,b); Yang et al. (2008); Ejsmont et al. (2008).

Experimental top

The title compound was prepared by refluxing 4-nitrobenzaldehyde (1.0 mol) with 4-hydroxybenzohydrazide (1.0 mol) in methanol (100 ml). Excess methanol was removed from the mixture by distillation. A colourless solid product was filtered, and washed three times with methanol. Colourless block-shaped crystals of the title compound were obtained from a methanol solution by slow evaporation in air.

Refinement top

Atom H2B was located in a difference Fourier map and refined isotropically, with the N–H distance restrained to 0.90 (1)Å and Uiso fixed at 0.08 Å2. The remaining H atoms were placed in calculated positions (C–H = 0.93 Å and O–H = 0.82 Å) and refined as riding with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(O).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids for the non-hydrogen atoms.
[Figure 2] Fig. 2. The packing diagram of the title compound, viewed along the a axis. Hydrogen bonds are shown as dashed lines.
(E)-4-Hydroxy-N'-(4-nitrobenzylidene)benzohydrazide top
Crystal data top
C14H11N3O4F(000) = 592
Mr = 285.26Dx = 1.451 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2390 reflections
a = 7.659 (1) Åθ = 3.0–30.5°
b = 13.587 (2) ŵ = 0.11 mm1
c = 12.561 (2) ÅT = 298 K
β = 92.784 (5)°Block, colourless
V = 1305.6 (3) Å30.20 × 0.20 × 0.18 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
2835 independent reflections
Radiation source: fine-focus sealed tube2109 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ω scansθmax = 27.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 99
Tmin = 0.979, Tmax = 0.981k = 1715
7862 measured reflectionsl = 1515
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.111 w = 1/[σ2(Fo2) + (0.0467P)2 + 0.3196P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
2835 reflectionsΔρmax = 0.21 e Å3
195 parametersΔρmin = 0.13 e Å3
1 restraintExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0104 (15)
Crystal data top
C14H11N3O4V = 1305.6 (3) Å3
Mr = 285.26Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.659 (1) ŵ = 0.11 mm1
b = 13.587 (2) ÅT = 298 K
c = 12.561 (2) Å0.20 × 0.20 × 0.18 mm
β = 92.784 (5)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2835 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2109 reflections with I > 2σ(I)
Tmin = 0.979, Tmax = 0.981Rint = 0.027
7862 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0401 restraint
wR(F2) = 0.111H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.21 e Å3
2835 reflectionsΔρmin = 0.13 e Å3
195 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.20673 (17)0.97706 (9)1.04460 (10)0.0410 (3)
N20.26363 (19)1.05171 (9)0.98149 (10)0.0431 (3)
N30.0157 (2)0.54652 (10)1.21921 (11)0.0504 (4)
O10.18428 (15)1.16731 (8)1.09824 (8)0.0472 (3)
O20.51173 (18)1.44263 (8)0.75115 (9)0.0541 (3)
H20.55481.41940.69820.081*
O30.0321 (2)0.46801 (10)1.17422 (12)0.0883 (6)
O40.04623 (18)0.55386 (9)1.30667 (10)0.0611 (4)
C10.1672 (2)0.80400 (11)1.06387 (12)0.0391 (4)
C20.1011 (2)0.80979 (11)1.16524 (12)0.0423 (4)
H2A0.08980.87071.19800.051*
C30.0527 (2)0.72557 (12)1.21665 (12)0.0418 (4)
H30.00850.72881.28420.050*
C40.0707 (2)0.63608 (11)1.16619 (12)0.0402 (4)
C50.1366 (2)0.62796 (12)1.06648 (13)0.0455 (4)
H50.14830.56681.03440.055*
C60.1845 (2)0.71259 (12)1.01580 (12)0.0450 (4)
H60.22900.70870.94840.054*
C70.2198 (2)0.89103 (11)1.00586 (13)0.0439 (4)
H70.26420.88350.93870.053*
C80.25098 (19)1.14649 (11)1.01458 (11)0.0354 (3)
C90.32220 (19)1.22217 (11)0.94326 (11)0.0348 (3)
C100.3187 (2)1.32057 (11)0.97329 (12)0.0404 (4)
H100.27341.33781.03810.048*
C110.3812 (2)1.39297 (11)0.90850 (13)0.0447 (4)
H110.37721.45850.92980.054*
C120.4503 (2)1.36889 (11)0.81144 (12)0.0390 (4)
C130.4543 (2)1.27096 (11)0.78040 (12)0.0410 (4)
H130.49951.25380.71560.049*
C140.3915 (2)1.19946 (11)0.84559 (12)0.0403 (4)
H140.39521.13400.82400.048*
H2B0.303 (3)1.0358 (15)0.9176 (10)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0486 (8)0.0377 (7)0.0377 (7)0.0014 (6)0.0127 (6)0.0081 (6)
N20.0616 (9)0.0335 (7)0.0359 (7)0.0021 (6)0.0200 (6)0.0028 (5)
N30.0650 (10)0.0397 (8)0.0477 (8)0.0055 (7)0.0146 (7)0.0081 (6)
O10.0630 (7)0.0441 (6)0.0364 (6)0.0005 (5)0.0217 (5)0.0009 (5)
O20.0760 (9)0.0361 (6)0.0525 (7)0.0056 (6)0.0280 (6)0.0047 (5)
O30.1579 (16)0.0359 (7)0.0749 (10)0.0156 (9)0.0465 (10)0.0013 (7)
O40.0814 (9)0.0505 (7)0.0537 (7)0.0059 (6)0.0289 (7)0.0118 (6)
C10.0401 (8)0.0381 (8)0.0395 (8)0.0015 (6)0.0068 (6)0.0070 (6)
C20.0511 (10)0.0350 (8)0.0413 (9)0.0008 (7)0.0087 (7)0.0012 (6)
C30.0477 (9)0.0425 (9)0.0358 (8)0.0001 (7)0.0103 (7)0.0051 (7)
C40.0440 (9)0.0364 (8)0.0408 (8)0.0029 (7)0.0073 (7)0.0076 (6)
C50.0563 (10)0.0368 (8)0.0446 (9)0.0019 (7)0.0129 (8)0.0002 (7)
C60.0546 (10)0.0436 (9)0.0379 (8)0.0008 (7)0.0141 (7)0.0029 (7)
C70.0526 (10)0.0418 (9)0.0384 (8)0.0023 (7)0.0135 (7)0.0047 (7)
C80.0375 (8)0.0388 (8)0.0307 (7)0.0026 (6)0.0091 (6)0.0001 (6)
C90.0378 (8)0.0342 (7)0.0331 (7)0.0017 (6)0.0095 (6)0.0003 (6)
C100.0495 (9)0.0379 (8)0.0352 (8)0.0012 (7)0.0158 (7)0.0050 (6)
C110.0568 (10)0.0313 (8)0.0473 (9)0.0003 (7)0.0161 (7)0.0051 (7)
C120.0432 (9)0.0333 (7)0.0414 (8)0.0014 (6)0.0111 (7)0.0027 (6)
C130.0516 (9)0.0385 (8)0.0345 (8)0.0003 (7)0.0178 (7)0.0022 (6)
C140.0529 (9)0.0302 (7)0.0394 (8)0.0006 (6)0.0165 (7)0.0034 (6)
Geometric parameters (Å, º) top
N1—C71.272 (2)C4—C51.377 (2)
N1—N21.3714 (17)C5—C61.373 (2)
N2—C81.3581 (19)C5—H50.93
N2—H2B0.899 (9)C6—H60.93
N3—O31.2164 (18)C7—H70.93
N3—O41.2219 (17)C8—C91.4848 (19)
N3—C41.4590 (19)C9—C101.390 (2)
O1—C81.2237 (16)C9—C141.395 (2)
O2—C121.3539 (17)C10—C111.377 (2)
O2—H20.82C10—H100.93
C1—C61.390 (2)C11—C121.392 (2)
C1—C21.395 (2)C11—H110.93
C1—C71.456 (2)C12—C131.387 (2)
C2—C31.374 (2)C13—C141.373 (2)
C2—H2A0.93C13—H130.93
C3—C41.381 (2)C14—H140.93
C3—H30.93
C7—N1—N2115.18 (12)C1—C6—H6119.5
C8—N2—N1119.67 (12)N1—C7—C1121.73 (14)
C8—N2—H2B122.3 (14)N1—C7—H7119.1
N1—N2—H2B117.9 (14)C1—C7—H7119.1
O3—N3—O4122.86 (14)O1—C8—N2121.40 (13)
O3—N3—C4118.74 (14)O1—C8—C9122.61 (13)
O4—N3—C4118.40 (14)N2—C8—C9115.99 (12)
C12—O2—H2109.5C10—C9—C14117.70 (13)
C6—C1—C2119.55 (14)C10—C9—C8119.34 (13)
C6—C1—C7118.28 (14)C14—C9—C8122.96 (13)
C2—C1—C7122.18 (14)C11—C10—C9120.99 (14)
C3—C2—C1120.02 (14)C11—C10—H10119.5
C3—C2—H2A120.0C9—C10—H10119.5
C1—C2—H2A120.0C10—C11—C12120.51 (14)
C2—C3—C4118.84 (14)C10—C11—H11119.7
C2—C3—H3120.6C12—C11—H11119.7
C4—C3—H3120.6O2—C12—C13122.66 (13)
C5—C4—C3122.48 (14)O2—C12—C11118.25 (13)
C5—C4—N3118.35 (14)C13—C12—C11119.09 (14)
C3—C4—N3119.16 (13)C14—C13—C12119.87 (13)
C6—C5—C4118.20 (15)C14—C13—H13120.1
C6—C5—H5120.9C12—C13—H13120.1
C4—C5—H5120.9C13—C14—C9121.84 (14)
C5—C6—C1120.91 (14)C13—C14—H14119.1
C5—C6—H6119.5C9—C14—H14119.1
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O1i0.822.022.8131 (15)164
N2—H2B···O4ii0.90 (1)2.22 (1)3.0513 (17)155 (2)
C7—H7···O4ii0.932.413.235 (2)148
C13—H13···O1i0.932.353.0713 (19)134
Symmetry codes: (i) x+1/2, y+5/2, z1/2; (ii) x+1/2, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formulaC14H11N3O4
Mr285.26
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)7.659 (1), 13.587 (2), 12.561 (2)
β (°) 92.784 (5)
V3)1305.6 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.20 × 0.20 × 0.18
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.979, 0.981
No. of measured, independent and
observed [I > 2σ(I)] reflections
7862, 2835, 2109
Rint0.027
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.111, 1.04
No. of reflections2835
No. of parameters195
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.21, 0.13

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O1i0.822.022.8131 (15)164
N2—H2B···O4ii0.90 (1)2.22 (1)3.0513 (17)155 (2)
C7—H7···O4ii0.932.413.235 (2)148
C13—H13···O1i0.932.353.0713 (19)134
Symmetry codes: (i) x+1/2, y+5/2, z1/2; (ii) x+1/2, y+3/2, z1/2.
 

Acknowledgements

The authors acknowledge financial support by the Research Foundation of Liaoning Province (grant No. 2008470).

References

First citationBan, H.-Y. & Li, C.-M. (2008a). Acta Cryst. E64, o2177.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBan, H.-Y. & Li, C.-M. (2008b). Acta Cryst. E64, o2260.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEjsmont, K., Zareef, M., Arfan, M., Bashir, S. A. & Zaleski, J. (2008). Acta Cryst. E64, o1128.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Patil, P. S., Jebas, S. R., Sujith, K. V. & Kalluraya, B. (2008a). Acta Cryst. E64, o1594–o1595.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Patil, P. S., Rao, J. N., Kalluraya, B. & Chantrapromma, S. (2008b). Acta Cryst. E64, o1707.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJimenez-Pulido, S. B., Linares-Ordonez, F. M., Martinez-Martos, J. M., Moreno-Carretero, M. N., Quiros-Olozabal, M. & Ramirez-Exposito, M. J. (2008). J. Inorg. Biochem. 102, 1677–1683.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLi, C.-M. & Ban, H.-Y. (2009a). Acta Cryst. E65, o876.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, C.-M. & Ban, H.-Y. (2009b). Acta Cryst. E65, o883.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRaj, K. K. V., Narayana, B., Ashalatha, B. V., Kumari, N. S. & Sarojini, B. K. (2007). Eur. J. Med. Chem. 42, 425–429.  PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, T., Cao, G.-B., Xiang, J.-M. & Zhang, L.-H. (2008). Acta Cryst. E64, o1186.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYehye, W. A., Rahman, N. A., Ariffin, A. & Ng, S. W. (2008). Acta Cryst. E64, o1824.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhong, X., Wei, H.-L., Liu, W.-S., Wang, D.-Q. & Wang, X. (2007). Bioorg. Med. Chem. Lett. 17, 3774–3777.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds