organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 7| July 2009| Pages o1496-o1497

2,3-Di­amino­pyridinium 4-hy­droxy­benzoate

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 Universiti Sains Malaysia, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 22 May 2009; accepted 2 June 2009; online 6 June 2009)

In the title compound, C5H8N3+·C7H5O3, the pyridine N atom is protonated. In the 4-hydroxy­benzoate anion, the carboxyl­ate group is twisted slightly out of the benzene ring plane by an angle of 3.77 (5)°. The protonated N atom and one of the two amino groups are hydrogen-bonded to the 4-hydroxy­benzoate anion through a pair of N—H⋯O hydrogen bonds, forming an R22(8) ring motif. The crystal structure is further stabilized by O—H⋯O and C—H⋯O hydrogen bonds and ππ inter­actions involving the pyridinium rings [centroid–centroid distance of 3.6277 (5) Å], leading to the formation of a three-dimensional network.

Related literature

For general background to substituted pyridines, see: Pozharski et al. (1997[Pozharski, A. F., Soldatenkov, A. T. & Katritzky, A. R. (1997). Heterocycles in Life and Society. New York: Wiley.]); Katritzky et al. (1996[Katritzky, A. R., Rees, C. W. & Scriven, E. F. V. (1996). Comprehensive Heterocyclic Chemistry II. Oxford: Pergamon Press.]). For details of hydrogen bonding, see: Jeffrey & Saenger (1991[Jeffrey, G. A. & Saenger, W. (1991). Hydrogen Bonding in Biological Structures. Berlin: Springer.]); Jeffrey (1997[Jeffrey, G. A. (1997). An Introduction to Hydrogen Bonding. Oxford University Press.]); Scheiner (1997[Scheiner, S. (1997). Hydrogen Bonding, A Theoretical Perspective. Oxford University Press.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C5H8N3+·C7H5O3

  • Mr = 247.25

  • Monoclinic, P 21 /c

  • a = 10.2915 (2) Å

  • b = 11.4946 (2) Å

  • c = 11.0921 (2) Å

  • β = 112.644 (1)°

  • V = 1211.01 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 100 K

  • 0.51 × 0.39 × 0.14 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.950, Tmax = 0.986

  • 25821 measured reflections

  • 5296 independent reflections

  • 4257 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.138

  • S = 1.04

  • 5296 reflections

  • 215 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.65 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯O2 0.89 (2) 1.903 (15) 2.7874 (9) 173 (1)
N2—H2N2⋯O3 0.89 (1) 1.898 (14) 2.7843 (9) 176 (1)
N2—H1N2⋯O2i 0.87 (1) 2.014 (15) 2.8689 (9) 168 (1)
N3—H1N3⋯O2i 0.91 (2) 2.071 (16) 2.9790 (10) 174 (1)
N3—H2N3⋯O3ii 0.89 (2) 2.057 (15) 2.9285 (10) 166 (1)
O1—H1O1⋯O3iii 0.90 (2) 1.775 (19) 2.6595 (8) 168 (2)
C2—H2⋯O3iii 1.00 (1) 2.500 (14) 3.2104 (10) 128 (1)
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Pyridine and its derivatives play an important role in heterocyclic chemistry (Pozharski et al., 1997; Katritzky et al., 1996)). Pyridine and its substituted derivatives are often involved in hydrogen-bond interactions (Jeffrey & Saenger, 1991; Jeffrey, 1997;Scheiner, 1997). Since our aim is to study some interesting hydrogen-bonding interactions, the crystal structure of the title compound is presented here.

The asymmetric unit of the title compound (Fig 1), contains one 2,3-diaminopyridinium cation and one 4-hydroxybenzoate anion. The bond lengths (Allen et al., 1987) and angles are normal. The 2,3-diaminopyridinium cation is planar to within ±0.015 (1) Å. The protonation of N1 atom resulted in a slight increase in the C8—N1—C12 angle [123.47 (7)°]. In the anion, the carboxylate group is twisted slightly away from the attached ring; the dihedral angle between C1-C6 and O2/O3/C7/C6 planes is 3.77 (5)°.

In the crystal packing (Fig. 2), the protonated N1 atom and the 2-amino group (N2) is hydrogen-bonded to the carboxylate oxygen atoms (O2 and O3) via a pair of N—H···O hydrogen bonds forming a ring motif R22(8) (Bernstein et al., 1995). The amino groups (N2 and N3) are involved in N—H···O hydrogen bonding interactions to form a R12(7) ring motif. The hydroxyl group hydrogen atom is also hydrogen-bonded to the carboxylate oxygen atom through O—H···O hydrogen bonds. Moreover O—H···O and C—H···O hydrogen bonds form a R12(6) ring motif (Table 1 and Fig 2). The crystal structure is further stabilized by π-π stacking interactions between the pyridinium rings (C8—C12/N1) at (x, y, z) and (2-x, 2-y, 1-z), with a centroid-to-centroid distance of 3.6277 (5) Å.

Related literature top

For general background to substituted pyridines, see: Pozharski et al. (1997); Katritzky et al. (1996). For details of hydrogen bonding, see: Jeffrey & Saenger (1991); Jeffrey (1997); Scheiner (1997). For hydrogen-bond motifs, see: Bernstein et al. (1995). For bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

Hot methanol solutions (20 ml) of 2,3-diaminopyridine (27 mg, Aldrich) and 4-hydroxybenzoic acid (35 mg, Merck) were mixed and warmed over a heating magnetic stirrer for 5 minutes. The resulting solution was allowed to cool slowly at room temperature. Crystals of the title compound appeared from the mother liquor after a few days.

Refinement top

All the H atoms were located in a difference Fourier map and allowed to refine freely [N–H = 0.86–0.91 Å, C–H = 0.95–1.01 (15)Å and O–H = 0.89 (18) Å]

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom numbering scheme. Dashed lines indicate hydrogen bonds.
[Figure 2] Fig. 2. Crystal packing of the title compound, showing a part of the three-dimensional network. Hydrogen bonds are shown as dashed lines.
(I) top
Crystal data top
C5H8N3+·C7H5O3F(000) = 520
Mr = 247.25Dx = 1.356 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9979 reflections
a = 10.2915 (2) Åθ = 2.7–37.8°
b = 11.4946 (2) ŵ = 0.10 mm1
c = 11.0921 (2) ÅT = 100 K
β = 112.644 (1)°Plate, brown
V = 1211.01 (4) Å30.51 × 0.39 × 0.14 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
5296 independent reflections
Radiation source: fine-focus sealed tube4257 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ϕ and ω scansθmax = 35.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1616
Tmin = 0.950, Tmax = 0.986k = 1618
25821 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.138H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0817P)2 + 0.1673P]
where P = (Fo2 + 2Fc2)/3
5296 reflections(Δ/σ)max = 0.001
215 parametersΔρmax = 0.65 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C5H8N3+·C7H5O3V = 1211.01 (4) Å3
Mr = 247.25Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.2915 (2) ŵ = 0.10 mm1
b = 11.4946 (2) ÅT = 100 K
c = 11.0921 (2) Å0.51 × 0.39 × 0.14 mm
β = 112.644 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
5296 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
4257 reflections with I > 2σ(I)
Tmin = 0.950, Tmax = 0.986Rint = 0.034
25821 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.138H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.65 e Å3
5296 reflectionsΔρmin = 0.19 e Å3
215 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.45467 (8)0.16900 (6)0.43336 (6)0.02563 (15)
O20.84786 (7)0.61461 (5)0.52034 (5)0.02074 (13)
O30.73136 (6)0.62156 (5)0.30541 (5)0.01784 (12)
N11.01845 (8)0.79427 (6)0.49674 (6)0.01857 (14)
N20.87767 (8)0.81703 (7)0.27844 (7)0.02195 (15)
N31.05767 (9)0.99458 (8)0.25977 (7)0.02666 (17)
C10.57827 (9)0.42070 (7)0.30431 (7)0.01757 (14)
C20.50323 (9)0.32084 (7)0.30618 (7)0.01879 (15)
C30.52248 (9)0.26810 (7)0.42538 (7)0.01899 (15)
C40.61617 (11)0.31656 (8)0.54174 (8)0.02518 (18)
C50.69083 (10)0.41624 (8)0.53881 (7)0.02324 (17)
C60.67313 (8)0.46970 (7)0.41995 (7)0.01604 (14)
C70.75521 (8)0.57533 (6)0.41592 (7)0.01540 (14)
C80.99181 (9)0.84838 (7)0.38181 (7)0.01678 (14)
C91.08674 (9)0.93716 (7)0.37590 (7)0.01803 (15)
C101.20049 (9)0.96332 (8)0.48910 (8)0.02092 (16)
C111.22331 (9)0.90438 (8)0.60700 (8)0.02314 (17)
C121.13117 (10)0.82008 (8)0.60867 (8)0.02224 (17)
H10.5647 (15)0.4565 (11)0.2226 (13)0.031 (3)*
H20.4376 (14)0.2854 (12)0.2229 (13)0.029 (3)*
H40.6280 (18)0.2759 (15)0.6232 (17)0.051 (4)*
H50.7615 (17)0.4479 (13)0.6225 (15)0.039 (4)*
H101.2669 (14)1.0227 (12)0.4848 (12)0.028 (3)*
H111.3091 (16)0.9246 (13)0.6883 (14)0.039 (4)*
H121.1341 (17)0.7745 (14)0.6809 (15)0.043 (4)*
H1N10.9588 (15)0.7391 (12)0.4987 (13)0.031 (3)*
H1N20.8601 (17)0.8454 (12)0.2011 (15)0.033 (3)*
H2N20.8275 (15)0.7565 (12)0.2854 (13)0.027 (3)*
H1N30.9924 (17)0.9660 (13)0.1840 (15)0.040 (4)*
H2N31.1284 (16)1.0365 (12)0.2548 (14)0.034 (3)*
H1O10.3995 (19)0.1445 (15)0.3531 (18)0.051 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0299 (3)0.0248 (3)0.0172 (3)0.0123 (2)0.0034 (2)0.0013 (2)
O20.0238 (3)0.0217 (3)0.0141 (2)0.0059 (2)0.0044 (2)0.00153 (19)
O30.0188 (3)0.0178 (3)0.0149 (2)0.0002 (2)0.00434 (19)0.00308 (19)
N10.0200 (3)0.0194 (3)0.0148 (3)0.0020 (2)0.0051 (2)0.0018 (2)
N20.0232 (3)0.0234 (3)0.0154 (3)0.0072 (3)0.0031 (2)0.0021 (2)
N30.0284 (4)0.0324 (4)0.0171 (3)0.0118 (3)0.0065 (3)0.0037 (3)
C10.0190 (3)0.0187 (3)0.0131 (3)0.0014 (3)0.0041 (2)0.0005 (2)
C20.0198 (4)0.0205 (3)0.0131 (3)0.0037 (3)0.0031 (2)0.0007 (2)
C30.0202 (4)0.0199 (3)0.0150 (3)0.0046 (3)0.0047 (3)0.0001 (2)
C40.0316 (5)0.0273 (4)0.0130 (3)0.0114 (3)0.0046 (3)0.0008 (3)
C50.0286 (4)0.0251 (4)0.0131 (3)0.0099 (3)0.0049 (3)0.0015 (3)
C60.0173 (3)0.0167 (3)0.0131 (3)0.0016 (2)0.0048 (2)0.0007 (2)
C70.0167 (3)0.0152 (3)0.0140 (3)0.0013 (2)0.0055 (2)0.0002 (2)
C80.0177 (3)0.0174 (3)0.0143 (3)0.0003 (3)0.0052 (2)0.0001 (2)
C90.0183 (3)0.0204 (3)0.0155 (3)0.0023 (3)0.0066 (2)0.0000 (2)
C100.0192 (4)0.0249 (4)0.0178 (3)0.0044 (3)0.0062 (3)0.0010 (3)
C110.0200 (4)0.0294 (4)0.0166 (3)0.0029 (3)0.0032 (3)0.0007 (3)
C120.0230 (4)0.0262 (4)0.0145 (3)0.0014 (3)0.0038 (3)0.0023 (3)
Geometric parameters (Å, º) top
O1—C31.3565 (10)C2—C31.3976 (11)
O1—H1O10.897 (18)C2—H20.997 (13)
O2—C71.2666 (9)C3—C41.3956 (11)
O3—C71.2702 (9)C4—C51.3869 (12)
N1—C81.3484 (10)C4—H40.982 (17)
N1—C121.3661 (11)C5—C61.4014 (11)
N1—H1N10.888 (15)C5—H51.001 (15)
N2—C81.3369 (10)C6—C71.4896 (11)
N2—H1N20.869 (15)C8—C91.4316 (11)
N2—H2N20.887 (14)C9—C101.3805 (11)
N3—C91.3739 (10)C10—C111.4100 (12)
N3—H1N30.911 (16)C10—H100.981 (14)
N3—H2N30.892 (15)C11—C121.3608 (13)
C1—C21.3881 (11)C11—H111.017 (15)
C1—C61.3969 (10)C12—H120.948 (15)
C1—H10.955 (13)
C3—O1—H1O1110.1 (11)C4—C5—H5119.3 (8)
C8—N1—C12123.47 (7)C6—C5—H5119.9 (9)
C8—N1—H1N1117.5 (9)C1—C6—C5118.61 (7)
C12—N1—H1N1119.1 (9)C1—C6—C7120.33 (6)
C8—N2—H1N2121.7 (10)C5—C6—C7121.05 (7)
C8—N2—H2N2119.1 (9)O2—C7—O3122.08 (7)
H1N2—N2—H2N2118.2 (13)O2—C7—C6119.94 (6)
C9—N3—H1N3120.6 (10)O3—C7—C6117.96 (6)
C9—N3—H2N3115.4 (9)N2—C8—N1118.57 (7)
H1N3—N3—H2N3117.8 (13)N2—C8—C9122.86 (7)
C2—C1—C6121.05 (7)N1—C8—C9118.57 (7)
C2—C1—H1119.4 (8)N3—C9—C10123.40 (8)
C6—C1—H1119.5 (8)N3—C9—C8118.64 (7)
C1—C2—C3119.72 (7)C10—C9—C8117.92 (7)
C1—C2—H2120.4 (8)C9—C10—C11121.27 (8)
C3—C2—H2119.9 (8)C9—C10—H10118.1 (8)
O1—C3—C4117.67 (7)C11—C10—H10120.6 (8)
O1—C3—C2122.47 (7)C12—C11—C10119.12 (8)
C4—C3—C2119.85 (7)C12—C11—H11121.5 (8)
C5—C4—C3119.99 (7)C10—C11—H11119.4 (8)
C5—C4—H4122.8 (10)C11—C12—N1119.65 (7)
C3—C4—H4117.2 (10)C11—C12—H12127.5 (10)
C4—C5—C6120.78 (7)N1—C12—H12112.8 (10)
C6—C1—C2—C30.01 (13)C5—C6—C7—O3178.02 (8)
C1—C2—C3—O1178.47 (8)C12—N1—C8—N2179.40 (8)
C1—C2—C3—C40.46 (14)C12—N1—C8—C90.41 (12)
O1—C3—C4—C5178.40 (9)N2—C8—C9—N31.55 (13)
C2—C3—C4—C50.57 (15)N1—C8—C9—N3178.25 (8)
C3—C4—C5—C60.24 (15)N2—C8—C9—C10179.31 (8)
C2—C1—C6—C50.32 (13)N1—C8—C9—C100.49 (12)
C2—C1—C6—C7178.59 (7)N3—C9—C10—C11177.91 (9)
C4—C5—C6—C10.21 (14)C8—C9—C10—C110.26 (13)
C4—C5—C6—C7178.70 (9)C9—C10—C11—C120.06 (14)
C1—C6—C7—O2175.21 (8)C10—C11—C12—N10.16 (14)
C5—C6—C7—O23.67 (12)C8—N1—C12—C110.08 (13)
C1—C6—C7—O33.09 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O20.89 (2)1.903 (15)2.7874 (9)173 (1)
N2—H2N2···O30.89 (1)1.898 (14)2.7843 (9)176 (1)
N2—H1N2···O2i0.87 (1)2.014 (15)2.8689 (9)168 (1)
N3—H1N3···O2i0.91 (2)2.071 (16)2.9790 (10)174 (1)
N3—H2N3···O3ii0.89 (2)2.057 (15)2.9285 (10)166 (1)
O1—H1O1···O3iii0.90 (2)1.775 (19)2.6595 (8)168 (2)
C2—H2···O3iii1.00 (1)2.500 (14)3.2104 (10)128 (1)
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x+2, y+1/2, z+1/2; (iii) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC5H8N3+·C7H5O3
Mr247.25
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)10.2915 (2), 11.4946 (2), 11.0921 (2)
β (°) 112.644 (1)
V3)1211.01 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.51 × 0.39 × 0.14
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.950, 0.986
No. of measured, independent and
observed [I > 2σ(I)] reflections
25821, 5296, 4257
Rint0.034
(sin θ/λ)max1)0.807
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.138, 1.04
No. of reflections5296
No. of parameters215
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.65, 0.19

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O20.89 (2)1.903 (15)2.7874 (9)173 (1)
N2—H2N2···O30.89 (1)1.898 (14)2.7843 (9)176 (1)
N2—H1N2···O2i0.87 (1)2.014 (15)2.8689 (9)168 (1)
N3—H1N3···O2i0.91 (2)2.071 (16)2.9790 (10)174 (1)
N3—H2N3···O3ii0.89 (2)2.057 (15)2.9285 (10)166 (1)
O1—H1O1···O3iii0.90 (2)1.775 (19)2.6595 (8)168 (2)
C2—H2···O3iii1.00 (1)2.500 (14)3.2104 (10)128 (1)
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x+2, y+1/2, z+1/2; (iii) x+1, y1/2, z+1/2.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

HKF and KB thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant No. 305/PFIZIK/613312. KB thanks Universiti Sains Malaysia for a post–doctoral research fellowship. HKF also thanks Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationJeffrey, G. A. (1997). An Introduction to Hydrogen Bonding. Oxford University Press.  Google Scholar
First citationJeffrey, G. A. & Saenger, W. (1991). Hydrogen Bonding in Biological Structures. Berlin: Springer.  Google Scholar
First citationKatritzky, A. R., Rees, C. W. & Scriven, E. F. V. (1996). Comprehensive Heterocyclic Chemistry II. Oxford: Pergamon Press.  Google Scholar
First citationPozharski, A. F., Soldatenkov, A. T. & Katritzky, A. R. (1997). Heterocycles in Life and Society. New York: Wiley.  Google Scholar
First citationScheiner, S. (1997). Hydrogen Bonding, A Theoretical Perspective. Oxford University Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 7| July 2009| Pages o1496-o1497
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds