organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 7| July 2009| Pages o1655-o1656

4′-(4-Meth­oxy­phen­yl)-1,1′,1′′-tri­methyl­di­spiro­[indoline-3,2′-pyrrolidine-3′,3′′-pyrrolidine]-2,2′′,5′′-trione

aDepartment of Physics, Easwari Engineering College, Ramapuram, Chennai 600 089, India, bOrganic Chemistry Division, Central Leather Research Institute, Adyar, Chennai 600 020, India, and cDepartment of Physics, SRM University, Ramapuram Campus, Chennai 600 089, India
*Correspondence e-mail: sudharose18@gmail.com

(Received 22 May 2009; accepted 3 June 2009; online 20 June 2009)

In the title compound, C24H25N3O4, the pyrrolidine ring adopts an envelope conformation while the pyrrolidine-2′′,5′′-dione ring adopts a twist conformation. The indoline unit is planar [maximum deviation of −0.050 (9) Å] and forms a dihedral angle of 40.36 (4)° with the methoxy­phenyl ring. Intra­molecular C—H⋯O hydrogen bonds are observed. In the crystal, mol­ecules are linked into a two-dimensional network parallel to the ab plane by inter­molecular C—H⋯O hydrogen bonds and C—H⋯π inter­actions.

Related literature

For the biological activity of spiro-pyrrolidine-containing compounds, see: Araki et al. (2002[Araki, K., Suenaga, K., Sengoka, T. & Uemura, D. (2002). Tetrahedron, 58, 1983-1996.]); Gore et al. (1991[Gore, V. G., Chordia, M. D. & Narasimhan, N. S. (1991). Tetrahedron, 46, 2483-2494.]); James et al. (1991[James, D., Kunze, H. B. & Faulker, D. (1991). J. Nat. Prod. 54, 1137-1140.]); Kobayashi et al. (1991[Kobayashi, J., Tsuda, M., Agemi, K. & Vacelet, J. (1991). Tetrahedron, 47, 6617-6622.]); Tietze et al. (1988[Tietze, L.-F., Schneider, G., Woelfling, J., Nobel, T. & Wulff, C. (1988). Angew. Chem. Int. Ed. 37, 2469-2470.]). For the biological activity of indole derivatives, see: Harris & Uhle (1960[Harris, L. S. & Uhle, F. C. (1960). J. Pharmacol. Exp. Ther. 128, 353-363.]); Ho et al. (1986[Ho, C. Y., Haegman, W. E. & Perisco, F. (1986). J. Med. Chem. 29, 118-121.]); Stevenson et al. (2000[Stevenson, G. I., Smith, A. L., Lewis, S., Michie, S. G., Neduvelil, J. G., Patel, S., Marwood, R., Patel, S. & Castro, J. L. (2000). Bioorg. Med. Chem. Lett. 10, 2697-2704.]). For a related structure, see: Govind et al. (2003[Govind, M. M., Selvanayagam, S., Velmurugan, D., Ravikumar, K., Sridhar, G. & Raghunathan, R. (2003). Acta Cryst. E59, o1438-o1440.]). For ring-puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C24H25N3O4

  • Mr = 419.47

  • Orthorhombic, P b c a

  • a = 11.2074 (3) Å

  • b = 11.2406 (3) Å

  • c = 33.6082 (9) Å

  • V = 4233.9 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.25 × 0.17 × 0.15 mm

Data collection
  • Bruker Kappa APEXII area-detector diffractometer

  • Absorption correction: multi-scan (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.978, Tmax = 0.987

  • 17736 measured reflections

  • 5023 independent reflections

  • 3269 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.152

  • S = 1.07

  • 5023 reflections

  • 284 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10⋯O2 0.93 2.52 3.122 (2) 123
C12—H12A⋯O1 0.97 2.58 3.222 (2) 124
C20—H20⋯O1 0.93 2.56 3.400 (2) 150
C12—H12B⋯O1i 0.97 2.56 3.264 (2) 129
C16—H16⋯O4ii 0.93 2.50 3.394 (2) 161
C19—H19⋯O2iii 0.93 2.54 3.440 (2) 162
C21—H21CCg1iv 0.96 2.93 3.592 (2) 127
Symmetry codes: (i) [-x-{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z]; (iii) [-x-{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (iv) -x+1, -y+1, -z. Cg1 is the centroid of the C15–C20 ring.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Spiro compounds are a particular class of naturally occurring substances characterized by highly pronounced biological properties (Kobayashi et al., 1991; James et al., 1991). The spiro-pyrrolidine ring system is also found in phermones, antibiotics (Gore et al., 1991) and antitumour agents (Tietze et al., 1988; Araki et al., 2002).

Indole compounds can be used as bioactive drugs (Stevenson et al., 2000). Indole derivatives exhibit antiallergic, central nervous system depressant and muscle relaxant properties (Harris & Uhle, 1960; Ho et al., 1986). In view of this biological importance, the crystal structure of the title compound was determined and the results are presented here.

An ORTEP (Farrugia,1997) plot of the molecule is shown in Fig.1. The indole unit is planar, with a maximum deviation of -0.050 (9) Å for atom C1. The dihedral angle between the indole unit and the methoxyphenyl ring is 40.36 (4)°. The sum of angles at atoms N1 (360.0°) and N3 (359.9°) is in accordance with sp2 hybridization, whereas the sum of angles at N2 (335.5°) is in accordance with sp3 hybridization. The N1—C5 and C5—O1 bond lengths show electron delocalization over atoms N1, C5 and O1. In the oxindole ring system, the variation in endocyclic angles are due to the fusion of the five- and six-membered rings (Govind et al., 2003). The methoxy group is almost coplanar with the C15-C20 benzene ring [C21—O4—C18—C17 = 174.7 (2)°]. The N2/C1-C4 pyrrolidine ring adopts an envelope conformation with puckering parameters q2 and ϕ of 0.404 (2) Å and -38.8 (2)° respectively (Cremer & Pople, 1975). Atom N2 deviates by 0.590 Å from the least-squares plane through the remaining four atoms. The N3/C2/C12-C14 pyrrolidine ring adopts a twist conformation, with puckering parameters q2 and ϕ of 0.233 (2) Å and -13.2 (4)° respectively (Cremer & Pople, 1975).

The molecular structure is stabilized by intramolecular C— H···O hydrogen bonds and the crystal packing is determined by intermolecular C—H···O hydrogen bonds and C—H···π interactions involving C15—C20 benzene rings (Table 1). In addition the packing is stabilized by van der Waals forces.

Related literature top

For the biological activity of spiro-pyrrolidine-containing compounds, see: Araki et al. (2002); Gore et al. (1991); James et al. (1991); Kobayashi et al. (1991); Tietze et al. (1988). For the biological activity of indole derivatives, see: Harris & Uhle (1960); Ho et al. (1986); Stevenson et al. (2000). For a related structure, see: Govind et al. (2003). For ring-puckering parameters, see: Cremer & Pople (1975). Cg1 is the centroid of the C15–C20 ring.

Experimental top

A mixture of sarcosine (1 mmol), 1-methylisatin (1 mmol) and 3-(4-methoxybenzylidine)-1-methyl-pyrrolidine-2,5-dione (1 mmol) was refluxed in methanol. Completion of the reaction was evidenced by TLC analysis. The solvent was then removed in vacuo and the crude product subjected to column chromatography (100–200 mesh) using petroleum ether–ethyl acetate as eluent. Single crystals were obtained by crystallization from petroleum ether and ethyl acetate mixture.

Refinement top

H atoms were placed in idealized positions and allowed to ride on their parent atoms, with C—H = 0.93, 0.98, 0.97 and 0.96 Å for aromatic, methine, methylene and methyl H respectively, and Uiso(H) = 1.5Ueq(C) for methyl H and Uiso(H) = 1.2Ueq(C) for all other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. The packing of the molecules viewed down the a axis. Dashed lines indicate hydrogen bonds. H atoms not involed in hydrogen bonds have been omitted.
4'-(4-Methoxyphenyl)-1,1',1''-trimethyldispiro[indoline-3,2'-pyrrolidine- 3',3''-pyrrolidine]-2,2'',5''-trione top
Crystal data top
C24H25N3O4F(000) = 1776
Mr = 419.47Dx = 1.316 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 5049 reflections
a = 11.2074 (3) Åθ = 2.4–25.7°
b = 11.2406 (3) ŵ = 0.09 mm1
c = 33.6082 (9) ÅT = 293 K
V = 4233.9 (2) Å3Prism, colourless
Z = 80.25 × 0.17 × 0.15 mm
Data collection top
Bruker Kappa APEXII area-detector
diffractometer
5023 independent reflections
Radiation source: fine-focus sealed tube3269 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ω and ϕ scansθmax = 28.4°, θmin = 1.2°
Absorption correction: multi-scan
(Blessing, 1995)
h = 1411
Tmin = 0.978, Tmax = 0.987k = 1511
17736 measured reflectionsl = 4343
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.152H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0744P)2 + 0.5831P]
where P = (Fo2 + 2Fc2)/3
5023 reflections(Δ/σ)max = 0.001
284 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C24H25N3O4V = 4233.9 (2) Å3
Mr = 419.47Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 11.2074 (3) ŵ = 0.09 mm1
b = 11.2406 (3) ÅT = 293 K
c = 33.6082 (9) Å0.25 × 0.17 × 0.15 mm
Data collection top
Bruker Kappa APEXII area-detector
diffractometer
5023 independent reflections
Absorption correction: multi-scan
(Blessing, 1995)
3269 reflections with I > 2σ(I)
Tmin = 0.978, Tmax = 0.987Rint = 0.028
17736 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.152H-atom parameters constrained
S = 1.07Δρmax = 0.24 e Å3
5023 reflectionsΔρmin = 0.18 e Å3
284 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.01846 (15)0.47299 (15)0.12817 (5)0.0327 (4)
C20.06510 (14)0.36884 (14)0.11357 (5)0.0316 (4)
C30.09503 (15)0.40199 (16)0.06949 (5)0.0365 (4)
H30.05350.34400.05270.044*
C40.03321 (17)0.52114 (18)0.06291 (5)0.0433 (5)
H4A0.00460.52820.03580.052*
H4B0.08680.58680.06850.052*
C50.05564 (15)0.56643 (16)0.15170 (5)0.0357 (4)
C60.08728 (16)0.49862 (17)0.19406 (6)0.0408 (4)
C70.1549 (2)0.4819 (2)0.22787 (7)0.0582 (6)
H70.13750.52150.25150.070*
C80.2500 (2)0.4037 (2)0.22515 (7)0.0665 (7)
H80.29590.38850.24760.080*
C90.2780 (2)0.3480 (2)0.18998 (7)0.0608 (6)
H90.34340.29720.18880.073*
C100.20970 (17)0.36673 (17)0.15631 (6)0.0456 (5)
H100.22950.33010.13240.055*
C110.11189 (15)0.44049 (15)0.15873 (5)0.0353 (4)
C120.16608 (15)0.33962 (16)0.14310 (5)0.0371 (4)
H12A0.18600.40870.15910.045*
H12B0.23710.31330.12910.045*
C130.11700 (16)0.24208 (18)0.16851 (6)0.0425 (4)
C140.00594 (15)0.25280 (16)0.11418 (5)0.0350 (4)
C150.22493 (16)0.39732 (16)0.05782 (5)0.0364 (4)
C160.26396 (17)0.30838 (16)0.03233 (5)0.0402 (4)
H160.20920.25380.02240.048*
C170.38205 (17)0.29936 (17)0.02148 (6)0.0443 (5)
H170.40610.23950.00410.053*
C180.46497 (16)0.37864 (17)0.03623 (5)0.0385 (4)
C190.42807 (17)0.46898 (18)0.06074 (6)0.0455 (5)
H190.48290.52420.07020.055*
C200.30887 (17)0.47782 (18)0.07131 (6)0.0467 (5)
H200.28480.53950.08790.056*
C210.67018 (18)0.4326 (2)0.04175 (7)0.0595 (6)
H21A0.66720.42620.07020.089*
H21B0.74690.40680.03240.089*
H21C0.65750.51390.03410.089*
C220.0594 (2)0.6521 (2)0.21968 (7)0.0586 (6)
H22A0.11350.70770.20770.088*
H22B0.00480.69450.23220.088*
H22C0.10110.60580.23930.088*
C230.0372 (2)0.0838 (2)0.16109 (7)0.0633 (6)
H23A0.09280.10500.18160.095*
H23B0.07950.04910.13910.095*
H23C0.01930.02740.17130.095*
C240.12923 (19)0.63178 (18)0.09418 (7)0.0540 (5)
H24A0.07520.69240.10310.081*
H24B0.16090.65320.06860.081*
H24C0.19340.62400.11290.081*
N10.01162 (14)0.57366 (14)0.18924 (4)0.0424 (4)
N20.06588 (13)0.51895 (13)0.09103 (4)0.0381 (4)
N30.02527 (14)0.18934 (13)0.14773 (5)0.0416 (4)
O10.13847 (12)0.62471 (12)0.13906 (4)0.0506 (4)
O20.07934 (11)0.21993 (11)0.09054 (4)0.0455 (3)
O30.14963 (13)0.21122 (15)0.20112 (4)0.0626 (4)
O40.58015 (12)0.36018 (13)0.02477 (4)0.0529 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0316 (9)0.0305 (9)0.0360 (9)0.0035 (7)0.0024 (7)0.0031 (7)
C20.0300 (8)0.0310 (8)0.0337 (9)0.0008 (7)0.0001 (7)0.0048 (7)
C30.0377 (9)0.0411 (10)0.0308 (9)0.0030 (8)0.0017 (7)0.0047 (8)
C40.0462 (11)0.0472 (11)0.0365 (10)0.0004 (9)0.0011 (8)0.0048 (9)
C50.0345 (9)0.0329 (9)0.0397 (10)0.0020 (8)0.0012 (8)0.0045 (8)
C60.0390 (10)0.0426 (10)0.0409 (11)0.0025 (8)0.0057 (8)0.0017 (8)
C70.0603 (13)0.0691 (15)0.0453 (12)0.0024 (12)0.0145 (10)0.0015 (11)
C80.0634 (14)0.0700 (16)0.0662 (16)0.0002 (13)0.0310 (13)0.0131 (13)
C90.0487 (12)0.0501 (12)0.0835 (17)0.0085 (10)0.0224 (12)0.0048 (12)
C100.0367 (10)0.0390 (10)0.0611 (12)0.0032 (8)0.0081 (9)0.0028 (9)
C110.0318 (9)0.0318 (9)0.0423 (10)0.0023 (7)0.0050 (8)0.0006 (8)
C120.0317 (9)0.0398 (10)0.0400 (10)0.0002 (8)0.0002 (8)0.0027 (8)
C130.0392 (10)0.0468 (11)0.0416 (11)0.0076 (9)0.0038 (9)0.0011 (9)
C140.0350 (9)0.0315 (9)0.0385 (10)0.0002 (7)0.0022 (8)0.0044 (8)
C150.0407 (10)0.0363 (9)0.0323 (9)0.0044 (8)0.0059 (8)0.0029 (8)
C160.0436 (10)0.0376 (10)0.0394 (10)0.0054 (8)0.0029 (8)0.0079 (8)
C170.0499 (11)0.0392 (10)0.0438 (11)0.0027 (9)0.0081 (9)0.0104 (9)
C180.0379 (10)0.0417 (10)0.0360 (10)0.0021 (8)0.0071 (8)0.0024 (8)
C190.0438 (11)0.0444 (11)0.0482 (11)0.0102 (9)0.0038 (9)0.0114 (9)
C200.0457 (11)0.0451 (11)0.0492 (11)0.0061 (9)0.0118 (9)0.0176 (9)
C210.0392 (11)0.0701 (15)0.0692 (15)0.0060 (11)0.0010 (10)0.0035 (12)
C220.0547 (13)0.0710 (15)0.0501 (13)0.0037 (11)0.0039 (10)0.0247 (11)
C230.0818 (16)0.0473 (13)0.0608 (14)0.0158 (12)0.0029 (12)0.0122 (11)
C240.0500 (12)0.0444 (12)0.0675 (14)0.0118 (9)0.0000 (11)0.0069 (10)
N10.0433 (9)0.0453 (9)0.0387 (9)0.0044 (7)0.0038 (7)0.0107 (7)
N20.0369 (8)0.0362 (8)0.0411 (9)0.0048 (7)0.0012 (7)0.0017 (7)
N30.0475 (9)0.0348 (8)0.0427 (9)0.0038 (7)0.0018 (7)0.0043 (7)
O10.0501 (8)0.0470 (8)0.0548 (8)0.0192 (6)0.0080 (7)0.0098 (7)
O20.0473 (7)0.0394 (7)0.0498 (8)0.0078 (6)0.0059 (6)0.0087 (6)
O30.0606 (9)0.0849 (12)0.0423 (8)0.0018 (8)0.0053 (7)0.0165 (8)
O40.0391 (8)0.0582 (9)0.0615 (9)0.0001 (6)0.0094 (7)0.0099 (7)
Geometric parameters (Å, º) top
C1—N21.452 (2)C13—N31.377 (2)
C1—C111.511 (2)C14—O21.202 (2)
C1—C51.555 (2)C14—N31.379 (2)
C1—C21.577 (2)C15—C201.382 (2)
C2—C141.528 (2)C15—C161.387 (2)
C2—C121.541 (2)C16—C171.377 (3)
C2—C31.564 (2)C16—H160.93
C3—C151.509 (2)C17—C181.380 (3)
C3—C41.524 (3)C17—H170.93
C3—H30.98C18—O41.363 (2)
C4—N21.458 (2)C18—C191.371 (3)
C4—H4A0.97C19—C201.386 (3)
C4—H4B0.97C19—H190.93
C5—O11.213 (2)C20—H200.93
C5—N11.357 (2)C21—O41.417 (2)
C6—C71.379 (3)C21—H21A0.96
C6—C111.383 (3)C21—H21B0.96
C6—N11.402 (2)C21—H21C0.96
C7—C81.384 (3)C22—N11.453 (2)
C7—H70.93C22—H22A0.96
C8—C91.374 (3)C22—H22B0.96
C8—H80.93C22—H22C0.96
C9—C101.382 (3)C23—N31.449 (2)
C9—H90.93C23—H23A0.96
C10—C111.377 (2)C23—H23B0.96
C10—H100.93C23—H23C0.96
C12—C131.495 (3)C24—N21.457 (2)
C12—H12A0.97C24—H24A0.96
C12—H12B0.97C24—H24B0.96
C13—O31.206 (2)C24—H24C0.96
N2—C1—C11114.62 (14)O2—C14—C2127.58 (17)
N2—C1—C5113.10 (14)N3—C14—C2108.69 (15)
C11—C1—C5100.82 (13)C20—C15—C16117.38 (16)
N2—C1—C2102.35 (13)C20—C15—C3123.29 (16)
C11—C1—C2116.31 (14)C16—C15—C3119.33 (16)
C5—C1—C2110.02 (13)C17—C16—C15121.32 (17)
C14—C2—C12101.07 (14)C17—C16—H16119.3
C14—C2—C3109.14 (14)C15—C16—H16119.3
C12—C2—C3120.23 (14)C16—C17—C18120.32 (17)
C14—C2—C1108.66 (13)C16—C17—H17119.8
C12—C2—C1113.20 (13)C18—C17—H17119.8
C3—C2—C1104.19 (13)O4—C18—C19124.61 (17)
C15—C3—C4115.57 (15)O4—C18—C17115.98 (16)
C15—C3—C2116.42 (14)C19—C18—C17119.41 (17)
C4—C3—C2104.44 (13)C18—C19—C20119.84 (18)
C15—C3—H3106.6C18—C19—H19120.1
C4—C3—H3106.6C20—C19—H19120.1
C2—C3—H3106.6C15—C20—C19121.69 (17)
N2—C4—C3103.73 (14)C15—C20—H20119.2
N2—C4—H4A111.0C19—C20—H20119.2
C3—C4—H4A111.0O4—C21—H21A109.5
N2—C4—H4B111.0O4—C21—H21B109.5
C3—C4—H4B111.0H21A—C21—H21B109.5
H4A—C4—H4B109.0O4—C21—H21C109.5
O1—C5—N1124.84 (17)H21A—C21—H21C109.5
O1—C5—C1126.55 (16)H21B—C21—H21C109.5
N1—C5—C1108.61 (15)N1—C22—H22A109.5
C7—C6—C11122.24 (18)N1—C22—H22B109.5
C7—C6—N1127.72 (18)H22A—C22—H22B109.5
C11—C6—N1110.04 (15)N1—C22—H22C109.5
C6—C7—C8117.1 (2)H22A—C22—H22C109.5
C6—C7—H7121.5H22B—C22—H22C109.5
C8—C7—H7121.5N3—C23—H23A109.5
C9—C8—C7121.5 (2)N3—C23—H23B109.5
C9—C8—H8119.3H23A—C23—H23B109.5
C7—C8—H8119.3N3—C23—H23C109.5
C8—C9—C10120.6 (2)H23A—C23—H23C109.5
C8—C9—H9119.7H23B—C23—H23C109.5
C10—C9—H9119.7N2—C24—H24A109.5
C11—C10—C9118.96 (19)N2—C24—H24B109.5
C11—C10—H10120.5H24A—C24—H24B109.5
C9—C10—H10120.5N2—C24—H24C109.5
C10—C11—C6119.59 (17)H24A—C24—H24C109.5
C10—C11—C1131.08 (17)H24B—C24—H24C109.5
C6—C11—C1109.33 (15)C5—N1—C6111.01 (15)
C13—C12—C2104.72 (14)C5—N1—C22123.85 (17)
C13—C12—H12A110.8C6—N1—C22125.11 (16)
C2—C12—H12A110.8C1—N2—C24115.17 (15)
C13—C12—H12B110.8C1—N2—C4106.52 (13)
C2—C12—H12B110.8C24—N2—C4113.80 (15)
H12A—C12—H12B108.9C13—N3—C14112.41 (15)
O3—C13—N3124.28 (19)C13—N3—C23123.79 (17)
O3—C13—C12128.21 (18)C14—N3—C23123.66 (16)
N3—C13—C12107.50 (16)C18—O4—C21118.25 (16)
O2—C14—N3123.71 (17)
N2—C1—C2—C1493.48 (15)C3—C2—C14—O235.9 (2)
C11—C1—C2—C1432.26 (19)C1—C2—C14—O277.1 (2)
C5—C1—C2—C14146.03 (14)C12—C2—C14—N317.91 (17)
N2—C1—C2—C12155.10 (13)C3—C2—C14—N3145.57 (14)
C11—C1—C2—C1279.16 (18)C1—C2—C14—N3101.41 (15)
C5—C1—C2—C1234.61 (18)C4—C3—C15—C2052.9 (2)
N2—C1—C2—C322.77 (15)C2—C3—C15—C2070.3 (2)
C11—C1—C2—C3148.51 (14)C4—C3—C15—C16127.21 (18)
C5—C1—C2—C397.71 (15)C2—C3—C15—C16109.68 (18)
C14—C2—C3—C15113.00 (16)C20—C15—C16—C171.2 (3)
C12—C2—C3—C152.9 (2)C3—C15—C16—C17178.77 (17)
C1—C2—C3—C15131.08 (15)C15—C16—C17—C180.7 (3)
C14—C2—C3—C4118.28 (15)C16—C17—C18—O4178.00 (17)
C12—C2—C3—C4125.78 (16)C16—C17—C18—C192.2 (3)
C1—C2—C3—C42.36 (17)O4—C18—C19—C20178.42 (18)
C15—C3—C4—N2155.96 (14)C17—C18—C19—C201.8 (3)
C2—C3—C4—N226.73 (18)C16—C15—C20—C191.6 (3)
N2—C1—C5—O152.8 (2)C3—C15—C20—C19178.35 (18)
C11—C1—C5—O1175.67 (18)C18—C19—C20—C150.1 (3)
C2—C1—C5—O161.0 (2)O1—C5—N1—C6177.45 (18)
N2—C1—C5—N1126.61 (16)C1—C5—N1—C62.0 (2)
C11—C1—C5—N13.74 (18)O1—C5—N1—C220.8 (3)
C2—C1—C5—N1119.62 (15)C1—C5—N1—C22179.82 (17)
C11—C6—C7—C80.0 (3)C7—C6—N1—C5179.8 (2)
N1—C6—C7—C8179.1 (2)C11—C6—N1—C50.9 (2)
C6—C7—C8—C92.0 (4)C7—C6—N1—C222.0 (3)
C7—C8—C9—C101.5 (4)C11—C6—N1—C22177.27 (18)
C8—C9—C10—C111.1 (3)C11—C1—N2—C2464.5 (2)
C9—C10—C11—C63.1 (3)C5—C1—N2—C2450.3 (2)
C9—C10—C11—C1176.66 (19)C2—C1—N2—C24168.64 (14)
C7—C6—C11—C102.6 (3)C11—C1—N2—C4168.29 (15)
N1—C6—C11—C10176.70 (16)C5—C1—N2—C476.88 (17)
C7—C6—C11—C1177.21 (18)C2—C1—N2—C441.45 (16)
N1—C6—C11—C13.5 (2)C3—C4—N2—C143.87 (18)
N2—C1—C11—C1054.1 (3)C3—C4—N2—C24171.88 (15)
C5—C1—C11—C10175.93 (19)O3—C13—N3—C14170.56 (18)
C2—C1—C11—C1065.2 (2)C12—C13—N3—C1410.2 (2)
N2—C1—C11—C6126.08 (16)O3—C13—N3—C235.3 (3)
C5—C1—C11—C64.28 (18)C12—C13—N3—C23174.00 (18)
C2—C1—C11—C6114.63 (16)O2—C14—N3—C13175.89 (17)
C14—C2—C12—C1322.91 (17)C2—C14—N3—C135.5 (2)
C3—C2—C12—C13142.96 (15)O2—C14—N3—C238.3 (3)
C1—C2—C12—C1393.10 (16)C2—C14—N3—C23170.30 (17)
C2—C12—C13—O3159.54 (19)C19—C18—O4—C215.5 (3)
C2—C12—C13—N321.23 (19)C17—C18—O4—C21174.65 (18)
C12—C2—C14—O2163.58 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10···O20.932.523.122 (2)123
C12—H12A···O10.972.583.222 (2)124
C20—H20···O10.932.563.400 (2)150
C12—H12B···O1i0.972.563.264 (2)129
C16—H16···O4ii0.932.503.394 (2)161
C19—H19···O2iii0.932.543.440 (2)162
C21—H21C···Cg1iv0.962.933.592 (2)127
Symmetry codes: (i) x1/2, y1/2, z; (ii) x+1/2, y+1/2, z; (iii) x1/2, y+1/2, z; (iv) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC24H25N3O4
Mr419.47
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)293
a, b, c (Å)11.2074 (3), 11.2406 (3), 33.6082 (9)
V3)4233.9 (2)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.25 × 0.17 × 0.15
Data collection
DiffractometerBruker Kappa APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(Blessing, 1995)
Tmin, Tmax0.978, 0.987
No. of measured, independent and
observed [I > 2σ(I)] reflections
17736, 5023, 3269
Rint0.028
(sin θ/λ)max1)0.669
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.152, 1.07
No. of reflections5023
No. of parameters284
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.18

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10···O20.932.523.122 (2)123
C12—H12A···O10.972.583.222 (2)124
C20—H20···O10.932.563.400 (2)150
C12—H12B···O1i0.972.563.264 (2)129
C16—H16···O4ii0.932.503.394 (2)161
C19—H19···O2iii0.932.543.440 (2)162
C21—H21C···Cg1iv0.962.933.592 (2)127
Symmetry codes: (i) x1/2, y1/2, z; (ii) x+1/2, y+1/2, z; (iii) x1/2, y+1/2, z; (iv) x+1, y+1, z.
 

Acknowledgements

SN thanks Dr Babu Vargheese, SAIF, IIT Madras, India, for his help with the data collection. SN also thanks SRM management, India, for their support.

References

First citationAraki, K., Suenaga, K., Sengoka, T. & Uemura, D. (2002). Tetrahedron, 58, 1983–1996.  Web of Science CrossRef CAS Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGore, V. G., Chordia, M. D. & Narasimhan, N. S. (1991). Tetrahedron, 46, 2483-2494.  Google Scholar
First citationGovind, M. M., Selvanayagam, S., Velmurugan, D., Ravikumar, K., Sridhar, G. & Raghunathan, R. (2003). Acta Cryst. E59, o1438–o1440.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHarris, L. S. & Uhle, F. C. (1960). J. Pharmacol. Exp. Ther. 128, 353–363.  Google Scholar
First citationHo, C. Y., Haegman, W. E. & Perisco, F. (1986). J. Med. Chem. 29, 118–121.  Google Scholar
First citationJames, D., Kunze, H. B. & Faulker, D. (1991). J. Nat. Prod. 54, 1137–1140.  CrossRef PubMed CAS Web of Science Google Scholar
First citationKobayashi, J., Tsuda, M., Agemi, K. & Vacelet, J. (1991). Tetrahedron, 47, 6617–6622.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStevenson, G. I., Smith, A. L., Lewis, S., Michie, S. G., Neduvelil, J. G., Patel, S., Marwood, R., Patel, S. & Castro, J. L. (2000). Bioorg. Med. Chem. Lett. 10, 2697–2704.  Web of Science CrossRef PubMed CAS Google Scholar
First citationTietze, L.-F., Schneider, G., Woelfling, J., Nobel, T. & Wulff, C. (1988). Angew. Chem. Int. Ed. 37, 2469–2470.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 7| July 2009| Pages o1655-o1656
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds