organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Bromo-3-{N-[2-(3,4-di­meth­oxy­phen­yl)eth­yl]-N-methyl­sulfamo­yl}-5-methyl­benzoic acid monohydrate

aNicholas Piramal Research Centre, Nicholas Piramal India Limited, Mumbai 400 063, India, bDepartment of Chemistry, SRM University, Ramapuram, Chennai 600 089, India, cDepartment of Physics, Panimalar Institute of Technology, Chennai 600 095, India, dDepartment of Physics, CPCL Polytechnic College, Chennai 600 068, India, and eDepartment of Research and Development, PRIST University, Vallam, Thanjavur 613 403, Tamil Nadu, India
*Correspondence e-mail: manivan_1999@yahoo.com

(Received 30 May 2009; accepted 10 June 2009; online 13 June 2009)

In the title compound, C19H22BrNO6S·H2O, the dihedral angle between the planes of the two benzene rings is 3.1 (1)°. These rings are stacked over one another with their centroids separated by 3.769 (2) Å, indicating weak ππ inter­actions. In the crystal structure, mol­ecules are linked by O—H⋯O and O—H⋯(O,O) hydrogen bonds involving the water mol­ecule, forming a two-dimensional network parallel to (001).

Related literature

For the biological activity of sulfonamides, see: Cates (1986[Cates, L. A. (1986). Sulfa Drugs. Handbook of Chemotherapeutic agents, Vol. I, edited by M. Verderame, pp. 1-29. Boca Raton, Florida: CRC Press.]); Steele & Beran (1984[Steele, J. H. & Beran, G. W. (1984). Perspectives in the Uses of Antibiotics and Sulfonamides, in Handbook Series in Zoonoses, Section D: Antibiotics, Sulfonamides and Public Health, Vol. 1, edited by J. H. Steele & G. W. Beran, p. 9. Boca Raton, Florida: CRC Press.]); Benedetti (1987[Benedetti, P. G. D. (1987). Advances in Drug Research, Vol. 16, edited by B. Testa, pp. 227-279. London, New York: Academic Press.]); Mengelers et al. (1997[Mengelers, M. J., Hougee, P. E., Jansson, L. H. & Van Miert, A. S. (1997). J. Vet. Pharmacol. Ther. 20, 276-283.]). For related structures, see: Babu et al. (2009a[Babu, C. S. M., Kavitha, H. P., Arulmozhi, R., Vennila, J. P. & Manivannan, V. (2009a). Acta Cryst. E65, o1098.],b[Babu, C. S. M., Kavitha, H. P., Kavipriya, R., Vennila, J. P. & Manivannan, V. (2009b). Acta Cryst. E65, o921.]); Shad et al. (2009[Shad, H. A., Tahir, M. N. & Chohan, Z. H. (2009). Acta Cryst. E65, o98-o99.]); For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.])

[Scheme 1]

Experimental

Crystal data
  • C19H22BrNO6S·H2O

  • Mr = 490.36

  • Orthorhombic, P 21 21 21

  • a = 7.7938 (2) Å

  • b = 7.8280 (2) Å

  • c = 34.6549 (8) Å

  • V = 2114.29 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.08 mm−1

  • T = 295 K

  • 0.15 × 0.12 × 0.10 mm

Data collection
  • Bruker Kappa APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.745, Tmax = 0.819

  • 12583 measured reflections

  • 4619 independent reflections

  • 3427 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.107

  • S = 1.05

  • 4619 reflections

  • 275 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.30 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1915 Friedel pairs

  • Flack parameter: −0.004 (10)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯O1W 0.82 1.73 2.535 (4) 169
O1W—H1W⋯O1i 0.79 (3) 1.97 (4) 2.732 (5) 162 (6)
O1W—H2W⋯O5ii 0.75 (3) 2.46 (4) 3.066 (5) 139 (5)
O1W—H2W⋯O6ii 0.75 (3) 2.14 (4) 2.828 (5) 154 (5)
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x+1, y-1, z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Sulfonamides are a class of anti-microbial agents that have seen extensive use in medicine. They are the first agents to be used for the treatment of bacterial infection (Cates, 1986). Sulfonamides are used to treat atrophic rhinitis in swine and heart water in cattle and many other diseases in a variety of animals (Steele & Beran, 1984). In adition sulfonamides have a variety of biological activities such as antibacterial, antimalarial and antileprotic agents (Benedetti, 1987; Mengelers et al., 1997).

The geometric parameters of the title molecule agree well with those reported for similar structures (Babu et al., 2009a,b; Shad et al., 2009). In the molecular structure, the two benzene rings are stacked over one another with their centroids separated by 3.769 (2) Å, indicating a weak π-π interaction. The dihedral angle between the two benzene rings is 3.1 (1)°. A distorted tetrahedral geometry [O3—S1—O4 = 118.7 (2)° and O3—S1—N1 = 108.8 (2) °] is observed around S1 atom.

In the crystal structure, O—H···O hydrogen bonds (Table 1) link the molecules into a two-dimensional network parallel to the (0 0 1). The O1W—H2W···O5 and O1W—H2W···O6 bifurcated donar bonds generate an R12(5) ring motif (Bernstein et al., 1995).

Related literature top

For the biological activity of sulfonamides, see: Cates (1986); Steele & Beran (1984); Benedetti (1987); Mengelers et al. (1997). For related structures, see: Babu et al. (2009a,b); Shad et al. (2009); For graph-set notation, see: Bernstein et al. (1995)

Experimental top

A solution of 2-(3,4-dimethoxyphenyl)-N-methyl ethanamine (1 g, 0.0051 mol) in ethyl acetate (20 ml) was charged into a round bottom flask equipped with thermometer pocket, condenser and guard tube. Then, pyridine (0.81 g, 0.0102 mol) was added at 25–30°C. After 5 min stirring, 2-bromo-5-(chlorosulfonyl)-3-methylbenzoic acid (0.96 g, 0.00307 mol) was charged into the reaction mass and heated to 45-50°C and maintained for 5-6 h. The completion of the reaction was checked by thin layer chromatography (1:1 hexane-ethyl acetate) and the reaction mass was cooled to 25–30 °C and quenched with 20 ml of water. Then, the aqueous layer was separated and the ethyl acetate layer was washed twice with 10% sodium chloride solution and dried over 2 g of anhydrous sodium sulfate. The solvent was distilled under vacuum at 35-40°C and the crude compound isolated. The crude compound was purified through column chromatography using hexane and ethyl acetate as eluents.

Refinement top

Atoms H1W and H2W were located in a difference difference Fourier map and refined freely. Other H atoms were positioned geometrically and refined using a riding model with C-H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for aromatic, C-H = 0.97 Å and Uiso(H) = 1.5Ueq(C) for methylene, C-H = 0.96 Å and Uiso(H) = 1.5Ueq(C) for methyl and O-H = 0.82 Å and Uiso(H) = 1.2Ueq(O) for water H atoms. The O1W-H1W and O1W-H2W distances were restrained to 0.82 (4) Å and atoms O2 and C7 were subjected to a rigid bond restraint.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and 30% probability displacement ellipsoids for non-H atoms. The dashed line denotes a hydrogen bond.
4-Bromo-3-{N-[2-(3,4-dimethoxyphenyl)ethyl]-N-methylsulfamoyl}- 5-methylbenzoic acid monohydrate top
Crystal data top
C19H22BrNO6S·H2OF(000) = 1008
Mr = 490.36Dx = 1.540 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 12583 reflections
a = 7.7938 (2) Åθ = 1.2–27.2°
b = 7.8280 (2) ŵ = 2.08 mm1
c = 34.6549 (8) ÅT = 295 K
V = 2114.29 (9) Å3Block, colourless
Z = 40.15 × 0.12 × 0.10 mm
Data collection top
Bruker Kappa APEXII area-detector
diffractometer
4619 independent reflections
Radiation source: fine-focus sealed tube3427 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ω and ϕ scansθmax = 27.2°, θmin = 1.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 106
Tmin = 0.745, Tmax = 0.819k = 910
12583 measured reflectionsl = 4444
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.107 w = 1/[σ2(Fo2) + (0.0512P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
4619 reflectionsΔρmax = 0.36 e Å3
275 parametersΔρmin = 0.30 e Å3
3 restraintsAbsolute structure: Flack (1983), 1915 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.004 (10)
Crystal data top
C19H22BrNO6S·H2OV = 2114.29 (9) Å3
Mr = 490.36Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.7938 (2) ŵ = 2.08 mm1
b = 7.8280 (2) ÅT = 295 K
c = 34.6549 (8) Å0.15 × 0.12 × 0.10 mm
Data collection top
Bruker Kappa APEXII area-detector
diffractometer
4619 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3427 reflections with I > 2σ(I)
Tmin = 0.745, Tmax = 0.819Rint = 0.028
12583 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.040H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.107Δρmax = 0.36 e Å3
S = 1.05Δρmin = 0.30 e Å3
4619 reflectionsAbsolute structure: Flack (1983), 1915 Friedel pairs
275 parametersAbsolute structure parameter: 0.004 (10)
3 restraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4622 (4)0.0786 (5)0.33480 (10)0.0437 (9)
C20.4708 (4)0.1063 (5)0.37399 (10)0.0409 (8)
H20.51710.20750.38350.049*
C30.4107 (4)0.0161 (4)0.39913 (9)0.0379 (8)
C40.3406 (4)0.1659 (5)0.38498 (10)0.0428 (8)
C50.3306 (5)0.1973 (5)0.34527 (11)0.0490 (9)
C60.3940 (5)0.0735 (5)0.32070 (11)0.0495 (9)
H60.39100.09210.29420.059*
C70.5272 (5)0.2101 (5)0.30749 (10)0.0500 (9)
C80.2547 (7)0.3601 (5)0.32931 (12)0.0714 (12)
H8A0.13510.36570.33580.107*
H8B0.26740.36150.30180.107*
H8C0.31330.45660.34020.107*
C90.1792 (6)0.0519 (6)0.49724 (11)0.0665 (12)
H9A0.06530.09080.49150.100*
H9B0.25350.14850.50070.100*
H9C0.17740.01480.52050.100*
C100.1537 (5)0.2158 (5)0.45884 (11)0.0529 (10)
H10A0.15640.28270.48240.063*
H10B0.21530.27910.43920.063*
C110.0297 (5)0.1940 (6)0.44630 (12)0.0606 (11)
H11A0.08420.30540.44590.073*
H11B0.08890.12510.46540.073*
C120.0524 (5)0.1125 (5)0.40751 (11)0.0511 (10)
C130.0043 (5)0.1982 (6)0.37419 (13)0.0625 (11)
H130.04310.30690.37620.075*
C140.0251 (5)0.1263 (6)0.33830 (12)0.0579 (11)
H140.00640.18660.31630.069*
C150.0922 (5)0.0336 (6)0.33519 (10)0.0527 (10)
C160.1403 (4)0.1245 (5)0.36809 (11)0.0484 (9)
C170.1194 (4)0.0509 (5)0.40371 (10)0.0481 (9)
H170.15070.11160.42570.058*
C180.0805 (8)0.0331 (7)0.26626 (12)0.0896 (16)
H18A0.04050.00990.26550.134*
H18B0.11110.10430.24480.134*
H18C0.14280.07250.26480.134*
C190.2491 (6)0.3849 (5)0.39391 (12)0.0633 (10)
H19A0.33420.32640.40890.095*
H19B0.29420.49260.38540.095*
H19C0.14890.40420.40940.095*
N10.2420 (5)0.0523 (4)0.46561 (7)0.0491 (7)
O10.5144 (5)0.1988 (5)0.27278 (7)0.0826 (10)
O20.5954 (4)0.3405 (4)0.32450 (7)0.0634 (7)
H2A0.63300.40680.30820.095*
O30.5148 (4)0.1079 (4)0.46804 (8)0.0690 (8)
O40.5175 (4)0.1965 (4)0.45044 (7)0.0609 (8)
O50.2047 (4)0.2842 (4)0.36146 (7)0.0624 (8)
O60.1214 (4)0.1172 (4)0.30090 (7)0.0683 (8)
S10.43421 (12)0.03348 (13)0.44937 (2)0.0467 (2)
Br10.25758 (6)0.33631 (5)0.418916 (12)0.06382 (16)
O1W0.7092 (5)0.5755 (5)0.28115 (11)0.0720 (10)
H2W0.749 (6)0.644 (5)0.2931 (13)0.074 (18)*
H1W0.641 (6)0.627 (7)0.2690 (14)0.09 (2)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0415 (18)0.050 (2)0.0399 (18)0.0069 (17)0.0028 (15)0.0013 (17)
C20.0412 (17)0.040 (2)0.0419 (18)0.0027 (15)0.0011 (15)0.0009 (17)
C30.0372 (16)0.042 (2)0.0350 (16)0.0057 (15)0.0030 (14)0.0002 (16)
C40.0365 (16)0.0367 (19)0.055 (2)0.0073 (16)0.0003 (15)0.0056 (18)
C50.0495 (19)0.042 (2)0.056 (2)0.0081 (17)0.0055 (17)0.0097 (19)
C60.057 (2)0.054 (2)0.0380 (18)0.0078 (19)0.0009 (16)0.0117 (19)
C70.055 (2)0.057 (2)0.038 (2)0.0041 (16)0.0011 (16)0.0068 (16)
C80.084 (3)0.059 (3)0.072 (3)0.001 (3)0.001 (3)0.021 (2)
C90.089 (3)0.063 (3)0.048 (2)0.005 (2)0.016 (2)0.013 (2)
C100.073 (3)0.043 (2)0.043 (2)0.0030 (19)0.0064 (18)0.0065 (17)
C110.061 (2)0.064 (3)0.057 (2)0.008 (2)0.008 (2)0.011 (2)
C120.0433 (18)0.058 (3)0.052 (2)0.0118 (18)0.0007 (18)0.0030 (19)
C130.063 (2)0.056 (3)0.068 (3)0.003 (2)0.003 (2)0.011 (2)
C140.063 (2)0.060 (3)0.050 (2)0.000 (2)0.0018 (19)0.015 (2)
C150.051 (2)0.066 (3)0.0408 (19)0.000 (2)0.0015 (16)0.010 (2)
C160.0401 (18)0.057 (3)0.048 (2)0.0007 (17)0.0030 (16)0.012 (2)
C170.0434 (19)0.063 (3)0.0382 (18)0.0067 (18)0.0028 (15)0.0125 (19)
C180.127 (4)0.097 (4)0.045 (2)0.009 (4)0.014 (3)0.014 (3)
C190.066 (2)0.063 (2)0.062 (2)0.007 (3)0.001 (2)0.014 (2)
N10.0617 (17)0.0490 (16)0.0367 (14)0.0005 (19)0.0051 (16)0.0077 (13)
O10.117 (3)0.096 (3)0.0341 (14)0.021 (2)0.0022 (16)0.0001 (15)
O20.085 (2)0.0635 (18)0.0413 (13)0.0139 (16)0.0039 (13)0.0106 (13)
O30.0662 (17)0.086 (2)0.0551 (15)0.0162 (16)0.0150 (13)0.0185 (16)
O40.0693 (17)0.073 (2)0.0410 (13)0.0241 (15)0.0093 (13)0.0071 (15)
O50.077 (2)0.0691 (18)0.0412 (14)0.0187 (15)0.0002 (13)0.0074 (13)
O60.087 (2)0.078 (2)0.0400 (14)0.0153 (17)0.0033 (14)0.0105 (15)
S10.0499 (5)0.0569 (6)0.0334 (4)0.0032 (5)0.0070 (4)0.0053 (4)
Br10.0684 (3)0.0479 (2)0.0752 (3)0.0062 (2)0.0019 (3)0.01215 (19)
O1W0.089 (3)0.072 (2)0.0551 (19)0.017 (2)0.0025 (18)0.0076 (19)
Geometric parameters (Å, º) top
C1—C21.377 (5)C11—H11B0.97
C1—C61.392 (6)C12—C131.387 (6)
C1—C71.487 (5)C12—C171.388 (6)
C2—C31.377 (5)C13—C141.375 (6)
C2—H20.93C13—H130.93
C3—C41.383 (5)C14—C151.361 (6)
C3—S11.793 (3)C14—H140.93
C4—C51.400 (5)C15—O61.375 (5)
C4—Br11.893 (4)C15—C161.395 (5)
C5—C61.381 (6)C16—O51.366 (5)
C5—C81.510 (5)C16—C171.372 (5)
C6—H60.93C17—H170.93
C7—O11.210 (4)C18—O61.406 (5)
C7—O21.293 (5)C18—H18A0.96
C8—H8A0.96C18—H18B0.96
C8—H8B0.96C18—H18C0.96
C8—H8C0.96C19—O51.417 (5)
C9—N11.451 (5)C19—H19A0.96
C9—H9A0.96C19—H19B0.96
C9—H9B0.96C19—H19C0.96
C9—H9C0.96N1—S11.607 (4)
C10—N11.472 (5)O2—H2A0.82
C10—C111.504 (6)O3—S11.428 (3)
C10—H10A0.97O4—S11.432 (3)
C10—H10B0.97O1W—H2W0.75 (3)
C11—C121.498 (6)O1W—H1W0.79 (3)
C11—H11A0.97
C2—C1—C6120.0 (3)H11A—C11—H11B107.5
C2—C1—C7120.1 (3)C13—C12—C17117.9 (4)
C6—C1—C7119.9 (3)C13—C12—C11120.6 (4)
C3—C2—C1119.9 (3)C17—C12—C11121.5 (4)
C3—C2—H2120.1C14—C13—C12121.5 (4)
C1—C2—H2120.1C14—C13—H13119.2
C2—C3—C4120.0 (3)C12—C13—H13119.2
C2—C3—S1115.4 (3)C15—C14—C13119.6 (4)
C4—C3—S1124.6 (3)C15—C14—H14120.2
C3—C4—C5121.3 (3)C13—C14—H14120.2
C3—C4—Br1120.8 (3)C14—C15—O6124.7 (4)
C5—C4—Br1117.9 (3)C14—C15—C16120.5 (4)
C6—C5—C4117.6 (3)O6—C15—C16114.8 (4)
C6—C5—C8120.4 (4)O5—C16—C17125.4 (3)
C4—C5—C8122.0 (4)O5—C16—C15115.3 (3)
C5—C6—C1121.3 (3)C17—C16—C15119.3 (4)
C5—C6—H6119.3C16—C17—C12121.1 (4)
C1—C6—H6119.3C16—C17—H17119.4
O1—C7—O2123.0 (4)C12—C17—H17119.4
O1—C7—C1123.6 (4)O6—C18—H18A109.5
O2—C7—C1113.4 (3)O6—C18—H18B109.5
C5—C8—H8A109.5H18A—C18—H18B109.5
C5—C8—H8B109.5O6—C18—H18C109.5
H8A—C8—H8B109.5H18A—C18—H18C109.5
C5—C8—H8C109.5H18B—C18—H18C109.5
H8A—C8—H8C109.5O5—C19—H19A109.5
H8B—C8—H8C109.5O5—C19—H19B109.5
N1—C9—H9A109.5H19A—C19—H19B109.5
N1—C9—H9B109.5O5—C19—H19C109.5
H9A—C9—H9B109.5H19A—C19—H19C109.5
N1—C9—H9C109.5H19B—C19—H19C109.5
H9A—C9—H9C109.5C9—N1—C10116.8 (3)
H9B—C9—H9C109.5C9—N1—S1121.8 (3)
N1—C10—C11113.0 (3)C10—N1—S1117.3 (2)
N1—C10—H10A109.0C7—O2—H2A109.5
C11—C10—H10A109.0C16—O5—C19117.7 (3)
N1—C10—H10B109.0C15—O6—C18118.5 (4)
C11—C10—H10B109.0O3—S1—O4118.65 (17)
H10A—C10—H10B107.8O3—S1—N1108.82 (16)
C12—C11—C10114.8 (3)O4—S1—N1109.40 (17)
C12—C11—H11A108.6O3—S1—C3108.50 (17)
C10—C11—H11A108.6O4—S1—C3105.31 (16)
C12—C11—H11B108.6N1—S1—C3105.34 (15)
C10—C11—H11B108.6H2W—O1W—H1W102 (6)
C6—C1—C2—C30.5 (5)C13—C14—C15—C160.3 (6)
C7—C1—C2—C3179.9 (3)C14—C15—C16—O5179.5 (4)
C1—C2—C3—C40.5 (5)O6—C15—C16—O51.7 (5)
C1—C2—C3—S1178.5 (3)C14—C15—C16—C170.0 (6)
C2—C3—C4—C50.6 (5)O6—C15—C16—C17178.8 (3)
S1—C3—C4—C5178.3 (3)O5—C16—C17—C12179.9 (3)
C2—C3—C4—Br1179.8 (2)C15—C16—C17—C120.5 (5)
S1—C3—C4—Br10.9 (4)C13—C12—C17—C161.1 (5)
C3—C4—C5—C60.2 (5)C11—C12—C17—C16179.8 (3)
Br1—C4—C5—C6179.0 (3)C11—C10—N1—C965.3 (4)
C3—C4—C5—C8179.9 (4)C11—C10—N1—S1136.7 (3)
Br1—C4—C5—C80.7 (5)C17—C16—O5—C192.0 (5)
C4—C5—C6—C11.2 (5)C15—C16—O5—C19177.4 (3)
C8—C5—C6—C1179.1 (4)C14—C15—O6—C180.3 (6)
C2—C1—C6—C51.4 (5)C16—C15—O6—C18178.5 (4)
C7—C1—C6—C5179.2 (3)C9—N1—S1—O36.1 (4)
C2—C1—C7—O1175.4 (4)C10—N1—S1—O3163.0 (3)
C6—C1—C7—O15.1 (6)C9—N1—S1—O4124.9 (3)
C2—C1—C7—O23.0 (5)C10—N1—S1—O431.9 (3)
C6—C1—C7—O2176.4 (3)C9—N1—S1—C3122.3 (3)
N1—C10—C11—C1266.2 (5)C10—N1—S1—C380.9 (3)
C10—C11—C12—C1368.6 (5)C2—C3—S1—O3129.1 (3)
C10—C11—C12—C17110.5 (4)C4—C3—S1—O349.9 (3)
C17—C12—C13—C141.4 (6)C2—C3—S1—O41.1 (3)
C11—C12—C13—C14179.5 (4)C4—C3—S1—O4177.9 (3)
C12—C13—C14—C151.0 (6)C2—C3—S1—N1114.5 (3)
C13—C14—C15—O6178.9 (4)C4—C3—S1—N166.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O1W0.821.732.535 (4)169
O1W—H1W···O1i0.79 (3)1.97 (4)2.732 (5)162 (6)
O1W—H2W···O5ii0.75 (3)2.46 (4)3.066 (5)139 (5)
O1W—H2W···O6ii0.75 (3)2.14 (4)2.828 (5)154 (5)
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+1, y1, z.

Experimental details

Crystal data
Chemical formulaC19H22BrNO6S·H2O
Mr490.36
Crystal system, space groupOrthorhombic, P212121
Temperature (K)295
a, b, c (Å)7.7938 (2), 7.8280 (2), 34.6549 (8)
V3)2114.29 (9)
Z4
Radiation typeMo Kα
µ (mm1)2.08
Crystal size (mm)0.15 × 0.12 × 0.10
Data collection
DiffractometerBruker Kappa APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.745, 0.819
No. of measured, independent and
observed [I > 2σ(I)] reflections
12583, 4619, 3427
Rint0.028
(sin θ/λ)max1)0.642
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.107, 1.05
No. of reflections4619
No. of parameters275
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.36, 0.30
Absolute structureFlack (1983), 1915 Friedel pairs
Absolute structure parameter0.004 (10)

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O1W0.821.732.535 (4)169
O1W—H1W···O1i0.79 (3)1.97 (4)2.732 (5)162 (6)
O1W—H2W···O5ii0.75 (3)2.46 (4)3.066 (5)139 (5)
O1W—H2W···O6ii0.75 (3)2.14 (4)2.828 (5)154 (5)
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+1, y1, z.
 

Acknowledgements

The authors acknowledge the Sophisticated Analytical Instrument Facility, Indian Institute of Technology-Madras, Chennai, for the data collection.

References

First citationBabu, C. S. M., Kavitha, H. P., Arulmozhi, R., Vennila, J. P. & Manivannan, V. (2009a). Acta Cryst. E65, o1098.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBabu, C. S. M., Kavitha, H. P., Kavipriya, R., Vennila, J. P. & Manivannan, V. (2009b). Acta Cryst. E65, o921.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBenedetti, P. G. D. (1987). Advances in Drug Research, Vol. 16, edited by B. Testa, pp. 227–279. London, New York: Academic Press.  Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCates, L. A. (1986). Sulfa Drugs. Handbook of Chemotherapeutic agents, Vol. I, edited by M. Verderame, pp. 1–29. Boca Raton, Florida: CRC Press.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMengelers, M. J., Hougee, P. E., Jansson, L. H. & Van Miert, A. S. (1997). J. Vet. Pharmacol. Ther. 20, 276–283.  CrossRef CAS PubMed Web of Science Google Scholar
First citationShad, H. A., Tahir, M. N. & Chohan, Z. H. (2009). Acta Cryst. E65, o98–o99.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSteele, J. H. & Beran, G. W. (1984). Perspectives in the Uses of Antibiotics and Sulfonamides, in Handbook Series in Zoonoses, Section D: Antibiotics, Sulfonamides and Public Health, Vol. 1, edited by J. H. Steele & G. W. Beran, p. 9. Boca Raton, Florida: CRC Press.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds