metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Di­methyl­formamide-κO){4,4′,6,6′-tetra­bromo-2,2′-[o-phenyl­enebis(nitrilo­methyl­­idyne)]diphenolato-κ4O,N,N′,O′}copper(II) di­methyl­formamide solvate

aCollege of Chemistry and Pharmaceutical Engineering, Sichuan University of Science and Engineering, Zigong, Sichuan 643000, People's Republic of China
*Correspondence e-mail: solicitor.wu@126.com

(Received 30 May 2009; accepted 7 June 2009; online 10 June 2009)

In the title compound, [Cu(C20H10Br4N2O2)(C3H7NO)]·C3H7NO, the CuII ion is coordinated by two N atoms and two O atoms from a tetra­dentate Schiff base ligand and the O atom of one dimethyl­formamide ligand in an almost square-pyramidal geometry. The uncoordinated dimethyl­formamide solvent mol­ecule is disordered over two sets of positions with occupancies of 0.741 (4) and 0.259 (4). The crystal packing is stabilized by C—H⋯O inter­actions.

Related literature

For the preparation of 3,5-dibromo­salicylaldehyde, see: Elzbieta et al. (1964[Elzbieta, C., Zygmunt, E. & Romuald, K. (1964). Diss. Pharm. 15, 369-378.]). For a related structure, see: Bei et al. (2003[Bei, F.-L., Ma, W.-X. & Wang, J. (2003). Chin. J. Inorg. Chem. 19, 609-612.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C20H10Br4N2O2)(C3H7NO)]·C3H7NO

  • Mr = 839.67

  • Triclinic, [P \overline 1]

  • a = 7.3742 (10) Å

  • b = 11.9542 (19) Å

  • c = 17.212 (2) Å

  • α = 94.207 (9)°

  • β = 100.310 (6)°

  • γ = 104.117 (5)°

  • V = 1436.8 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 6.36 mm−1

  • T = 93 K

  • 0.25 × 0.25 × 0.25 mm

Data collection
  • Rigaku SPIDER diffractometer

  • Absorption correction: multi-scan (RAPID-AUTO; Rigaku, 2004[Rigaku (2004). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.299, Tmax = 0.299 (expected range = 0.204–0.204)

  • 11906 measured reflections

  • 6330 independent reflections

  • 5305 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.063

  • S = 1.02

  • 6330 reflections

  • 392 parameters

  • 8 restraints

  • H-atom parameters constrained

  • Δρmax = 0.75 e Å−3

  • Δρmin = −0.52 e Å−3

Table 1
Selected bond lengths (Å)

Cu1—O1 1.910 (2)
Cu1—O2 1.9174 (19)
Cu1—N1 1.954 (2)
Cu1—N2 1.958 (2)
Cu1—O3 2.501 (2)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O3i 0.95 2.47 3.319 (4) 148
C7—H7⋯O3i 0.95 2.37 3.243 (4) 153
C14—H14⋯O4ii 0.95 2.33 3.226 (14) 156
C22—H22A⋯O1 0.98 2.54 3.378 (4) 143
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+2, -y+1, -z+2.

Data collection: RAPID-AUTO (Rigaku, 2004[Rigaku (2004). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The crystal structure and some properties of 1,2-N,N'-disalicylidenephenylaminato-nickel(II) was previously reported by Bei et al. (2003). We report here the synthesis and crystal structure of the title complex, [Cu(C14H8N2O3Br2)(C3H7NO)](C3H7NO).

The contents of the asymmetric unit are shown in Fig.1. The CuII ion is coordinated by two N atoms and two O atoms from one 4,4',6,6'-tetrabromo-2,2'-[1,2-phenylenebis(nitrilomethylidyne)]diphenolate dianion and one O atom of N,N-dimethylformamide ligand in a square-pyramidal geometry (Table 1). The crystal packing is stabilized by C—H···O interactions (Table 2).

Related literature top

For the preparation of 3,5-dibromosalicylaldehyde, see: Elzbieta et al. (1964). For a related structure, see: Bei et al. (2003).

Experimental top

The title complex was synthesized in two stages. In the first stage, 3,5- dibromosalicylaldehyde was prepared according to Elzbieta et al. (1964). Two mole equivalents of 3,5-dibromosalicylaldehyde in ethanol (50 ml) was slowly added to 1,2-phenylenediamine (6 g) in ethanol (100 ml) with continuous stirring. The Schiff base molecule, viz. 4,4',6,6'-tetrabromo-2,2'-[1,2-phenylenebis(nitrilomethylidyne)] diphenol, precipitated immediately. In the second stage, the ligand (1 mmol), Cu(OAc)2 (1 mmol) and DMF (25 ml) were refluxed for 1 h. The hot solution was filtered and allowed to stand at room temperature undisturbed for about three weeks, resulting in dark green crystals.

Refinement top

The uncoordinated N,N-dimethylformamide solvent molecule is disordered over two positions with occupancies of 0.741 (4) and 0.259 (4). The N—C(sp3), N—C(sp2) and C—O distances in both disorder components were restrained to 1.460 (3), 1.340 (3) and 1.220 (3) Å, respectively. H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95 or 0.98 Å and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 2004); cell refinement: RAPID-AUTO (Rigaku, 2004); data reduction: RAPID-AUTO (Rigaku, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the title complex, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for the sake of clarity. Both disorder components of the uncoordinated solvent molecule are shown.
(Dimethylformamide-κO){4,4',6,6'-tetrabromo-2,2'-[o- phenylenebis(nitrilomethylidyne)]diphenolato- κ4O,N,N',O'}copper(II) dimethylformamide solvate top
Crystal data top
[Cu(C20H10Br4N2O2)(C3H7NO)]·C3H7NOZ = 2
Mr = 839.67F(000) = 818
Triclinic, P1Dx = 1.941 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.3742 (10) ÅCell parameters from 4531 reflections
b = 11.9542 (19) Åθ = 3.1–27.5°
c = 17.212 (2) ŵ = 6.36 mm1
α = 94.207 (9)°T = 93 K
β = 100.310 (6)°Block, dark green
γ = 104.117 (5)°0.25 × 0.25 × 0.25 mm
V = 1436.8 (3) Å3
Data collection top
Rigaku SPIDER
diffractometer
6330 independent reflections
Radiation source: Rotating Anode5305 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ω scansθmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan
(RAPID-AUTO; Rigaku, 2004)
h = 89
Tmin = 0.299, Tmax = 0.299k = 1515
11906 measured reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.063H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0247P)2]
where P = (Fo2 + 2Fc2)/3
6330 reflections(Δ/σ)max = 0.002
392 parametersΔρmax = 0.75 e Å3
8 restraintsΔρmin = 0.52 e Å3
Crystal data top
[Cu(C20H10Br4N2O2)(C3H7NO)]·C3H7NOγ = 104.117 (5)°
Mr = 839.67V = 1436.8 (3) Å3
Triclinic, P1Z = 2
a = 7.3742 (10) ÅMo Kα radiation
b = 11.9542 (19) ŵ = 6.36 mm1
c = 17.212 (2) ÅT = 93 K
α = 94.207 (9)°0.25 × 0.25 × 0.25 mm
β = 100.310 (6)°
Data collection top
Rigaku SPIDER
diffractometer
6330 independent reflections
Absorption correction: multi-scan
(RAPID-AUTO; Rigaku, 2004)
5305 reflections with I > 2σ(I)
Tmin = 0.299, Tmax = 0.299Rint = 0.027
11906 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0358 restraints
wR(F2) = 0.063H-atom parameters constrained
S = 1.02Δρmax = 0.75 e Å3
6330 reflectionsΔρmin = 0.52 e Å3
392 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.39299 (5)0.60816 (3)0.67052 (2)0.01305 (9)
Br10.12215 (5)0.88993 (3)0.535887 (19)0.01998 (8)
Br20.00681 (5)0.60574 (3)0.244696 (18)0.02312 (9)
Br30.74637 (5)0.75127 (3)1.105720 (18)0.02390 (9)
Br40.49378 (5)0.96915 (3)0.842406 (19)0.02212 (9)
O10.2620 (3)0.69347 (17)0.60103 (11)0.0141 (5)
O20.4409 (3)0.73265 (18)0.75456 (11)0.0152 (5)
N10.3449 (3)0.4761 (2)0.58884 (14)0.0124 (5)
N20.4835 (4)0.5038 (2)0.74155 (14)0.0142 (6)
C10.2062 (4)0.6699 (3)0.52455 (17)0.0129 (6)
C20.1319 (4)0.7497 (3)0.48000 (17)0.0137 (6)
C30.0698 (4)0.7320 (3)0.39909 (17)0.0150 (7)
H30.02240.78850.37180.018*
C40.0777 (4)0.6295 (3)0.35772 (17)0.0161 (7)
C50.1450 (4)0.5472 (3)0.39550 (17)0.0157 (7)
H50.14840.47770.36600.019*
C60.2099 (4)0.5664 (3)0.47917 (17)0.0125 (6)
C70.2743 (4)0.4742 (3)0.51432 (18)0.0142 (6)
H70.26420.40610.47990.017*
C80.3973 (4)0.3788 (3)0.61884 (18)0.0134 (6)
C90.3827 (4)0.2740 (3)0.57325 (19)0.0172 (7)
H90.33610.26430.51740.021*
C100.4360 (4)0.1849 (3)0.60964 (19)0.0191 (7)
H100.42720.11390.57880.023*
C110.5026 (5)0.1987 (3)0.69131 (19)0.0217 (7)
H110.53670.13610.71590.026*
C120.5201 (4)0.3013 (3)0.73727 (19)0.0184 (7)
H120.56670.30970.79310.022*
C130.4690 (4)0.3924 (3)0.70124 (18)0.0139 (6)
C140.5440 (4)0.5275 (3)0.81769 (17)0.0149 (7)
H140.58030.46820.84570.018*
C150.5606 (4)0.6358 (3)0.86300 (17)0.0147 (7)
C160.6296 (4)0.6425 (3)0.94604 (17)0.0168 (7)
H160.66000.57710.96800.020*
C170.6526 (4)0.7431 (3)0.99485 (17)0.0172 (7)
C180.6111 (4)0.8407 (3)0.96363 (18)0.0174 (7)
H180.62800.91040.99760.021*
C190.5458 (4)0.8344 (3)0.88351 (18)0.0156 (7)
C200.5124 (4)0.7327 (3)0.82895 (17)0.0142 (7)
O30.7162 (3)0.69177 (19)0.64181 (13)0.0218 (5)
N30.8292 (4)0.8852 (2)0.68559 (16)0.0251 (7)
C210.8417 (5)0.7771 (3)0.6803 (2)0.0272 (8)
H210.95560.76280.70810.033*
C220.6627 (5)0.9150 (3)0.6398 (2)0.0278 (8)
H22A0.57530.84470.60820.033*
H22B0.70520.97190.60430.033*
H22C0.59670.94830.67650.033*
C230.9791 (6)0.9809 (3)0.7305 (3)0.0478 (12)
H23A1.08060.95120.75970.057*
H23B0.92731.02330.76820.057*
H23C1.03151.03330.69410.057*
O41.225 (3)0.6119 (8)1.0649 (3)0.0317 (16)0.741 (4)
C241.1892 (7)0.7023 (4)1.0473 (2)0.0281 (12)0.741 (4)
H241.20900.76321.08910.034*0.741 (4)
N41.1242 (16)0.7216 (4)0.9731 (2)0.0216 (12)0.741 (4)
C251.0952 (8)0.8347 (4)0.9571 (4)0.0382 (14)0.741 (4)
H25A1.10950.88281.00750.046*0.741 (4)
H25B0.96650.82430.92540.046*0.741 (4)
H25C1.19000.87290.92760.046*0.741 (4)
C261.0890 (7)0.6327 (4)0.9057 (3)0.0340 (13)0.741 (4)
H26A1.12860.56490.92400.041*0.741 (4)
H26B1.16220.66370.86630.041*0.741 (4)
H26C0.95250.60950.88150.041*0.741 (4)
O4'1.229 (8)0.603 (3)1.0485 (10)0.0317 (16)0.26
C24'1.1591 (17)0.6115 (9)0.9800 (7)0.018 (3)0.259 (4)
H24'1.12720.54340.94290.022*0.259 (4)
N4'1.123 (5)0.7071 (13)0.9520 (7)0.0216 (12)0.26
C25'1.0462 (17)0.7099 (12)0.8680 (6)0.022 (3)0.259 (4)
H25D1.14220.76180.84530.026*0.259 (4)
H25E0.93120.73830.86300.026*0.259 (4)
H25F1.01380.63140.83950.026*0.259 (4)
C26'1.1704 (18)0.8156 (10)1.0052 (7)0.019 (3)0.259 (4)
H26D1.05410.84071.00700.023*0.259 (4)
H26E1.26130.87560.98540.023*0.259 (4)
H26F1.22800.80341.05870.023*0.259 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0175 (2)0.01176 (19)0.01046 (18)0.00541 (16)0.00143 (15)0.00295 (15)
Br10.02559 (19)0.01350 (16)0.02113 (17)0.00819 (14)0.00104 (14)0.00254 (13)
Br20.02115 (18)0.0359 (2)0.01140 (16)0.00857 (15)0.00079 (13)0.00359 (14)
Br30.02659 (19)0.0333 (2)0.01011 (16)0.00644 (15)0.00017 (14)0.00550 (14)
Br40.0337 (2)0.01807 (17)0.01618 (16)0.01086 (15)0.00296 (14)0.00318 (13)
O10.0191 (12)0.0135 (11)0.0094 (10)0.0063 (9)0.0006 (9)0.0018 (9)
O20.0226 (12)0.0148 (11)0.0090 (10)0.0081 (10)0.0009 (9)0.0018 (9)
N10.0110 (13)0.0112 (13)0.0143 (13)0.0025 (10)0.0010 (11)0.0016 (11)
N20.0157 (14)0.0127 (13)0.0164 (13)0.0049 (11)0.0060 (11)0.0050 (11)
C10.0115 (15)0.0142 (16)0.0120 (15)0.0013 (12)0.0015 (12)0.0045 (13)
C20.0134 (16)0.0121 (15)0.0160 (16)0.0029 (12)0.0038 (13)0.0035 (13)
C30.0103 (15)0.0182 (17)0.0167 (16)0.0031 (13)0.0013 (13)0.0080 (13)
C40.0119 (16)0.0222 (18)0.0114 (15)0.0017 (13)0.0014 (13)0.0032 (14)
C50.0166 (17)0.0175 (17)0.0127 (15)0.0043 (13)0.0039 (13)0.0017 (13)
C60.0146 (16)0.0131 (16)0.0118 (15)0.0057 (13)0.0043 (13)0.0027 (13)
C70.0143 (16)0.0127 (16)0.0160 (16)0.0014 (13)0.0070 (13)0.0017 (13)
C80.0093 (15)0.0114 (15)0.0209 (16)0.0021 (12)0.0058 (13)0.0060 (13)
C90.0149 (16)0.0156 (16)0.0202 (17)0.0039 (13)0.0013 (14)0.0027 (14)
C100.0188 (17)0.0125 (16)0.0267 (18)0.0047 (14)0.0064 (15)0.0015 (14)
C110.0241 (19)0.0177 (17)0.0294 (19)0.0095 (14)0.0117 (15)0.0127 (15)
C120.0197 (17)0.0226 (18)0.0181 (17)0.0098 (14)0.0088 (14)0.0086 (14)
C130.0145 (16)0.0113 (15)0.0179 (16)0.0041 (12)0.0064 (13)0.0031 (13)
C140.0146 (16)0.0183 (17)0.0144 (15)0.0055 (13)0.0049 (13)0.0094 (13)
C150.0122 (16)0.0202 (17)0.0120 (15)0.0049 (13)0.0017 (13)0.0029 (13)
C160.0147 (16)0.0237 (18)0.0150 (16)0.0085 (14)0.0028 (13)0.0101 (14)
C170.0158 (17)0.0257 (18)0.0085 (15)0.0039 (14)0.0001 (13)0.0027 (14)
C180.0152 (17)0.0217 (18)0.0151 (16)0.0047 (14)0.0036 (13)0.0003 (14)
C190.0168 (17)0.0161 (16)0.0159 (16)0.0066 (13)0.0042 (13)0.0049 (13)
C200.0113 (16)0.0193 (17)0.0127 (15)0.0041 (13)0.0034 (12)0.0037 (13)
O30.0247 (13)0.0146 (12)0.0243 (13)0.0014 (10)0.0073 (11)0.0015 (10)
N30.0296 (17)0.0163 (15)0.0258 (16)0.0010 (13)0.0043 (13)0.0002 (13)
C210.030 (2)0.029 (2)0.0271 (19)0.0131 (17)0.0084 (17)0.0096 (17)
C220.036 (2)0.0224 (19)0.0259 (19)0.0092 (17)0.0055 (17)0.0013 (16)
C230.047 (3)0.023 (2)0.057 (3)0.0038 (19)0.012 (2)0.001 (2)
O40.0336 (19)0.031 (2)0.029 (3)0.0112 (18)0.003 (4)0.011 (2)
C240.021 (3)0.032 (3)0.027 (3)0.004 (2)0.002 (2)0.006 (2)
N40.0193 (16)0.021 (2)0.024 (3)0.005 (2)0.001 (4)0.007 (2)
C250.030 (3)0.035 (3)0.056 (4)0.012 (3)0.014 (3)0.023 (3)
C260.024 (3)0.049 (4)0.032 (3)0.010 (3)0.008 (2)0.012 (3)
O4'0.0336 (19)0.031 (2)0.029 (3)0.0112 (18)0.003 (4)0.011 (2)
C24'0.013 (6)0.013 (6)0.028 (7)0.004 (5)0.007 (6)0.011 (6)
N4'0.0193 (16)0.021 (2)0.024 (3)0.005 (2)0.001 (4)0.007 (2)
C25'0.014 (7)0.037 (8)0.014 (6)0.006 (6)0.003 (5)0.016 (6)
C26'0.013 (7)0.021 (8)0.024 (7)0.005 (6)0.004 (6)0.002 (6)
Geometric parameters (Å, º) top
Cu1—O11.910 (2)C16—C171.372 (4)
Cu1—O21.9174 (19)C16—H160.95
Cu1—N11.954 (2)C17—C181.397 (4)
Cu1—N21.958 (2)C18—C191.367 (4)
Cu1—O32.501 (2)C18—H180.95
Br1—C21.894 (3)C19—C201.423 (4)
Br2—C41.911 (3)O3—C211.247 (4)
Br3—C171.897 (3)N3—C211.316 (4)
Br4—C191.901 (3)N3—C231.441 (4)
O1—C11.295 (3)N3—C221.471 (4)
O2—C201.294 (3)C21—H210.95
N1—C71.291 (4)C22—H22A0.98
N1—C81.416 (4)C22—H22B0.98
N2—C141.293 (4)C22—H22C0.98
N2—C131.426 (4)C23—H23A0.98
C1—C21.418 (4)C23—H23B0.98
C1—C61.423 (4)C23—H23C0.98
C2—C31.369 (4)O4—C241.218 (3)
C3—C41.390 (4)C24—N41.340 (3)
C3—H30.95C24—H240.95
C4—C51.361 (4)N4—C261.456 (3)
C5—C61.416 (4)N4—C251.457 (3)
C5—H50.95C25—H25A0.98
C6—C71.434 (4)C25—H25B0.98
C7—H70.95C25—H25C0.98
C8—C91.399 (4)C26—H26A0.98
C8—C131.405 (4)C26—H26B0.98
C9—C101.377 (4)C26—H26C0.98
C9—H90.95O4'—C24'1.220 (3)
C10—C111.387 (4)C24'—N4'1.340 (3)
C10—H100.95C24'—H24'0.95
C11—C121.375 (4)N4'—C25'1.460 (3)
C11—H110.95N4'—C26'1.460 (3)
C12—C131.389 (4)C25'—H25D0.98
C12—H120.95C25'—H25E0.98
C14—C151.428 (4)C25'—H25F0.98
C14—H140.95C26'—H26D0.98
C15—C161.418 (4)C26'—H26E0.98
C15—C201.427 (4)C26'—H26F0.98
O1—Cu1—O289.11 (8)C16—C15—C14115.6 (3)
O1—Cu1—N193.40 (9)C20—C15—C14123.6 (3)
O2—Cu1—N1177.19 (10)C17—C16—C15120.3 (3)
O1—Cu1—N2170.18 (10)C17—C16—H16119.9
O2—Cu1—N293.64 (9)C15—C16—H16119.9
N1—Cu1—N283.67 (10)C16—C17—C18120.7 (3)
O1—Cu1—O396.00 (9)C16—C17—Br3119.8 (2)
O2—Cu1—O389.70 (8)C18—C17—Br3119.4 (2)
N1—Cu1—O391.29 (9)C19—C18—C17119.0 (3)
N2—Cu1—O393.44 (9)C19—C18—H18120.5
C1—O1—Cu1126.73 (19)C17—C18—H18120.5
C20—O2—Cu1126.9 (2)C18—C19—C20124.0 (3)
C7—N1—C8121.5 (3)C18—C19—Br4118.1 (2)
C7—N1—Cu1125.3 (2)C20—C19—Br4117.9 (2)
C8—N1—Cu1113.22 (19)O2—C20—C19119.9 (3)
C14—N2—C13121.4 (3)O2—C20—C15124.9 (3)
C14—N2—Cu1125.7 (2)C19—C20—C15115.2 (3)
C13—N2—Cu1112.92 (19)C21—O3—Cu1126.8 (2)
O1—C1—C2119.9 (3)C21—N3—C23123.2 (3)
O1—C1—C6125.0 (3)C21—N3—C22120.3 (3)
C2—C1—C6115.1 (3)C23—N3—C22116.3 (3)
C3—C2—C1123.8 (3)O3—C21—N3125.4 (3)
C3—C2—Br1118.3 (2)O3—C21—H21117.3
C1—C2—Br1117.8 (2)N3—C21—H21117.3
C2—C3—C4118.6 (3)N3—C22—H22A109.5
C2—C3—H3120.7N3—C22—H22B109.5
C4—C3—H3120.7H22A—C22—H22B109.5
C5—C4—C3121.8 (3)N3—C22—H22C109.5
C5—C4—Br2119.8 (2)H22A—C22—H22C109.5
C3—C4—Br2118.5 (2)H22B—C22—H22C109.5
C4—C5—C6119.3 (3)N3—C23—H23A109.5
C4—C5—H5120.3N3—C23—H23B109.5
C6—C5—H5120.3H23A—C23—H23B109.5
C5—C6—C1121.4 (3)N3—C23—H23C109.5
C5—C6—C7115.7 (3)H23A—C23—H23C109.5
C1—C6—C7123.0 (3)H23B—C23—H23C109.5
N1—C7—C6125.4 (3)O4—C24—N4124.5 (4)
N1—C7—H7117.3O4—C24—H24117.8
C6—C7—H7117.3N4—C24—H24117.8
C9—C8—C13119.4 (3)C24—N4—C26121.2 (4)
C9—C8—N1125.2 (3)C24—N4—C25120.7 (4)
C13—C8—N1115.3 (3)C26—N4—C25118.0 (4)
C10—C9—C8119.8 (3)O4'—C24'—N4'126.4 (14)
C10—C9—H9120.1O4'—C24'—H24'116.8
C8—C9—H9120.1N4'—C24'—H24'116.8
C9—C10—C11120.1 (3)C24'—N4'—C25'122.5 (11)
C9—C10—H10119.9C24'—N4'—C26'119.9 (11)
C11—C10—H10119.9C25'—N4'—C26'117.5 (10)
C12—C11—C10121.2 (3)N4'—C25'—H25D109.5
C12—C11—H11119.4N4'—C25'—H25E109.5
C10—C11—H11119.4H25D—C25'—H25E109.5
C11—C12—C13119.3 (3)N4'—C25'—H25F109.5
C11—C12—H12120.3H25D—C25'—H25F109.5
C13—C12—H12120.3H25E—C25'—H25F109.5
C12—C13—C8120.1 (3)N4'—C26'—H26D109.5
C12—C13—N2125.0 (3)N4'—C26'—H26E109.5
C8—C13—N2114.8 (3)H26D—C26'—H26E109.5
N2—C14—C15125.1 (3)N4'—C26'—H26F109.5
N2—C14—H14117.4H26D—C26'—H26F109.5
C15—C14—H14117.4H26E—C26'—H26F109.5
C16—C15—C20120.8 (3)
O2—Cu1—O1—C1169.2 (2)C8—C9—C10—C110.5 (5)
N1—Cu1—O1—C112.0 (2)C9—C10—C11—C121.2 (5)
O3—Cu1—O1—C179.6 (2)C10—C11—C12—C130.4 (5)
O1—Cu1—O2—C20171.6 (2)C11—C12—C13—C81.0 (5)
N2—Cu1—O2—C201.1 (3)C11—C12—C13—N2178.7 (3)
O3—Cu1—O2—C2092.4 (2)C9—C8—C13—C121.6 (5)
O1—Cu1—N1—C79.3 (3)N1—C8—C13—C12178.3 (3)
N2—Cu1—N1—C7179.9 (3)C9—C8—C13—N2178.1 (3)
O3—Cu1—N1—C786.8 (3)N1—C8—C13—N21.9 (4)
O1—Cu1—N1—C8171.3 (2)C14—N2—C13—C121.5 (5)
N2—Cu1—N1—C80.7 (2)Cu1—N2—C13—C12179.0 (3)
O3—Cu1—N1—C892.6 (2)C14—N2—C13—C8178.7 (3)
O2—Cu1—N2—C141.5 (3)Cu1—N2—C13—C81.3 (3)
N1—Cu1—N2—C14177.6 (3)C13—N2—C14—C15179.1 (3)
O3—Cu1—N2—C1491.5 (3)Cu1—N2—C14—C152.0 (4)
O2—Cu1—N2—C13178.8 (2)N2—C14—C15—C16179.7 (3)
N1—Cu1—N2—C130.3 (2)N2—C14—C15—C200.4 (5)
O3—Cu1—N2—C1391.2 (2)C20—C15—C16—C170.6 (5)
Cu1—O1—C1—C2172.1 (2)C14—C15—C16—C17179.3 (3)
Cu1—O1—C1—C68.9 (4)C15—C16—C17—C180.9 (5)
O1—C1—C2—C3179.9 (3)C15—C16—C17—Br3179.6 (2)
C6—C1—C2—C31.0 (5)C16—C17—C18—C190.4 (5)
O1—C1—C2—Br11.0 (4)Br3—C17—C18—C19179.2 (2)
C6—C1—C2—Br1179.9 (2)C17—C18—C19—C201.5 (5)
C1—C2—C3—C40.7 (5)C17—C18—C19—Br4179.2 (2)
Br1—C2—C3—C4179.6 (2)Cu1—O2—C20—C19177.6 (2)
C2—C3—C4—C50.0 (5)Cu1—O2—C20—C153.4 (4)
C2—C3—C4—Br2179.4 (2)C18—C19—C20—O2176.3 (3)
C3—C4—C5—C60.3 (5)Br4—C19—C20—O23.0 (4)
Br2—C4—C5—C6179.1 (2)C18—C19—C20—C152.8 (5)
C4—C5—C6—C10.0 (5)Br4—C19—C20—C15177.9 (2)
C4—C5—C6—C7178.6 (3)C16—C15—C20—O2176.8 (3)
O1—C1—C6—C5179.7 (3)C14—C15—C20—O23.3 (5)
C2—C1—C6—C50.6 (4)C16—C15—C20—C192.3 (4)
O1—C1—C6—C71.1 (5)C14—C15—C20—C19177.6 (3)
C2—C1—C6—C7177.9 (3)O1—Cu1—O3—C2194.1 (3)
C8—N1—C7—C6177.3 (3)O2—Cu1—O3—C215.0 (3)
Cu1—N1—C7—C63.4 (4)N1—Cu1—O3—C21172.4 (3)
C5—C6—C7—N1177.4 (3)N2—Cu1—O3—C2188.6 (3)
C1—C6—C7—N14.0 (5)Cu1—O3—C21—N366.7 (4)
C7—N1—C8—C91.1 (5)C23—N3—C21—O3179.6 (4)
Cu1—N1—C8—C9178.4 (2)C22—N3—C21—O34.2 (5)
C7—N1—C8—C13178.9 (3)O4—C24—N4—C260.4 (17)
Cu1—N1—C8—C131.6 (3)O4—C24—N4—C25176.8 (12)
C13—C8—C9—C100.9 (5)O4'—C24'—N4'—C25'177 (4)
N1—C8—C9—C10179.1 (3)O4'—C24'—N4'—C26'1 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O3i0.952.473.319 (4)148
C7—H7···O3i0.952.373.243 (4)153
C14—H14···O4ii0.952.333.226 (14)156
C22—H22A···O10.982.543.378 (4)143
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y+1, z+2.

Experimental details

Crystal data
Chemical formula[Cu(C20H10Br4N2O2)(C3H7NO)]·C3H7NO
Mr839.67
Crystal system, space groupTriclinic, P1
Temperature (K)93
a, b, c (Å)7.3742 (10), 11.9542 (19), 17.212 (2)
α, β, γ (°)94.207 (9), 100.310 (6), 104.117 (5)
V3)1436.8 (3)
Z2
Radiation typeMo Kα
µ (mm1)6.36
Crystal size (mm)0.25 × 0.25 × 0.25
Data collection
DiffractometerRigaku SPIDER
diffractometer
Absorption correctionMulti-scan
(RAPID-AUTO; Rigaku, 2004)
Tmin, Tmax0.299, 0.299
No. of measured, independent and
observed [I > 2σ(I)] reflections
11906, 6330, 5305
Rint0.027
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.063, 1.02
No. of reflections6330
No. of parameters392
No. of restraints8
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.75, 0.52

Computer programs: RAPID-AUTO (Rigaku, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).

Selected bond lengths (Å) top
Cu1—O11.910 (2)Cu1—N21.958 (2)
Cu1—O21.9174 (19)Cu1—O32.501 (2)
Cu1—N11.954 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O3i0.952.473.319 (4)148
C7—H7···O3i0.952.373.243 (4)153
C14—H14···O4ii0.952.333.226 (14)156
C22—H22A···O10.982.543.378 (4)143
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y+1, z+2.
 

Acknowledgements

The authors acknowledge financial assistance from Sichuan University of Science and Engineering (grant No. 2007 ZR005), the Education Committee of Sichuan Province of China (grant Nos. 2006 A110 and 07ZA161) and the Science and Technology Office of Zigong City, China (grant No. 08X01).

References

First citationBei, F.-L., Ma, W.-X. & Wang, J. (2003). Chin. J. Inorg. Chem. 19, 609–612.  Google Scholar
First citationElzbieta, C., Zygmunt, E. & Romuald, K. (1964). Diss. Pharm. 15, 369–378.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationRigaku (2004). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds