organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 7| July 2009| Pages o1613-o1614

2-Meth­­oxy-6-(6-methyl-1H-benzimid­azol-2-yl)phenol

aSchool of Chemical Science, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 8 June 2009; accepted 12 June 2009; online 17 June 2009)

In the title mol­ecule, C15H14N2O2, the substituted benzene ring forms a dihedral angle of 4.15 (1)° with the benzimidazole ring system. An intra­molecular O—H⋯N hydrogen bond generates an S(6) ring motif. In the solid state, mol­ecules are linked into chains along the [001] via inter­molecular bifurcated N—H⋯(O,O) hydrogen bonds, which generate R12(5) ring motifs. The crystal packing is also consolidated by C—H⋯π inter­actions, and ππ stacking inter­actions between the imidazole and substituted benzene rings [centroid–centroid distance = 3.5746 (13) Å]. The methyl group attached to the benzimidazole ring system is disordered over two positions with occupancies of 0.587 (6) and 0.413 (6), suggesting 180° rotational disorder for the benzimidazole group.

Related literature

For the biological activity of benzimidazole derivatives, see: Minoura et al. (2004[Minoura, H., Takeshita, S., Ita, M., Hirosumi, J., Mabuchi, M., Kawamura, I., Nakajima, S., Nakayama, O., Kayakiri, H., Oku, T., Ohkubo-Suzuki, A., Fukagawa, M., Kojo, H., Hanioka, K., Yamasaki, N., Imoto, T., Kobayashi, Y. & Mutoh, S. (2004). Eur. J. Pharmacol. 494, 273-281.]); Pawar et al. (2004[Pawar, N. S., Dalal, D. S., Shimpi, S. R. & Mahulikar, P. P. (2004). Eur. J. Pharm. Sci. 21, 115-118.]); Tomei et al. (2003[Tomei, L., Altamura, S., Bartholomew, L., Biroccio, A., Ceccacci, A., Pacini, L., Narjes, F., Gennari, N., Bisbocci, M., Incitti, I., Orsatti, L., Harper, S., Stansfield, I., Rowley, M., De Francesco, R. & Migliaccio, G. (2003). J. Virol. 77, 13225-13231.]); Rao et al. (2003[Rao, A., Chimirri, A., De Clercq, E., Maria Monforte, A., Monforte, P., Pannecouque, C. & Zappala, M. (2003). Farmaco, 58, 259-263.]); Demirayak et al. (2002[Demirayak, S., Abu Mohsen, U. & lagri Karaburun, A. (2002). Eur. J. Med. Chem. 37, 255-260.]). For related structures, see: Eltayeb et al. (2007a[Eltayeb, N. E., Teoh, S. G., Chantrapromma, S. & Fun, H.-K. (2007a). Acta Cryst. E63, o4141-o4142.],b[Eltayeb, N. E., Teoh, S. G., Teh, J. B.-J., Fun, H.-K. & Ibrahim, K. (2007b). Acta Cryst. E63, o465-o467.],c[Eltayeb, N. E., Teoh, S. G., Teh, J. B.-J., Fun, H.-K. & Ibrahim, K. (2007c). Acta Cryst. E63, o300-o302.]); Yeap et al. (2009[Yeap, C. S., Kargar, H., Kia, R., Jamshidvand, A. & Fun, H.-K. (2009). Acta Cryst. E65, o745-o746.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C15H14N2O2

  • Mr = 254.28

  • Tetragonal, P 42 /n

  • a = 14.4118 (2) Å

  • c = 12.0995 (2) Å

  • V = 2513.07 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.35 × 0.27 × 0.24 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.969, Tmax = 0.978

  • 28200 measured reflections

  • 2215 independent reflections

  • 1725 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.156

  • S = 1.08

  • 2215 reflections

  • 193 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.92 (4) 2.03 (3) 2.919 (3) 164 (2)
N1—H1N⋯O2i 0.92 (4) 2.58 (3) 3.168 (3) 123 (2)
O1—H1O⋯N2 0.97 (3) 1.61 (3) 2.572 (3) 167 (3)
C14—H14BCg1ii 0.96 2.95 3.840 (3) 154
Symmetry codes: (i) [y+{\script{1\over 2}}, -x+1, z+{\script{1\over 2}}]; (ii) -x+1, -y, -z. Cg1 is the centroid of the C8–C13 benzene ring.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The synthesis of benzimidazoles has received much attention owing to the varied biological activity such as antidiabetic (Minoura et al., 2004), antimicrobial, antifungal (Pawar et al., 2004), antiviral (Tomei et al., 2003), antiHIV (Rao et al., 2003), and anticancer (Demirayak et al., 2002) properties exhibited by a number of derivatives of these compounds. Previously we reported crystal structures of 4-allyl-2-[1-(5-allyl-2-hydroxy-3-methoxybenzyl)-1H-benzimidazol-2-yl]-6- methoxyphenol (Eltayeb et al., 2007a), 2-(2-methoxynaphthalen-1-yl)-1- [(2-methoxynaphthalen-1-yl)methyl]-1H-benzimidazole (Eltayeb et al., 2007b) and 2-(benzimidazol-2-yl)-6-methoxyphenol (Eltayeb et al., 2007c). Owing to the biological importance of the attached benzimidazole ring system, we report here the single-crystal X-ray diffraction study of 2-methoxy-6-(6-methyl-1H-benzimidazol-2-yl)phenol.

The bond lengths (Allen et al., 1987) and angles in the title molecule (Fig. 1) are normal and are comparable to those observed in a closely related structure (Yeap et al., 2009). The dihedral angle between the C8-C13 and N1/N2/C1-C7 rings is 4.15 (1)°. The molecular structure is stabilized by an intramolecular O1—H1O···N2 hydrogen bond which generates an S(6) ring motif (Bernstein et al., 1995).

In the solid state, the molecules are linked via intermolecular N1—H1N···O1 and N1—H1N···O2 bifurcated donor bonds into chains along the [001] (Fig. 2). These hydrogen bonds form an R12(5) ring motif. The crystal packing is consolidated by C—H···π (Table 1) interactions involving the C8-C13 benzene ring, and ππ stacking interactions between the C8—C13 (centroid Cg1) ring at (3/2-x, 1/2-y, z) and the N1/C1/C6/N2/C7 (centroid Cg2) ring at (x, y, z), with a Cg1···Cg2 distance of 3.5746 (13) Å.

Related literature top

For the biological activity of benzimidazoles derivatives, see: Minoura et al. (2004); Pawar et al. (2004); Tomei et al. (2003); Rao et al. (2003); Demirayak et al. (2002). For related structures, see: Eltayeb et al. (2007a,b,c); Yeap et al. (2009). For hydrogen-bond motifs, see: Bernstein et al. (1995). For bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Experimental top

To a solution of 4-methyl-1,2-phenylenediamine (0.244 g, 2 mmol) in ethanol (30 ml) was added 3-methoxysalicylaldehyde (0.604 g, 4 mmol). The mixture was refluxed with stirring for half an hour. The resultant red solution was filtered. The red powder obtained was dissolved in dichloromethane. Crystals suitable for XRD were formed after several days of slow evaporation of solvent at room temperature.

Refinement top

Atoms H1O and H1N were located in a difference Fourier map and refined freely. The remaining H atoms were positioned geometrically and refined using a riding model, with C-H = 0.93 or 0.96 Å and Uiso(H) = 1.2 or 1.5 Ueq(C). A rotating-group model was applied for the methyl groups. The methyl group attached to the benzimidazole ring system is disordered over two positions with refined site-occupancies of 0.587 (6) and 0.413 (6). The Uij components of the atom C3 were approximated to isotropic behaviour.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme. Intramolecular interactions are shown as dashed lines. Both disorder components are shown.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the [110]. Hydrogen bonds are shown as dashed lines. Only the major disorder component is shown.
2-Methoxy-6-(6-methyl-1H-benzimidazol-2-yl)phenol top
Crystal data top
C15H14N2O2Dx = 1.344 Mg m3
Mr = 254.28Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P42/nCell parameters from 9054 reflections
Hall symbol: -P 4bcθ = 2.2–29.6°
a = 14.4118 (2) ŵ = 0.09 mm1
c = 12.0995 (2) ÅT = 100 K
V = 2513.07 (6) Å3Block, yellow
Z = 80.35 × 0.27 × 0.24 mm
F(000) = 1072
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2215 independent reflections
Radiation source: fine-focus sealed tube1725 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ϕ and ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1716
Tmin = 0.969, Tmax = 0.978k = 1717
28200 measured reflectionsl = 1413
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.156H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0696P)2 + 1.1514P]
where P = (Fo2 + 2Fc2)/3
2215 reflections(Δ/σ)max = 0.001
193 parametersΔρmax = 0.29 e Å3
6 restraintsΔρmin = 0.17 e Å3
Crystal data top
C15H14N2O2Z = 8
Mr = 254.28Mo Kα radiation
Tetragonal, P42/nµ = 0.09 mm1
a = 14.4118 (2) ÅT = 100 K
c = 12.0995 (2) Å0.35 × 0.27 × 0.24 mm
V = 2513.07 (6) Å3
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2215 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1725 reflections with I > 2σ(I)
Tmin = 0.969, Tmax = 0.978Rint = 0.033
28200 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0546 restraints
wR(F2) = 0.156H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.29 e Å3
2215 reflectionsΔρmin = 0.17 e Å3
193 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.63382 (12)0.20396 (13)0.12954 (12)0.0575 (5)
H1O0.632 (2)0.268 (2)0.104 (3)0.094 (10)*
O20.63393 (12)0.02461 (12)0.12218 (13)0.0641 (5)
N10.62805 (13)0.37806 (15)0.14723 (17)0.0556 (5)
H1N0.6438 (18)0.3647 (18)0.219 (3)0.077 (8)*
N20.62434 (13)0.36357 (13)0.03521 (15)0.0506 (5)
C10.62626 (15)0.46707 (17)0.1047 (2)0.0579 (6)
C20.62707 (18)0.5541 (2)0.1545 (3)0.0726 (8)
H20.62990.56080.23090.087*
C30.62340 (18)0.63115 (19)0.0839 (3)0.0753 (8)
H30.62350.69060.11390.090*0.413 (6)
C40.6197 (2)0.6204 (2)0.0292 (3)0.0787 (9)
H40.61680.67290.07380.094*0.587 (6)
C50.62015 (19)0.53499 (19)0.0773 (3)0.0730 (8)
H50.61820.52890.15380.088*
C60.62354 (15)0.45686 (17)0.0092 (2)0.0540 (6)
C70.62715 (14)0.31865 (16)0.06068 (17)0.0469 (6)
C80.62766 (14)0.21826 (16)0.06973 (17)0.0456 (5)
C90.63060 (14)0.16508 (16)0.02796 (16)0.0456 (5)
C100.63048 (15)0.06902 (17)0.02064 (18)0.0511 (6)
C110.62696 (16)0.02486 (17)0.0801 (2)0.0559 (6)
H110.62630.03960.08380.067*
C120.62437 (16)0.07732 (17)0.17613 (19)0.0572 (6)
H120.62270.04780.24440.069*
C130.62424 (15)0.17223 (16)0.17120 (18)0.0513 (6)
H130.62180.20650.23630.062*
C140.6320 (2)0.07360 (18)0.1201 (2)0.0739 (8)
H14A0.63530.09700.19420.111*
H14B0.57540.09420.08620.111*
H14C0.68400.09620.07840.111*
C150.6189 (3)0.7303 (3)0.1250 (4)0.0672 (15)0.587 (6)
H15A0.66640.76640.08960.101*0.587 (6)
H15B0.62820.73140.20350.101*0.587 (6)
H15C0.55920.75610.10780.101*0.587 (6)
C15A0.6243 (6)0.7101 (5)0.0739 (9)0.106 (3)0.413 (6)
H15D0.57630.71750.12820.160*0.413 (6)
H15E0.68370.71910.10800.160*0.413 (6)
H15F0.61590.75490.01610.160*0.413 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0754 (11)0.0642 (11)0.0329 (9)0.0026 (8)0.0016 (7)0.0016 (7)
O20.0800 (12)0.0649 (11)0.0474 (10)0.0083 (9)0.0050 (8)0.0113 (8)
N10.0574 (12)0.0687 (14)0.0407 (11)0.0040 (10)0.0037 (9)0.0075 (10)
N20.0537 (12)0.0567 (12)0.0415 (11)0.0009 (9)0.0024 (8)0.0063 (9)
C10.0444 (13)0.0568 (15)0.0725 (17)0.0022 (10)0.0038 (11)0.0055 (12)
C20.0608 (16)0.079 (2)0.0781 (18)0.0009 (13)0.0067 (14)0.0209 (16)
C30.0564 (15)0.0563 (16)0.113 (2)0.0023 (12)0.0144 (15)0.0108 (15)
C40.0736 (19)0.071 (2)0.092 (2)0.0012 (14)0.0211 (16)0.0047 (16)
C50.0750 (18)0.0601 (17)0.0837 (19)0.0024 (13)0.0163 (15)0.0105 (15)
C60.0490 (13)0.0562 (15)0.0568 (15)0.0009 (10)0.0053 (11)0.0012 (11)
C70.0393 (12)0.0602 (14)0.0413 (13)0.0005 (10)0.0004 (9)0.0022 (10)
C80.0388 (11)0.0593 (14)0.0387 (12)0.0020 (9)0.0018 (9)0.0024 (10)
C90.0405 (12)0.0641 (15)0.0323 (11)0.0027 (10)0.0007 (9)0.0040 (10)
C100.0476 (13)0.0619 (15)0.0438 (13)0.0049 (10)0.0056 (10)0.0051 (10)
C110.0579 (14)0.0548 (14)0.0549 (15)0.0010 (11)0.0065 (11)0.0047 (11)
C120.0632 (15)0.0655 (16)0.0429 (13)0.0008 (12)0.0042 (11)0.0075 (11)
C130.0563 (14)0.0637 (15)0.0338 (12)0.0018 (11)0.0030 (10)0.0008 (10)
C140.085 (2)0.0676 (18)0.0689 (18)0.0108 (14)0.0186 (15)0.0187 (14)
C150.066 (3)0.061 (3)0.074 (3)0.001 (2)0.005 (2)0.009 (2)
C15A0.102 (6)0.056 (5)0.162 (9)0.003 (4)0.001 (6)0.031 (5)
Geometric parameters (Å, º) top
O1—C91.352 (2)C5—H50.93
O1—H1O0.97 (3)C7—C81.451 (3)
O2—C101.386 (3)C8—C131.396 (3)
O2—C141.416 (3)C8—C91.409 (3)
N1—C71.353 (3)C9—C101.387 (3)
N1—C11.382 (3)C10—C111.376 (3)
N1—H1N0.92 (3)C11—C121.387 (3)
N2—C71.329 (3)C11—H110.93
N2—C61.381 (3)C12—C131.369 (3)
C1—C61.387 (4)C12—H120.93
C1—C21.392 (4)C13—H130.93
C2—C31.402 (4)C14—H14A0.96
C2—H20.93C14—H14B0.96
C3—C41.378 (5)C14—H14C0.96
C3—C151.515 (5)C15—H15A0.96
C3—H30.93C15—H15B0.96
C4—C51.362 (4)C15—H15C0.96
C4—C15A1.403 (8)C15A—H15D0.96
C4—H40.93C15A—H15E0.96
C5—C61.396 (4)C15A—H15F0.96
C9—O1—H1O95.9 (19)C13—C8—C7122.7 (2)
C10—O2—C14116.42 (19)C9—C8—C7118.62 (19)
C7—N1—C1107.4 (2)O1—C9—C10118.15 (19)
C7—N1—H1N127.0 (17)O1—C9—C8122.6 (2)
C1—N1—H1N123.5 (16)C10—C9—C8119.28 (19)
C7—N2—C6106.02 (19)C11—C10—O2125.0 (2)
N1—C1—C6105.8 (2)C11—C10—C9121.2 (2)
N1—C1—C2132.5 (3)O2—C10—C9113.8 (2)
C6—C1—C2121.8 (3)C10—C11—C12119.4 (2)
C1—C2—C3116.7 (3)C10—C11—H11120.3
C1—C2—H2121.6C12—C11—H11120.3
C3—C2—H2121.6C13—C12—C11120.5 (2)
C4—C3—C2121.2 (3)C13—C12—H12119.7
C4—C3—C15115.5 (3)C11—C12—H12119.7
C2—C3—C15123.3 (3)C12—C13—C8120.8 (2)
C4—C3—H3119.4C12—C13—H13119.6
C2—C3—H3119.4C8—C13—H13119.6
C5—C4—C3121.7 (3)O2—C14—H14A109.5
C5—C4—C15A131.9 (5)O2—C14—H14B109.5
C3—C4—C15A106.1 (5)H14A—C14—H14B109.5
C5—C4—H4119.1O2—C14—H14C109.5
C3—C4—H4119.1H14A—C14—H14C109.5
C4—C5—C6118.5 (3)H14B—C14—H14C109.5
C4—C5—H5120.8C3—C15—H15A109.5
C6—C5—H5120.8C3—C15—H15B109.5
N2—C6—C1109.2 (2)C3—C15—H15C109.5
N2—C6—C5130.7 (2)C4—C15A—H15D109.5
C1—C6—C5120.1 (2)C4—C15A—H15E109.5
N2—C7—N1111.6 (2)H15D—C15A—H15E109.5
N2—C7—C8123.48 (19)C4—C15A—H15F109.5
N1—C7—C8124.9 (2)H15D—C15A—H15F109.5
C13—C8—C9118.7 (2)H15E—C15A—H15F109.5
C7—N1—C1—C60.5 (2)C1—N1—C7—N20.4 (2)
C7—N1—C1—C2179.3 (2)C1—N1—C7—C8179.45 (19)
N1—C1—C2—C3179.2 (2)N2—C7—C8—C13175.5 (2)
C6—C1—C2—C31.1 (4)N1—C7—C8—C133.5 (3)
C1—C2—C3—C40.4 (4)N2—C7—C8—C93.7 (3)
C1—C2—C3—C15176.8 (3)N1—C7—C8—C9177.3 (2)
C2—C3—C4—C50.5 (4)C13—C8—C9—O1179.87 (19)
C15—C3—C4—C5177.9 (3)C7—C8—C9—O10.6 (3)
C2—C3—C4—C15A175.4 (4)C13—C8—C9—C100.3 (3)
C15—C3—C4—C15A7.2 (5)C7—C8—C9—C10179.56 (19)
C3—C4—C5—C60.6 (4)C14—O2—C10—C111.1 (3)
C15A—C4—C5—C6174.0 (5)C14—O2—C10—C9178.7 (2)
C7—N2—C6—C10.2 (2)O1—C9—C10—C11179.8 (2)
C7—N2—C6—C5179.4 (2)C8—C9—C10—C110.4 (3)
N1—C1—C6—N20.4 (3)O1—C9—C10—O20.1 (3)
C2—C1—C6—N2179.4 (2)C8—C9—C10—O2179.74 (18)
N1—C1—C6—C5179.3 (2)O2—C10—C11—C12179.6 (2)
C2—C1—C6—C50.9 (4)C9—C10—C11—C120.6 (3)
C4—C5—C6—N2179.7 (2)C10—C11—C12—C130.7 (3)
C4—C5—C6—C10.1 (4)C11—C12—C13—C80.7 (3)
C6—N2—C7—N10.1 (2)C9—C8—C13—C120.4 (3)
C6—N2—C7—C8179.20 (19)C7—C8—C13—C12179.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.92 (4)2.03 (3)2.919 (3)164 (2)
N1—H1N···O2i0.92 (4)2.58 (3)3.168 (3)123 (2)
O1—H1O···N20.97 (3)1.61 (3)2.572 (3)167 (3)
C14—H14B···Cg1ii0.962.953.840 (3)154
Symmetry codes: (i) y+1/2, x+1, z+1/2; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC15H14N2O2
Mr254.28
Crystal system, space groupTetragonal, P42/n
Temperature (K)100
a, c (Å)14.4118 (2), 12.0995 (2)
V3)2513.07 (6)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.35 × 0.27 × 0.24
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.969, 0.978
No. of measured, independent and
observed [I > 2σ(I)] reflections
28200, 2215, 1725
Rint0.033
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.156, 1.08
No. of reflections2215
No. of parameters193
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.29, 0.17

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.92 (4)2.03 (3)2.919 (3)164 (2)
N1—H1N···O2i0.92 (4)2.58 (3)3.168 (3)123 (2)
O1—H1O···N20.97 (3)1.61 (3)2.572 (3)167 (3)
C14—H14B···Cg1ii0.962.953.840 (3)154
Symmetry codes: (i) y+1/2, x+1, z+1/2; (ii) x+1, y, z.
 

Footnotes

On study leave from International University of Africa, Sudan. E-mail: nasertaha90@hotmail.com.

§Thomson Reuters ResearcherID: A-5525-2009.

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

The authors thank the Malaysian Government, the Ministry of Science, Technology and Innovation (MOSTI) and Universiti Sains Malaysia (USM) for the E-Science Fund and RU research grants (Nos. PKIMIA/613308, PKIMIA/815002, and PKIMIA/811120). HKF and CKQ thank USM for a Research University Golden Goose grant (No. 1001/PFIZIK/811012). CKQ thanks USM for a research fellowship. The International University of Africa (Sudan) is acknowledged for providing study leave to NEE.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDemirayak, S., Abu Mohsen, U. & lagri Karaburun, A. (2002). Eur. J. Med. Chem. 37, 255–260.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEltayeb, N. E., Teoh, S. G., Chantrapromma, S. & Fun, H.-K. (2007a). Acta Cryst. E63, o4141–o4142.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEltayeb, N. E., Teoh, S. G., Teh, J. B.-J., Fun, H.-K. & Ibrahim, K. (2007b). Acta Cryst. E63, o465–o467.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEltayeb, N. E., Teoh, S. G., Teh, J. B.-J., Fun, H.-K. & Ibrahim, K. (2007c). Acta Cryst. E63, o300–o302.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMinoura, H., Takeshita, S., Ita, M., Hirosumi, J., Mabuchi, M., Kawamura, I., Nakajima, S., Nakayama, O., Kayakiri, H., Oku, T., Ohkubo-Suzuki, A., Fukagawa, M., Kojo, H., Hanioka, K., Yamasaki, N., Imoto, T., Kobayashi, Y. & Mutoh, S. (2004). Eur. J. Pharmacol. 494, 273–281.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPawar, N. S., Dalal, D. S., Shimpi, S. R. & Mahulikar, P. P. (2004). Eur. J. Pharm. Sci. 21, 115–118.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRao, A., Chimirri, A., De Clercq, E., Maria Monforte, A., Monforte, P., Pannecouque, C. & Zappala, M. (2003). Farmaco, 58, 259–263.  CrossRef PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTomei, L., Altamura, S., Bartholomew, L., Biroccio, A., Ceccacci, A., Pacini, L., Narjes, F., Gennari, N., Bisbocci, M., Incitti, I., Orsatti, L., Harper, S., Stansfield, I., Rowley, M., De Francesco, R. & Migliaccio, G. (2003). J. Virol. 77, 13225–13231.  Web of Science CrossRef PubMed CAS Google Scholar
First citationYeap, C. S., Kargar, H., Kia, R., Jamshidvand, A. & Fun, H.-K. (2009). Acta Cryst. E65, o745–o746.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 7| July 2009| Pages o1613-o1614
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds