organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-5-Phenyl-N-(2-thienylmethyl­ene)-1,3,4-thia­diazole-2-amine

aDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139 Samsun, Turkey, and bDepartment of Chemistry, Faculty of Arts and Sciences, Fırat Universty, 38039 Elazığ, Turkey
*Correspondence e-mail: gunesd@omu.edu.tr

(Received 16 June 2009; accepted 18 June 2009; online 24 June 2009)

In the title compound, C13H9N3S2, the thio­phene and phenyl rings are oriented at dihedral angles of 8.00 (7) and 6.31 (7)°, respectively, with respect to the central thia­diazole ring. No significant C—H⋯S and ππ inter­actions exist in the crystal structure.

Related literature

For the biological activity of [1,3,4]-thia­diazole-containing compounds, see: Foroumadi, Soltani et al. (2003[Foroumadi, A., Soltani, F., Moshafi, M. H. & Ashraf-Askari, R. (2003). Farmaco, 58, 1023-1028.]); Foroumadi, Mansouri et al. (2003[Foroumadi, A., Mansouri, S., Kiani, Z. & Rahmani, A. (2003). Eur. J. Med. Chem. 38, 851-854.]); Holla et al. (2002[Holla, B. S., Poorjary, K. N., Rao, B. S. & Shivananda, M. K. (2002). Eur. J. Med. Chem. 37, 511-517.]); Genc & Servi (2005[Genc, M. & Servi, S. (2005). Heteroat. Chem. 16, 142-147.]); Servi et al. (2005[Servi, S., Genc, M., Gur, S. & Koca, M. (2005). Eur. J. Med. Chem. 40, 687-693.]). For a related structure, see: Dege et al. (2006[Dege, N. M., Şekerci, M. S., Servi, S. M., Dinçer, M. Ü. & Demirbaş, Ü. (2006). Turk. J. Chem. 30, 103-108.]).

[Scheme 1]

Experimental

Crystal data
  • C13H9N3S2

  • Mr = 271.35

  • Monoclinic, P 21 /c

  • a = 6.2238 (3) Å

  • b = 7.7393 (3) Å

  • c = 25.6959 (13) Å

  • β = 94.701 (4)°

  • V = 1233.55 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.41 mm−1

  • T = 293 K

  • 0.74 × 0.48 × 0.16 mm

Data collection
  • Stoe IPDS-2 diffractometer

  • Absorption correction: integration (X-RED; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.815, Tmax = 0.943

  • 10930 measured reflections

  • 2619 independent reflections

  • 2275 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.080

  • S = 1.05

  • 2619 reflections

  • 176 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.17 e Å−3

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

[1,3,4]-Thiadiazoles and their derivatives exhibit diverse biological activites possibly due to the presence of N—C—S moiety (Holla et al., 2002; Servi et al., 2005; Genc & Servi, 2005). Various phenyl substituted [1,3,4]-thiazole-2-amines and their derivatives have recently received significant importance because of their diverse biological properties (Foroumadi, Soltani et al., 2003; Foroumadi, Mansouri et al., 2003).We report here the crystal structure of the title compound, (I).

In (I), the C7—S1 [1.7234 (13) Å] distance is shorter than the C8—S1 distance [1.7411 (13) Å]. The C11–S2 distance of 1.6993 (17) Å is shorter the C10—S2 distance of 1.7229 (13) Å and other C—S bonds in the molecule. These bond distances agree well with the corresponding values reported for 1-(thiophen-2-ylmethyl)-2-(thiophen-2-yl)-1H- benzimidazole (Dege et al., 2006). The thiophene and phenyl rings are oriented at dihedral angles of 8.00 (7)° and 6.31 (7)°, respectively, with respect to the central thiadiazole ring.

No significant C—H···S and π-π interactions are observed.

Related literature top

For the biological activity of [1,3,4]-thiadiazole-containing compounds, see: Foroumadi, Soltani et al. (2003); Foroumadi, Mansouri et al. (2003); Holla et al. (2002); Genc & Servi (2005); Servi et al. (2005). For a related structure, see: Dege et al. (2006).

Experimental top

A solution of 5-phenyl-1,3,4-thiadiazole-2-amine (0.01 mol) in absolute ethanol (20 ml) was added in small portions to a solution of thiophen-2-carbaldehyde (0.01 mol) in absolute ethanol (30 ml). The reaction mixture was maintained at 343 K for 4 h, cooled and then added to ice-cold water. The resulting solid was washed with water, dried and recrystallized from ethanol (yield 77%). IR (cm-1): 3078 (Ar H), 1633 (CC), 1589 (CN); 1H-NMR: 7.2–7.9 (m, 8H, aromatic protons), 9.2 (s, 1H, NCH proton).

Refinement top

Atoms H1, H9 and H12 were located in a difference map and refined freely. The other H atoms were positioned geometrically and refined using a riding model, with C-H = 0.93 Å and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
(E)-5-Phenyl-N-(2-thienylmethylene)-1,3,4-thiadiazole-2-amine top
Crystal data top
C13H9N3S2F(000) = 560
Mr = 271.35Dx = 1.461 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 17067 reflections
a = 6.2238 (3) Åθ = 1.6–26.8°
b = 7.7393 (3) ŵ = 0.41 mm1
c = 25.6959 (13) ÅT = 293 K
β = 94.701 (4)°Plate, yellow
V = 1233.55 (10) Å30.74 × 0.48 × 0.16 mm
Z = 4
Data collection top
Stoe IPDS-2
diffractometer
2619 independent reflections
Radiation source: fine-focus sealed tube2275 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.020
Detector resolution: 6.67 pixels mm-1θmax = 26.8°, θmin = 1.6°
ω scansh = 77
Absorption correction: integration
(X-RED; Stoe & Cie, 2002)
k = 99
Tmin = 0.815, Tmax = 0.943l = 3232
10930 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.026H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.080 w = 1/[σ2(Fo2) + (0.0481P)2 + 0.1148P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
2619 reflectionsΔρmax = 0.18 e Å3
176 parametersΔρmin = 0.17 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.002634 (11)
Crystal data top
C13H9N3S2V = 1233.55 (10) Å3
Mr = 271.35Z = 4
Monoclinic, P21/cMo Kα radiation
a = 6.2238 (3) ŵ = 0.41 mm1
b = 7.7393 (3) ÅT = 293 K
c = 25.6959 (13) Å0.74 × 0.48 × 0.16 mm
β = 94.701 (4)°
Data collection top
Stoe IPDS-2
diffractometer
2619 independent reflections
Absorption correction: integration
(X-RED; Stoe & Cie, 2002)
2275 reflections with I > 2σ(I)
Tmin = 0.815, Tmax = 0.943Rint = 0.020
10930 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0260 restraints
wR(F2) = 0.080H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.18 e Å3
2619 reflectionsΔρmin = 0.17 e Å3
176 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0290 (2)0.1603 (2)0.57838 (6)0.0543 (3)
C20.0105 (3)0.0893 (2)0.62710 (6)0.0615 (4)
H20.13110.08170.65090.074*
C30.1859 (3)0.0297 (2)0.64059 (6)0.0621 (4)
H30.19760.01900.67330.075*
C40.3643 (2)0.0422 (2)0.60563 (6)0.0627 (4)
H40.49670.00140.61470.075*
C50.3479 (2)0.1152 (2)0.55709 (6)0.0565 (3)
H50.46980.12470.53380.068*
C60.1503 (2)0.17452 (16)0.54281 (5)0.0461 (3)
C70.13539 (19)0.24791 (17)0.49053 (5)0.0466 (3)
C80.0473 (2)0.36506 (18)0.40911 (5)0.0500 (3)
C90.2276 (2)0.46866 (18)0.36247 (5)0.0500 (3)
C100.3030 (2)0.55163 (17)0.31753 (5)0.0480 (3)
C110.3279 (3)0.7018 (2)0.23422 (6)0.0643 (4)
H110.30780.75410.20160.077*
C120.5205 (3)0.6920 (2)0.26256 (7)0.0631 (4)
C130.5080 (2)0.60554 (18)0.31021 (6)0.0547 (3)
H130.62590.58690.33420.066*
N10.30366 (19)0.27346 (19)0.45777 (5)0.0656 (4)
N20.25288 (19)0.3405 (2)0.41099 (5)0.0674 (4)
N30.02776 (18)0.43483 (15)0.36467 (4)0.0530 (3)
S10.10458 (5)0.30465 (5)0.466131 (13)0.04910 (12)
S20.12673 (6)0.60757 (5)0.265024 (14)0.06061 (14)
H90.333 (3)0.444 (2)0.3905 (6)0.065 (4)*
H10.158 (3)0.206 (2)0.5694 (7)0.071 (5)*
H120.645 (3)0.736 (3)0.2497 (8)0.086 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0472 (7)0.0616 (8)0.0537 (7)0.0008 (6)0.0013 (6)0.0007 (6)
C20.0579 (8)0.0733 (10)0.0520 (8)0.0033 (7)0.0038 (6)0.0016 (7)
C30.0714 (9)0.0656 (9)0.0502 (8)0.0040 (7)0.0103 (7)0.0006 (7)
C40.0557 (8)0.0725 (10)0.0617 (9)0.0027 (7)0.0151 (7)0.0015 (7)
C50.0455 (7)0.0690 (9)0.0549 (8)0.0005 (6)0.0033 (6)0.0047 (7)
C60.0460 (6)0.0435 (7)0.0486 (6)0.0036 (5)0.0032 (5)0.0061 (5)
C70.0425 (6)0.0452 (6)0.0516 (7)0.0016 (5)0.0007 (5)0.0035 (5)
C80.0466 (7)0.0514 (7)0.0509 (7)0.0011 (5)0.0026 (5)0.0001 (6)
C90.0513 (7)0.0494 (7)0.0483 (7)0.0046 (6)0.0021 (5)0.0003 (6)
C100.0496 (7)0.0469 (7)0.0467 (7)0.0051 (5)0.0010 (5)0.0019 (5)
C110.0729 (10)0.0655 (9)0.0537 (8)0.0013 (7)0.0004 (7)0.0108 (7)
C120.0590 (8)0.0636 (10)0.0670 (9)0.0037 (7)0.0073 (7)0.0085 (7)
C130.0503 (7)0.0552 (8)0.0576 (8)0.0031 (6)0.0020 (6)0.0031 (6)
N10.0443 (6)0.0864 (9)0.0647 (8)0.0049 (6)0.0039 (5)0.0167 (7)
N20.0479 (6)0.0901 (10)0.0622 (7)0.0051 (6)0.0068 (5)0.0208 (7)
N30.0518 (6)0.0564 (7)0.0499 (6)0.0003 (5)0.0009 (5)0.0045 (5)
S10.04071 (18)0.0581 (2)0.04783 (19)0.00331 (13)0.00016 (12)0.00054 (14)
S20.0538 (2)0.0724 (3)0.0536 (2)0.00062 (16)0.00781 (15)0.00514 (17)
Geometric parameters (Å, º) top
C1—C21.381 (2)C8—N31.3787 (18)
C1—C61.3875 (19)C8—S11.7411 (13)
C1—H10.923 (18)C9—N31.2770 (18)
C2—C31.377 (2)C9—C101.4335 (19)
C2—H20.93C9—H90.952 (16)
C3—C41.374 (2)C10—C131.3697 (19)
C3—H30.93C10—S21.7229 (13)
C4—C51.380 (2)C11—C121.353 (2)
C4—H40.93C11—S21.6993 (17)
C5—C61.3900 (19)C11—H110.93
C5—H50.93C12—C131.403 (2)
C6—C71.4684 (19)C12—H120.929 (19)
C7—N11.3039 (17)C13—H130.93
C7—S11.7234 (13)N1—N21.3696 (19)
C8—N21.2987 (18)
C2—C1—C6120.44 (14)N2—C8—S1113.44 (11)
C2—C1—H1121.1 (12)N3—C8—S1127.22 (10)
C6—C1—H1118.3 (11)N3—C9—C10120.78 (12)
C3—C2—C1120.20 (14)N3—C9—H9122.7 (10)
C3—C2—H2119.9C10—C9—H9116.5 (10)
C1—C2—H2119.9C13—C10—C9128.09 (12)
C4—C3—C2119.90 (14)C13—C10—S2110.88 (10)
C4—C3—H3120.0C9—C10—S2120.94 (10)
C2—C3—H3120.0C12—C11—S2112.30 (12)
C3—C4—C5120.28 (14)C12—C11—H11123.9
C3—C4—H4119.9S2—C11—H11123.9
C5—C4—H4119.9C11—C12—C13112.73 (14)
C4—C5—C6120.40 (14)C11—C12—H12121.0 (13)
C4—C5—H5119.8C13—C12—H12126.3 (13)
C6—C5—H5119.8C10—C13—C12112.57 (13)
C1—C6—C5118.77 (13)C10—C13—H13123.7
C1—C6—C7121.70 (12)C12—C13—H13123.7
C5—C6—C7119.53 (12)C7—N1—N2113.15 (12)
N1—C7—C6122.79 (12)C8—N2—N1112.78 (12)
N1—C7—S1113.62 (11)C9—N3—C8120.94 (12)
C6—C7—S1123.58 (9)C7—S1—C887.01 (6)
N2—C8—N3119.33 (12)C11—S2—C1091.51 (7)
C6—C1—C2—C30.9 (2)C11—C12—C13—C100.5 (2)
C1—C2—C3—C40.5 (2)C6—C7—N1—N2179.04 (13)
C2—C3—C4—C50.3 (2)S1—C7—N1—N20.15 (18)
C3—C4—C5—C60.9 (2)N3—C8—N2—N1178.89 (13)
C2—C1—C6—C50.3 (2)S1—C8—N2—N10.45 (19)
C2—C1—C6—C7179.40 (13)C7—N1—N2—C80.2 (2)
C4—C5—C6—C10.6 (2)C10—C9—N3—C8175.86 (12)
C4—C5—C6—C7178.55 (14)N2—C8—N3—C9176.50 (15)
C1—C6—C7—N1175.17 (14)S1—C8—N3—C92.7 (2)
C5—C6—C7—N15.7 (2)N1—C7—S1—C80.32 (12)
C1—C6—C7—S16.05 (19)C6—C7—S1—C8179.20 (12)
C5—C6—C7—S1173.02 (11)N2—C8—S1—C70.44 (13)
N3—C9—C10—C13175.89 (14)N3—C8—S1—C7178.84 (13)
N3—C9—C10—S20.24 (19)C12—C11—S2—C100.24 (14)
S2—C11—C12—C130.5 (2)C13—C10—S2—C110.04 (12)
C9—C10—C13—C12176.14 (14)C9—C10—S2—C11176.70 (12)
S2—C10—C13—C120.30 (17)

Experimental details

Crystal data
Chemical formulaC13H9N3S2
Mr271.35
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)6.2238 (3), 7.7393 (3), 25.6959 (13)
β (°) 94.701 (4)
V3)1233.55 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.41
Crystal size (mm)0.74 × 0.48 × 0.16
Data collection
DiffractometerStoe IPDS2
diffractometer
Absorption correctionIntegration
(X-RED; Stoe & Cie, 2002)
Tmin, Tmax0.815, 0.943
No. of measured, independent and
observed [I > 2σ(I)] reflections
10930, 2619, 2275
Rint0.020
(sin θ/λ)max1)0.634
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.080, 1.05
No. of reflections2619
No. of parameters176
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.18, 0.17

Computer programs: X-AREA (Stoe & Cie, 2002), X-RED (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

 

Acknowledgements

The authors thank the Ondokuz Mayis University Research Fund for financial support for this study.

References

First citationDege, N. M., Şekerci, M. S., Servi, S. M., Dinçer, M. Ü. & Demirbaş, Ü. (2006). Turk. J. Chem. 30, 103–108.  CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationForoumadi, A., Mansouri, S., Kiani, Z. & Rahmani, A. (2003). Eur. J. Med. Chem. 38, 851–854.  Web of Science CrossRef PubMed CAS Google Scholar
First citationForoumadi, A., Soltani, F., Moshafi, M. H. & Ashraf-Askari, R. (2003). Farmaco, 58, 1023–1028.  CrossRef PubMed CAS Google Scholar
First citationGenc, M. & Servi, S. (2005). Heteroat. Chem. 16, 142–147.  Web of Science CrossRef CAS Google Scholar
First citationHolla, B. S., Poorjary, K. N., Rao, B. S. & Shivananda, M. K. (2002). Eur. J. Med. Chem. 37, 511–517.  CrossRef PubMed Google Scholar
First citationServi, S., Genc, M., Gur, S. & Koca, M. (2005). Eur. J. Med. Chem. 40, 687–693.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds