organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 7| July 2009| Pages o1708-o1709

Ethyl 1-(2-bromo­propano­yl)-4-hydr­­oxy-2,6-di­phenyl-1,2,5,6-tetra­hydro­pyridine-3-carboxylate

aDivision of Image Science and Information Engineering, Pukyong National University, Busan 608-739, Republic of Korea, and bCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: ytjeong@pknu.ac.kr

(Received 16 June 2009; accepted 22 June 2009; online 27 June 2009)

The title compound, C23H24BrNO4, crystallizes with two independent mol­ecules per asymmetric unit. The methyl group of the ethoxy­carbonyl unit is disordered over two positions, with occupancies of 0.715 (12) and 0.285 (12) in one of the independent mol­ecules, and 0.529 (11) and 0.471 (11) in the other mol­ecule. In one of the independent mol­ecules, the tetra­hydro­pyridine ring adopts a half-chair conformation, while in the other it is in a distorted envelope conformation. In each independent mol­ecule, an intra­molecular O—H⋯O hydrogen bond generates an S(6) ring motif. The two independent mol­ecules are linked via C—H⋯O hydrogen bonds, forming a chain along the c axis.

Related literature

For general background to the synthesis and properties of 2,6-diaryl­piperidin-4-one derivatives, see: Aridoss et al. (2007[Aridoss, G., Balasubramanian, S., Parthiban, P. & Kabilan, S. (2007). Spectrochim. Acta, A68, 1153-1163.], 2008b[Aridoss, G., Amirthaganesan, S., Kim, M. S., Cho, B. G., Lim, K. T. & Jeong, Y. T. (2008b). Arkivoc, XV, 133-158.]); Krishnakumar & Krishnapillay (1996[Krishnakumar, R. & Krishnapillay, M. (1996). Indian J. Chem. Sect. B, 35, 418-425.]); Krishnapillay et al. (2000[Krishnapillay, M., Krishnakumar, R., Natarajan, A. & Jeyaraman, G. (2000). Indian J. Chem. Sect. B, 39, 419-425.]); Rubiralta et al. (1991[Rubiralta, M., Giralt, E. & Diez, A. (1991). Piperidine. Structure, Preparation, Reactivity and Synthetic Applications of Piperidine and Its Derivatives. Amsterdam: Elsevier.]). For the biological activity of pyridine derivatives, see: Aridoss et al. (2008a[Aridoss, G., Amirthaganesan, S., Ashok Kumar, N., Kim, J. T., Lim, K. T., Kabilan, S. & Jeong, Y. T. (2008a). Bioorg. Med. Chem. Lett. 18, 6542-6548.]); Dewick (1997[Dewick, P. M. (1997). Medicinal Natural Products. Chichester: John Wiley and Sons.]); Gwaltney et al. (2003[Gwaltney, S. L., OConnor, S. J., Nelson, L. T. J., Sullivan, G. M., Imade, H., Wang, W., Hasvold, L., Li, Q., Cohen, J., Gu, W. Z., Tahir, S. K., Bauch, J., Marsh, K., Ng, S. C., Frost, D. J., Zhang, H., Muchmore, S., Jakob, C. G., Stoll, V., Hutchins, C., Rosenberg, S. H. & Sham, H. L. (2003). Bioorg. Med. Chem. Lett. 13, 1363-1366.]); Michael (1997[Michael, J. P. (1997). Nat. Prod. Rep. 14, 619-636.], 2001[Michael, J. P. (2001). The Alkaloids, Vol. 55, edited by G. A. Cordell. San Diego: Academic Press.]); Pinder (1992[Pinder, A. R. (1992). Nat. Prod. Rep. 9, 491-504.]); Yeung et al. (1982[Yeung, J. M., Corleto, L. A. & Knaus, E. E. (1982). J. Med. Chem. 25, 720-723.]). For a related structure, see: Subha Nandhini et al. (2003[Subha Nandhini, M., Vijayakumar, V., Mostad, A., Sundaravadivelu, M. & Natarajan, S. (2003). Acta Cryst. E59, o1672-o1674.]). For ring conformational analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]); Nardelli (1983[Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.]).

[Scheme 1]

Experimental

Crystal data
  • C23H24BrNO4

  • Mr = 458.34

  • Triclinic, [P \overline 1]

  • a = 10.3970 (4) Å

  • b = 14.4874 (6) Å

  • c = 15.8580 (7) Å

  • α = 65.457 (2)°

  • β = 89.556 (3)°

  • γ = 80.597 (3)°

  • V = 2138.80 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.95 mm−1

  • T = 293 K

  • 0.30 × 0.16 × 0.16 mm

Data collection
  • Bruker Kappa APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1999[Bruker (1999). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.600, Tmax = 0.749

  • 39210 measured reflections

  • 7523 independent reflections

  • 5075 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.138

  • S = 1.04

  • 7523 reflections

  • 545 parameters

  • 28 restraints

  • H-atom parameters constrained

  • Δρmax = 0.67 e Å−3

  • Δρmin = −0.44 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O⋯O3 0.82 1.83 2.547 (6) 146
O5—H5O⋯O7 0.82 1.90 2.582 (6) 140
C7—H7⋯O6i 0.93 2.58 3.349 (4) 141
C30—H30⋯O2ii 0.93 2.56 3.349 (5) 143
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+1, -y+1, -z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Hydroxy substituted nitrogen heterocycles containing six-membered rings are well known in nature and are components of many compounds with valuable pharmacological properties (Pinder, 1992; Michael, 1997). Functionalized tetrahydropyridines and piperidines are familiar substructures found in biologically active natural products and synthetic pharmaceuticals (Michael, 2001; Dewick, 1997; Pinder, 1992; Rubiralta et al., 1991). N-Acyl and amino acyl derivatives of Δ3-tetrahydropyridine system and their derivatives were reported to act as farnesyltransferase inhibitors (Gwaltney et al., 2003) and exhibit potent analgesic, anti-inflammatory and hyperglycemic effects (Yeung et al., 1982) thereby attracted much attention in the pharmaceutical arena. Recently, we found that a N-chloroacetyl derivative of 3-carboxyethyl-2,6-diphenyl-4-hydroxy-Δ3-tetrahydropyridine was found to possess significant antibacterial activity against both Gram-positive and Gram-negative pathogens besides antitubercular activity (Aridoss et al., 2008a). Unlike earlier reports on acylation of 2,6-diarylpiperidin-4-ones (Aridoss et al., 2007, 2008b; Krishnakumar & Krishnapillay, 1996; Krishnapillay et al., 2000), 2-bromopropionylation of 3-carboxyethyl-2,6- diphenylpiperidin-4-one gave tetrahydropyridine (title compound) through enolization across C3—C4 bond. In order to study the change in stereochemistry due to the introduction of double bond about C3—C4 besides 2-bromopropionylation, the tile compound was synthesized and X-ray crystal structure is discussed here.

The title compound crystallizes with two independent but closely similar molecules per asymmetric unit. The sums of angles around N1 (359.5 (8)°) and N2 (359.6 (8)°) are in accordance with sp2 hybridization. The C7—C6—C11, C13—C12—C17, C30—C29—C34 and C36—C35—C40 angles are slightly lower than the average value of 120°, as observed in Subha Nandhini et al. (2003). The N1/C1-C5 ring adopts a half-chair conformation while the N2/C24-C28 ring is in a distorted envelope conformation. The puckering parameters (Q, θ, ϕ; Cremer & Pople, 1975) and the smallest displacement asymmetry parameter (ΔC2(C2-C3); Nardelli, 1983) for the N1/C1-C5 ring are Q = 0.465 (4) Å, θ = 51.2 (5)°, ϕ = 317.9 (6)° and ΔC2(C2-C3) = 9.1 (5)°. The N2/C24-C28 ring adopts a distorted envelope conformation, with Q, θ, ϕ and ΔCs(C28) values of 0.478 (4)Å, 52.7 (5)°, 312.7 (6)° and 12.6 (4)°, respectively.

The molecular structure is stabilized by a strong O—H···O intramolecular interaction. In each independent molecule, the O—H···O hydrogen bond generates an S(6) motif. The crystal packing is stabilized by C—H···O intermolecular interactions. The two independent molecules are linked via C—H···O hydrogen bonds to form a chain along the c axis.

Related literature top

For general background to the synthesis and properties of 2,6-diarylpiperidin-4-one derivatives, see: Aridoss et al. (2007, 2008b); Krishnakumar & Krishnapillay (1996); Krishnapillay et al. (2000); Rubiralta et al. (1991). For the biological activity of pyridine derivatives, see: Aridoss et al. (2008a); Dewick (1997); Gwaltney et al. (2003); Michael (1997, 2001); Pinder (1992); Yeung et al. (1982). For a related structure, see: Subha Nandhini et al. (2003). For ring conformational analysis, see: Cremer & Pople (1975); Nardelli (1983).

Experimental top

The title compound was obtained by adopting our earlier method (Aridoss et al., 2007) with slight modification. To a cooled solution of 3-carboxyethyl-2,6-diphenylpiperidin-4-one (1 equiv.) and DMAP (1.5 equiv.) in dry dichloromethane, 2-bromopropionyl bromide (1 equiv.) in dry dichloromethane was added in drop wise under nitrogen atmosphere. Stirring was continued until the completion of reaction. Later, it was poured into water and extracted with dichloromethane. The combined organic extracts was then washed well with 3% sodium bicarbonate solution and dried over anhydrous sodium sulfate. This upon evaporation and purification by column chromatography gave two different isomers. The isomer with higher Rf value upon recrystallization in distilled ethanol afforded fine white crystals suitable for X-ray diffraction study. 1H NMR (400 MHz, CDCl3, p.p.m.): 12.44 (s, 1H, –OH); 7.16–6.82 (m, 11H, aromatic and H-2 protons); 5.31 (t, 1H, H-6); 4.48 (q, 1H, –CHBr); 4.12 (m, 2H, –CH2CH3); 2.94 (dd, 1H, H-5a); 2.84 (dd, 1H, H-5 e); 1.73 [3H, d, CH(Br)CH3]; 1.07 (t, 3H, CH2CH3).

Refinement top

The methyl group of the ethyl carboxylate unit is disordered over two positions in both independent molecules. The occupancies of major and minor components are 0.715 (12) and 0.285 (12) in molecule A, and 0.529 (11) and 0.471 (11) in molecule B. The C—C distances involving the disordered atoms were restrained to 1.53 (1) Å, and their displacement parameters were restrained to an approximate isotropic behaviour. All H-atoms were positioned geometrically and refined using a riding model, with O-H = 0.82 Å, C-H = 0.93-0.98 Å and Uiso(H) = 1.5Ueq(O,Cmethyl) and 1.2Ueq(C) for other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008.

Figures top
[Figure 1] Fig. 1. The molecular structure of title compound, showing 30% probability displacement ellipsoids. C-bound H atoms are not shown for clarity. All disorder components are shown.
[Figure 2] Fig. 2. The crystal packing of the title compound. H atoms not involved in hydrogen bonding (dashed lines) have been omitted for clarity. All disorder components are shown.
Ethyl 1-(2-bromopropanoyl)-4-hydroxy-2,6-diphenyl-1,2,5,6-tetrahydropyridine-3- carboxylate top
Crystal data top
C23H24BrNO4Z = 4
Mr = 458.34F(000) = 944
Triclinic, P1Dx = 1.423 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.3970 (4) ÅCell parameters from 5388 reflections
b = 14.4874 (6) Åθ = 1.4–25.0°
c = 15.8580 (7) ŵ = 1.95 mm1
α = 65.457 (2)°T = 293 K
β = 89.556 (3)°Prism, colourless
γ = 80.597 (3)°0.30 × 0.16 × 0.16 mm
V = 2138.80 (15) Å3
Data collection top
Bruker Kappa APEXII area-detector
diffractometer
7523 independent reflections
Radiation source: fine-focus sealed tube5075 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
ω and ϕ scansθmax = 25.0°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
h = 1212
Tmin = 0.600, Tmax = 0.749k = 1717
39210 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.138H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0745P)2 + 0.8765P]
where P = (Fo2 + 2Fc2)/3
7523 reflections(Δ/σ)max = 0.001
545 parametersΔρmax = 0.67 e Å3
28 restraintsΔρmin = 0.44 e Å3
Crystal data top
C23H24BrNO4γ = 80.597 (3)°
Mr = 458.34V = 2138.80 (15) Å3
Triclinic, P1Z = 4
a = 10.3970 (4) ÅMo Kα radiation
b = 14.4874 (6) ŵ = 1.95 mm1
c = 15.8580 (7) ÅT = 293 K
α = 65.457 (2)°0.30 × 0.16 × 0.16 mm
β = 89.556 (3)°
Data collection top
Bruker Kappa APEXII area-detector
diffractometer
7523 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
5075 reflections with I > 2σ(I)
Tmin = 0.600, Tmax = 0.749Rint = 0.041
39210 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04428 restraints
wR(F2) = 0.138H-atom parameters constrained
S = 1.04Δρmax = 0.67 e Å3
7523 reflectionsΔρmin = 0.44 e Å3
545 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Br10.72815 (4)0.34497 (3)0.35318 (3)0.06691 (16)
O10.4992 (3)0.6538 (3)0.4898 (2)0.0827 (9)
H1O0.44040.70310.46350.124*
O20.7187 (3)0.5800 (2)0.18232 (17)0.0648 (7)
O30.3824 (3)0.8162 (3)0.3556 (3)0.0932 (11)
O40.4572 (2)0.8545 (2)0.2153 (3)0.0735 (9)
N10.7565 (2)0.60133 (19)0.31187 (18)0.0376 (6)
C10.6728 (3)0.7045 (2)0.2704 (2)0.0410 (8)
H10.61970.70580.21900.049*
C20.5780 (3)0.7178 (3)0.3388 (3)0.0471 (9)
C30.5863 (4)0.6480 (3)0.4287 (3)0.0551 (10)
C40.6874 (4)0.5545 (3)0.4684 (3)0.0537 (9)
H4A0.65040.49540.47300.064*
H4B0.71590.54310.53060.064*
C50.8039 (3)0.5633 (3)0.4097 (2)0.0413 (8)
H50.85400.49360.42830.050*
C60.8963 (3)0.6295 (2)0.4207 (2)0.0380 (7)
C70.8771 (4)0.6770 (3)0.4803 (2)0.0495 (9)
H70.80570.66880.51680.059*
C80.9650 (4)0.7371 (3)0.4855 (3)0.0637 (11)
H80.95210.76890.52590.076*
C91.0698 (4)0.7505 (3)0.4326 (3)0.0657 (11)
H91.12690.79230.43570.079*
C101.0901 (4)0.7022 (3)0.3753 (3)0.0620 (10)
H101.16240.71010.33970.074*
C111.0047 (3)0.6414 (3)0.3693 (3)0.0500 (9)
H111.02050.60820.33020.060*
C120.7539 (3)0.7893 (2)0.2271 (2)0.0436 (8)
C130.7646 (3)0.8605 (3)0.2614 (3)0.0545 (9)
H130.72150.85750.31380.065*
C140.8385 (4)0.9366 (3)0.2192 (4)0.0774 (13)
H140.84350.98480.24300.093*
C150.9037 (5)0.9417 (4)0.1433 (4)0.0887 (16)
H150.95360.99290.11530.106*
C160.8953 (5)0.8708 (4)0.1086 (3)0.0835 (15)
H160.94050.87330.05710.100*
C170.8201 (4)0.7953 (3)0.1493 (3)0.0640 (11)
H170.81390.74820.12440.077*
C180.4657 (4)0.7992 (3)0.3062 (4)0.0636 (11)
C190.3441 (5)0.9369 (5)0.1788 (5)0.118 (2)
H19A0.33260.97620.21600.141*0.715 (12)
H19B0.26540.90890.17900.141*0.715 (12)
H19C0.37421.00120.14720.141*0.285 (12)
H19D0.29620.94020.22980.141*0.285 (12)
C200.3715 (10)1.0026 (7)0.0831 (6)0.129 (4)0.715 (12)
H20A0.29991.05890.05550.194*0.715 (12)
H20B0.38230.96260.04730.194*0.715 (12)
H20C0.45001.02900.08410.194*0.715 (12)
C20'0.261 (2)0.924 (2)0.1100 (16)0.136 (11)0.285 (12)
H20D0.18820.97970.08700.204*0.285 (12)
H20E0.22960.85970.13930.204*0.285 (12)
H20F0.31170.92320.05930.204*0.285 (12)
C210.7694 (3)0.5460 (3)0.2606 (2)0.0429 (8)
C220.8512 (3)0.4390 (3)0.3009 (3)0.0474 (8)
H220.91320.43230.35020.057*
C230.9235 (4)0.4149 (3)0.2283 (3)0.0686 (12)
H23A0.98440.46120.20300.103*
H23B0.86250.42280.17960.103*
H23C0.97010.34520.25590.103*
Br20.16044 (4)0.65873 (3)0.14248 (3)0.07332 (17)
O50.0762 (3)0.3339 (3)0.0151 (2)0.0923 (10)
H5O0.06140.27490.03710.139*
O60.2515 (3)0.4273 (2)0.31396 (18)0.0669 (8)
O70.0454 (3)0.1660 (3)0.1541 (3)0.0980 (11)
O80.1301 (3)0.1399 (2)0.2932 (2)0.0769 (9)
N20.3001 (3)0.40012 (19)0.18645 (18)0.0390 (6)
C240.2625 (3)0.2972 (2)0.2320 (2)0.0413 (8)
H240.20600.29950.28110.050*
C250.1797 (3)0.2780 (3)0.1653 (3)0.0492 (9)
C260.1563 (3)0.3448 (3)0.0751 (3)0.0600 (11)
C270.2110 (4)0.4402 (3)0.0324 (3)0.0575 (10)
H27A0.14580.49820.02850.069*
H27B0.23320.45140.03030.069*
C280.3323 (3)0.4348 (3)0.0883 (2)0.0435 (8)
H280.35040.50500.06710.052*
C290.4543 (3)0.3678 (3)0.0788 (2)0.0425 (8)
C300.4573 (4)0.3175 (3)0.0215 (3)0.0553 (9)
H300.38330.32650.01560.066*
C310.5702 (5)0.2537 (3)0.0191 (3)0.0697 (12)
H310.57120.21960.01930.084*
C320.6798 (4)0.2401 (3)0.0718 (3)0.0730 (13)
H320.75470.19570.07080.088*
C330.6788 (4)0.2924 (3)0.1266 (3)0.0662 (11)
H330.75420.28500.16180.079*
C340.5674 (3)0.3556 (3)0.1299 (3)0.0541 (9)
H340.56810.39080.16720.065*
C350.3786 (3)0.2134 (3)0.2800 (2)0.0465 (8)
C360.4310 (4)0.1441 (3)0.2455 (3)0.0595 (10)
H360.39530.14920.18980.071*
C370.5348 (5)0.0677 (3)0.2912 (4)0.0865 (15)
H370.56890.02130.26680.104*
C380.5885 (5)0.0596 (4)0.3730 (5)0.104 (2)
H380.65900.00760.40440.125*
C390.5380 (5)0.1283 (4)0.4084 (4)0.0985 (17)
H390.57450.12300.46400.118*
C400.4342 (4)0.2048 (3)0.3626 (3)0.0702 (12)
H400.40070.25130.38710.084*
C410.1131 (4)0.1907 (3)0.2014 (4)0.0667 (12)
C420.0768 (6)0.0452 (4)0.3394 (5)0.1050 (19)
H42A0.13560.00320.39190.126*0.529 (11)
H42B0.06970.01400.29650.126*0.529 (11)
H42C0.09360.00260.30630.126*0.471 (11)
H42D0.01560.05990.34450.126*0.471 (11)
C430.0526 (9)0.0668 (8)0.3720 (9)0.111 (4)0.529 (11)
H43A0.11570.10070.31980.166*0.529 (11)
H43B0.04950.11060.40340.166*0.529 (11)
H43C0.07720.00330.41400.166*0.529 (11)
C43'0.1487 (14)0.0052 (9)0.4351 (8)0.120 (5)0.471 (11)
H43D0.11970.06890.47130.180*0.471 (11)
H43E0.13100.04000.46560.180*0.471 (11)
H43F0.24100.01860.42870.180*0.471 (11)
C440.2887 (3)0.4577 (3)0.2355 (2)0.0455 (8)
C450.3253 (3)0.5647 (3)0.1922 (3)0.0491 (9)
H450.38350.57010.14210.059*
C460.3890 (4)0.5887 (3)0.2638 (3)0.0685 (12)
H46A0.47040.54220.28790.103*
H46B0.33240.58100.31350.103*
H46C0.40470.65830.23560.103*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0709 (3)0.0655 (3)0.0582 (3)0.0183 (2)0.0042 (2)0.0177 (2)
O10.068 (2)0.121 (3)0.088 (2)0.0393 (17)0.0458 (17)0.064 (2)
O20.0806 (18)0.0687 (17)0.0456 (16)0.0123 (14)0.0223 (14)0.0332 (14)
O30.0491 (16)0.111 (3)0.149 (3)0.0072 (16)0.0303 (19)0.086 (3)
O40.0504 (16)0.0612 (18)0.104 (3)0.0143 (13)0.0166 (16)0.0380 (18)
N10.0404 (14)0.0404 (15)0.0337 (15)0.0042 (11)0.0028 (11)0.0182 (12)
C10.0370 (17)0.0418 (18)0.046 (2)0.0028 (14)0.0027 (15)0.0213 (16)
C20.0354 (18)0.053 (2)0.065 (3)0.0104 (16)0.0047 (16)0.035 (2)
C30.049 (2)0.076 (3)0.064 (3)0.033 (2)0.0231 (19)0.045 (2)
C40.061 (2)0.064 (2)0.044 (2)0.030 (2)0.0132 (17)0.0229 (19)
C50.053 (2)0.0428 (18)0.0294 (17)0.0081 (15)0.0015 (14)0.0166 (15)
C60.0404 (18)0.0398 (18)0.0307 (17)0.0057 (14)0.0036 (14)0.0123 (14)
C70.059 (2)0.055 (2)0.038 (2)0.0136 (17)0.0025 (16)0.0230 (17)
C80.083 (3)0.063 (3)0.055 (3)0.015 (2)0.011 (2)0.034 (2)
C90.060 (3)0.063 (3)0.071 (3)0.024 (2)0.014 (2)0.020 (2)
C100.046 (2)0.066 (3)0.067 (3)0.0143 (19)0.0022 (19)0.020 (2)
C110.046 (2)0.056 (2)0.049 (2)0.0073 (17)0.0026 (17)0.0245 (18)
C120.0350 (17)0.0401 (18)0.045 (2)0.0019 (14)0.0021 (15)0.0109 (16)
C130.046 (2)0.045 (2)0.072 (3)0.0071 (16)0.0014 (18)0.024 (2)
C140.069 (3)0.053 (3)0.106 (4)0.016 (2)0.001 (3)0.028 (3)
C150.072 (3)0.059 (3)0.105 (4)0.019 (2)0.011 (3)0.002 (3)
C160.079 (3)0.073 (3)0.068 (3)0.009 (3)0.027 (2)0.002 (3)
C170.067 (3)0.058 (2)0.055 (3)0.005 (2)0.007 (2)0.014 (2)
C180.042 (2)0.065 (3)0.102 (4)0.0127 (19)0.004 (2)0.052 (3)
C190.079 (4)0.093 (4)0.176 (7)0.033 (3)0.037 (4)0.069 (5)
C200.141 (7)0.106 (6)0.108 (7)0.044 (5)0.038 (5)0.035 (5)
C20'0.127 (13)0.137 (13)0.139 (13)0.004 (9)0.002 (9)0.058 (9)
C210.0409 (18)0.051 (2)0.041 (2)0.0022 (15)0.0047 (15)0.0254 (17)
C220.0458 (19)0.050 (2)0.054 (2)0.0019 (16)0.0067 (16)0.0311 (18)
C230.063 (2)0.066 (3)0.086 (3)0.006 (2)0.018 (2)0.043 (2)
Br20.0654 (3)0.0715 (3)0.0637 (3)0.0013 (2)0.0025 (2)0.0133 (2)
O50.0693 (19)0.146 (3)0.086 (2)0.019 (2)0.0188 (18)0.071 (2)
O60.107 (2)0.0668 (17)0.0462 (16)0.0365 (16)0.0308 (15)0.0355 (14)
O70.084 (2)0.125 (3)0.130 (3)0.052 (2)0.011 (2)0.086 (3)
O80.080 (2)0.074 (2)0.091 (2)0.0448 (16)0.0195 (17)0.0374 (18)
N20.0472 (15)0.0416 (15)0.0321 (15)0.0098 (12)0.0087 (12)0.0187 (12)
C240.0440 (18)0.0433 (18)0.045 (2)0.0132 (15)0.0107 (15)0.0243 (16)
C250.0410 (19)0.061 (2)0.059 (2)0.0073 (17)0.0024 (17)0.038 (2)
C260.042 (2)0.086 (3)0.068 (3)0.000 (2)0.0036 (19)0.053 (3)
C270.054 (2)0.074 (3)0.039 (2)0.006 (2)0.0034 (17)0.024 (2)
C280.055 (2)0.0434 (19)0.0313 (18)0.0079 (15)0.0073 (15)0.0148 (15)
C290.0487 (19)0.048 (2)0.0326 (18)0.0119 (15)0.0126 (15)0.0178 (16)
C300.061 (2)0.067 (2)0.042 (2)0.0076 (19)0.0085 (17)0.0279 (19)
C310.086 (3)0.071 (3)0.063 (3)0.013 (2)0.029 (2)0.040 (2)
C320.064 (3)0.070 (3)0.071 (3)0.000 (2)0.026 (2)0.021 (2)
C330.049 (2)0.073 (3)0.067 (3)0.008 (2)0.005 (2)0.022 (2)
C340.052 (2)0.059 (2)0.057 (2)0.0147 (18)0.0058 (18)0.0273 (19)
C350.0490 (19)0.0395 (19)0.049 (2)0.0156 (15)0.0076 (16)0.0140 (17)
C360.059 (2)0.048 (2)0.069 (3)0.0082 (18)0.008 (2)0.023 (2)
C370.073 (3)0.058 (3)0.111 (4)0.004 (2)0.006 (3)0.023 (3)
C380.071 (3)0.065 (3)0.131 (6)0.008 (3)0.017 (3)0.004 (3)
C390.091 (4)0.084 (4)0.091 (4)0.007 (3)0.035 (3)0.011 (3)
C400.077 (3)0.063 (3)0.067 (3)0.009 (2)0.010 (2)0.025 (2)
C410.048 (2)0.076 (3)0.100 (4)0.017 (2)0.010 (2)0.058 (3)
C420.108 (4)0.078 (3)0.142 (6)0.052 (3)0.026 (4)0.046 (4)
C430.116 (7)0.096 (7)0.122 (8)0.039 (5)0.028 (6)0.040 (6)
C43'0.151 (9)0.087 (7)0.123 (9)0.039 (6)0.007 (7)0.038 (6)
C440.050 (2)0.050 (2)0.044 (2)0.0150 (16)0.0105 (16)0.0256 (17)
C450.050 (2)0.048 (2)0.059 (2)0.0145 (16)0.0174 (17)0.0295 (18)
C460.065 (3)0.069 (3)0.087 (3)0.023 (2)0.001 (2)0.043 (2)
Geometric parameters (Å, º) top
Br1—C221.948 (4)Br2—C451.945 (4)
O1—C31.340 (4)O5—C261.343 (4)
O1—H1O0.82O5—H5O0.82
O2—C211.216 (4)O6—C441.218 (4)
O3—C181.227 (5)O7—C411.223 (5)
O4—C181.322 (5)O8—C411.329 (6)
O4—C191.456 (5)O8—C421.460 (5)
N1—C211.352 (4)N2—C441.350 (4)
N1—C51.472 (4)N2—C281.478 (4)
N1—C11.480 (4)N2—C241.480 (4)
C1—C21.511 (5)C24—C251.508 (5)
C1—C121.524 (5)C24—C351.509 (5)
C1—H10.98C24—H240.98
C2—C31.356 (5)C25—C261.348 (6)
C2—C181.440 (5)C25—C411.445 (5)
C3—C41.474 (6)C26—C271.472 (6)
C4—C51.511 (5)C27—C281.519 (5)
C4—H4A0.97C27—H27A0.97
C4—H4B0.97C27—H27B0.97
C5—C61.521 (4)C28—C291.513 (5)
C5—H50.98C28—H280.98
C6—C111.377 (5)C29—C341.377 (5)
C6—C71.378 (5)C29—C301.379 (5)
C7—C81.387 (5)C30—C311.381 (6)
C7—H70.93C30—H300.93
C8—C91.359 (6)C31—C321.357 (6)
C8—H80.93C31—H310.93
C9—C101.355 (6)C32—C331.369 (6)
C9—H90.93C32—H320.93
C10—C111.377 (5)C33—C341.369 (5)
C10—H100.93C33—H330.93
C11—H110.93C34—H340.93
C12—C131.370 (5)C35—C361.371 (5)
C12—C171.385 (5)C35—C401.384 (5)
C13—C141.382 (6)C36—C371.368 (6)
C13—H130.93C36—H360.93
C14—C151.358 (7)C37—C381.367 (8)
C14—H140.93C37—H370.93
C15—C161.367 (7)C38—C391.368 (8)
C15—H150.93C38—H380.93
C16—C171.381 (6)C39—C401.369 (6)
C16—H160.93C39—H390.93
C17—H170.93C40—H400.93
C19—C201.475 (8)C42—C431.470 (8)
C19—C20'1.488 (10)C42—C43'1.521 (9)
C19—H19A0.97C42—H42A0.97
C19—H19B0.97C42—H42B0.97
C19—H19C0.96C42—H42C0.96
C19—H19D0.96C42—H42D0.96
C20—H20A0.96C43—H43A0.96
C20—H20B0.96C43—H43B0.96
C20—H20C0.96C43—H43C0.96
C20'—H20D0.96C43'—H43D0.96
C20'—H20E0.96C43'—H43E0.96
C20'—H20F0.96C43'—H43F0.96
C21—C221.512 (5)C44—C451.523 (5)
C22—C231.500 (5)C45—C461.505 (5)
C22—H220.98C45—H450.98
C23—H23A0.96C46—H46A0.96
C23—H23B0.96C46—H46B0.96
C23—H23C0.96C46—H46C0.96
C3—O1—H1O109.5C26—O5—H5O109.5
C18—O4—C19115.5 (4)C41—O8—C42119.2 (4)
C21—N1—C5125.7 (3)C44—N2—C28125.9 (3)
C21—N1—C1117.2 (3)C44—N2—C24116.6 (3)
C5—N1—C1116.6 (2)C28—N2—C24117.1 (2)
N1—C1—C2110.5 (3)N2—C24—C25110.5 (3)
N1—C1—C12111.4 (2)N2—C24—C35112.1 (2)
C2—C1—C12115.7 (3)C25—C24—C35115.0 (3)
N1—C1—H1106.2N2—C24—H24106.2
C2—C1—H1106.2C25—C24—H24106.2
C12—C1—H1106.2C35—C24—H24106.2
C3—C2—C18118.1 (4)C26—C25—C41119.0 (4)
C3—C2—C1121.9 (3)C26—C25—C24122.1 (3)
C18—C2—C1119.5 (4)C41—C25—C24118.6 (3)
O1—C3—C2123.5 (4)O5—C26—C25123.8 (4)
O1—C3—C4112.7 (4)O5—C26—C27112.3 (4)
C2—C3—C4123.7 (3)C25—C26—C27123.8 (3)
C3—C4—C5111.7 (3)C26—C27—C28111.3 (3)
C3—C4—H4A109.3C26—C27—H27A109.4
C5—C4—H4A109.3C28—C27—H27A109.4
C3—C4—H4B109.3C26—C27—H27B109.4
C5—C4—H4B109.3C28—C27—H27B109.4
H4A—C4—H4B107.9H27A—C27—H27B108.0
N1—C5—C4108.6 (3)N2—C28—C29111.1 (3)
N1—C5—C6110.8 (3)N2—C28—C27107.5 (3)
C4—C5—C6114.9 (3)C29—C28—C27115.3 (3)
N1—C5—H5107.4N2—C28—H28107.6
C4—C5—H5107.4C29—C28—H28107.6
C6—C5—H5107.4C27—C28—H28107.6
C11—C6—C7118.6 (3)C34—C29—C30118.2 (3)
C11—C6—C5118.3 (3)C34—C29—C28119.0 (3)
C7—C6—C5123.0 (3)C30—C29—C28122.8 (3)
C6—C7—C8119.5 (4)C29—C30—C31120.0 (4)
C6—C7—H7120.2C29—C30—H30120.0
C8—C7—H7120.2C31—C30—H30120.0
C9—C8—C7121.2 (4)C32—C31—C30121.1 (4)
C9—C8—H8119.4C32—C31—H31119.5
C7—C8—H8119.4C30—C31—H31119.5
C10—C9—C8119.3 (4)C31—C32—C33119.3 (4)
C10—C9—H9120.4C31—C32—H32120.4
C8—C9—H9120.4C33—C32—H32120.4
C9—C10—C11120.7 (4)C32—C33—C34120.2 (4)
C9—C10—H10119.7C32—C33—H33119.9
C11—C10—H10119.7C34—C33—H33119.9
C6—C11—C10120.6 (4)C33—C34—C29121.2 (4)
C6—C11—H11119.7C33—C34—H34119.4
C10—C11—H11119.7C29—C34—H34119.4
C13—C12—C17118.1 (3)C36—C35—C40118.2 (4)
C13—C12—C1123.0 (3)C36—C35—C24122.4 (3)
C17—C12—C1118.8 (3)C40—C35—C24119.3 (3)
C12—C13—C14121.0 (4)C37—C36—C35121.4 (5)
C12—C13—H13119.5C37—C36—H36119.3
C14—C13—H13119.5C35—C36—H36119.3
C15—C14—C13120.6 (5)C38—C37—C36119.9 (5)
C15—C14—H14119.7C38—C37—H37120.0
C13—C14—H14119.7C36—C37—H37120.0
C14—C15—C16119.3 (4)C37—C38—C39119.7 (5)
C14—C15—H15120.4C37—C38—H38120.2
C16—C15—H15120.4C39—C38—H38120.2
C15—C16—C17120.6 (5)C38—C39—C40120.4 (5)
C15—C16—H16119.7C38—C39—H39119.8
C17—C16—H16119.7C40—C39—H39119.8
C16—C17—C12120.4 (4)C39—C40—C35120.5 (5)
C16—C17—H17119.8C39—C40—H40119.8
C12—C17—H17119.8C35—C40—H40119.8
O3—C18—O4121.6 (4)O7—C41—O8122.6 (4)
O3—C18—C2124.8 (5)O7—C41—C25124.7 (5)
O4—C18—C2113.5 (4)O8—C41—C25112.7 (3)
O4—C19—C20105.7 (6)O8—C42—C43110.7 (6)
O4—C19—C20'111.8 (10)O8—C42—C43'103.2 (6)
C20—C19—C20'69.1 (12)C43—C42—C43'95.8 (9)
O4—C19—H19A110.6O8—C42—H42A109.5
C20—C19—H19A110.6C43—C42—H42A109.5
C20'—C19—H19A135.7O8—C42—H42B109.5
O4—C19—H19B110.6C43—C42—H42B109.5
C20—C19—H19B110.6C43'—C42—H42B127.0
H19A—C19—H19B108.7H42A—C42—H42B108.1
O4—C19—H19C108.6O8—C42—H42C110.7
C20'—C19—H19C107.3C43—C42—H42C122.1
H19A—C19—H19C69.9C43'—C42—H42C111.8
H19B—C19—H19C138.0H42A—C42—H42C92.5
O4—C19—H19D108.9O8—C42—H42D111.3
C20—C19—H19D141.1C43'—C42—H42D110.6
C20'—C19—H19D112.2H42A—C42—H42D122.1
H19B—C19—H19D72.8H42B—C42—H42D95.0
H19C—C19—H19D107.8H42C—C42—H42D109.1
C19—C20—H20A109.5C42—C43—H43A109.5
H19C—C20—H20A98.0H42D—C43—H43A85.4
C19—C20—H20B109.5C42—C43—H43B109.5
H19C—C20—H20B146.1H42D—C43—H43B128.5
H20A—C20—H20B109.5H43A—C43—H43B109.5
C19—C20—H20C109.5C42—C43—H43C109.5
H19C—C20—H20C78.1H42D—C43—H43C111.0
H20A—C20—H20C109.5H43A—C43—H43C109.5
H20B—C20—H20C109.5H43B—C43—H43C109.5
C19—C20'—H20D109.5C42—C43'—H43D109.5
C19—C20'—H20E109.5C42—C43'—H43E109.5
H20D—C20'—H20E109.5H43D—C43'—H43E109.5
C19—C20'—H20F109.5C42—C43'—H43F109.5
H20D—C20'—H20F109.5H43D—C43'—H43F109.5
H20E—C20'—H20F109.5H43E—C43'—H43F109.5
O2—C21—N1122.1 (3)O6—C44—N2122.6 (3)
O2—C21—C22118.7 (3)O6—C44—C45118.2 (3)
N1—C21—C22119.2 (3)N2—C44—C45119.1 (3)
C23—C22—C21112.0 (3)C46—C45—C44111.3 (3)
C23—C22—Br1109.7 (2)C46—C45—Br2109.9 (2)
C21—C22—Br1105.6 (2)C44—C45—Br2104.9 (2)
C23—C22—H22109.8C46—C45—H45110.2
C21—C22—H22109.8C44—C45—H45110.2
Br1—C22—H22109.8Br2—C45—H45110.2
C22—C23—H23A109.5C45—C46—H46A109.5
C22—C23—H23B109.5C45—C46—H46B109.5
H23A—C23—H23B109.5H46A—C46—H46B109.5
C22—C23—H23C109.5C45—C46—H46C109.5
H23A—C23—H23C109.5H46A—C46—H46C109.5
H23B—C23—H23C109.5H46B—C46—H46C109.5
C21—N1—C1—C2131.6 (3)C44—N2—C24—C25135.0 (3)
C5—N1—C1—C240.7 (3)C28—N2—C24—C2538.4 (4)
C21—N1—C1—C1298.3 (3)C44—N2—C24—C3595.2 (3)
C5—N1—C1—C1289.4 (3)C28—N2—C24—C3591.4 (3)
N1—C1—C2—C38.5 (4)N2—C24—C25—C265.3 (4)
C12—C1—C2—C3119.3 (3)C35—C24—C25—C26122.9 (4)
N1—C1—C2—C18163.3 (3)N2—C24—C25—C41168.4 (3)
C12—C1—C2—C1868.9 (4)C35—C24—C25—C4163.4 (4)
C18—C2—C3—O13.7 (5)C41—C25—C26—O51.6 (6)
C1—C2—C3—O1175.6 (3)C24—C25—C26—O5175.4 (3)
C18—C2—C3—C4172.7 (3)C41—C25—C26—C27175.4 (3)
C1—C2—C3—C40.8 (5)C24—C25—C26—C271.7 (5)
O1—C3—C4—C5163.7 (3)O5—C26—C27—C28161.1 (3)
C2—C3—C4—C519.5 (5)C25—C26—C27—C2821.6 (5)
C21—N1—C5—C4110.1 (3)C44—N2—C28—C29121.8 (3)
C1—N1—C5—C461.6 (3)C24—N2—C28—C2965.5 (4)
C21—N1—C5—C6122.8 (3)C44—N2—C28—C27111.3 (4)
C1—N1—C5—C665.5 (3)C24—N2—C28—C2761.4 (4)
C3—C4—C5—N147.5 (4)C26—C27—C28—N249.5 (4)
C3—C4—C5—C677.2 (4)C26—C27—C28—C2974.9 (4)
N1—C5—C6—C1156.3 (4)N2—C28—C29—C3455.0 (4)
C4—C5—C6—C11179.9 (3)C27—C28—C29—C34177.6 (3)
N1—C5—C6—C7124.4 (3)N2—C28—C29—C30124.5 (3)
C4—C5—C6—C70.8 (5)C27—C28—C29—C301.9 (5)
C11—C6—C7—C81.5 (5)C34—C29—C30—C312.5 (5)
C5—C6—C7—C8179.2 (3)C28—C29—C30—C31177.0 (3)
C6—C7—C8—C90.2 (6)C29—C30—C31—C320.6 (6)
C7—C8—C9—C101.5 (6)C30—C31—C32—C331.5 (7)
C8—C9—C10—C111.0 (6)C31—C32—C33—C341.7 (6)
C7—C6—C11—C102.0 (5)C32—C33—C34—C290.2 (6)
C5—C6—C11—C10178.7 (3)C30—C29—C34—C332.3 (5)
C9—C10—C11—C60.7 (6)C28—C29—C34—C33177.2 (3)
N1—C1—C12—C13112.9 (3)N2—C24—C35—C36106.6 (4)
C2—C1—C12—C1314.4 (4)C25—C24—C35—C3620.8 (5)
N1—C1—C12—C1767.2 (4)N2—C24—C35—C4074.1 (4)
C2—C1—C12—C17165.5 (3)C25—C24—C35—C40158.5 (3)
C17—C12—C13—C140.5 (5)C40—C35—C36—C370.5 (6)
C1—C12—C13—C14179.4 (3)C24—C35—C36—C37178.8 (4)
C12—C13—C14—C150.9 (6)C35—C36—C37—C380.2 (7)
C13—C14—C15—C160.3 (7)C36—C37—C38—C390.1 (8)
C14—C15—C16—C170.7 (7)C37—C38—C39—C400.1 (9)
C15—C16—C17—C121.1 (7)C38—C39—C40—C350.2 (8)
C13—C12—C17—C160.5 (5)C36—C35—C40—C390.5 (6)
C1—C12—C17—C16179.6 (3)C24—C35—C40—C39178.8 (4)
C19—O4—C18—O30.8 (6)C42—O8—C41—O76.0 (6)
C19—O4—C18—C2179.2 (4)C42—O8—C41—C25175.5 (4)
C3—C2—C18—O37.2 (6)C26—C25—C41—O77.6 (6)
C1—C2—C18—O3179.3 (3)C24—C25—C41—O7178.5 (4)
C3—C2—C18—O4171.1 (3)C26—C25—C41—O8170.9 (3)
C1—C2—C18—O41.0 (5)C24—C25—C41—O83.1 (5)
C18—O4—C19—C20166.3 (6)C41—O8—C42—C4394.8 (8)
C18—O4—C19—C20'120.4 (13)C41—O8—C42—C43'163.7 (7)
C5—N1—C21—O2174.0 (3)C28—N2—C44—O6173.9 (3)
C1—N1—C21—O22.4 (5)C24—N2—C44—O61.1 (5)
C5—N1—C21—C226.9 (5)C28—N2—C44—C457.0 (5)
C1—N1—C21—C22178.5 (3)C24—N2—C44—C45179.7 (3)
O2—C21—C22—C2334.5 (5)O6—C44—C45—C4635.6 (5)
N1—C21—C22—C23144.6 (3)N2—C44—C45—C46143.6 (3)
O2—C21—C22—Br184.9 (3)O6—C44—C45—Br283.2 (4)
N1—C21—C22—Br196.0 (3)N2—C44—C45—Br297.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···O30.821.832.547 (6)146
O5—H5O···O70.821.902.582 (6)140
C7—H7···O6i0.932.583.349 (4)141
C30—H30···O2ii0.932.563.349 (5)143
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC23H24BrNO4
Mr458.34
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)10.3970 (4), 14.4874 (6), 15.8580 (7)
α, β, γ (°)65.457 (2), 89.556 (3), 80.597 (3)
V3)2138.80 (15)
Z4
Radiation typeMo Kα
µ (mm1)1.95
Crystal size (mm)0.30 × 0.16 × 0.16
Data collection
DiffractometerBruker Kappa APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1999)
Tmin, Tmax0.600, 0.749
No. of measured, independent and
observed [I > 2σ(I)] reflections
39210, 7523, 5075
Rint0.041
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.138, 1.04
No. of reflections7523
No. of parameters545
No. of restraints28
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.67, 0.44

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009), SHELXL97 (Sheldrick, 2008.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···O30.821.832.547 (6)146
O5—H5O···O70.821.902.582 (6)140
C7—H7···O6i0.932.583.349 (4)141
C30—H30···O2ii0.932.563.349 (5)143
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1, z.
 

Footnotes

Present address: Institute of Structural Biology and Biophysics - 2, Forschungszentrum Jülich, D-52425 Jülich, Germany.

Acknowledgements

GA and YTJ acknowledge support provided by the second stage of BK21 program, Republic of Korea. Financial support from the University Grants Commission (UGC-SAP) and the Department of Science & Technology (DST-FIST), Government of India, are acknowledged by DV for providing facilities to the department.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationAridoss, G., Amirthaganesan, S., Ashok Kumar, N., Kim, J. T., Lim, K. T., Kabilan, S. & Jeong, Y. T. (2008a). Bioorg. Med. Chem. Lett. 18, 6542–6548.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationAridoss, G., Amirthaganesan, S., Kim, M. S., Cho, B. G., Lim, K. T. & Jeong, Y. T. (2008b). Arkivoc, XV, 133–158.  CrossRef Google Scholar
First citationAridoss, G., Balasubramanian, S., Parthiban, P. & Kabilan, S. (2007). Spectrochim. Acta, A68, 1153–1163.  CrossRef Google Scholar
First citationBruker (1999). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDewick, P. M. (1997). Medicinal Natural Products. Chichester: John Wiley and Sons.  Google Scholar
First citationGwaltney, S. L., OConnor, S. J., Nelson, L. T. J., Sullivan, G. M., Imade, H., Wang, W., Hasvold, L., Li, Q., Cohen, J., Gu, W. Z., Tahir, S. K., Bauch, J., Marsh, K., Ng, S. C., Frost, D. J., Zhang, H., Muchmore, S., Jakob, C. G., Stoll, V., Hutchins, C., Rosenberg, S. H. & Sham, H. L. (2003). Bioorg. Med. Chem. Lett. 13, 1363–1366.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKrishnakumar, R. & Krishnapillay, M. (1996). Indian J. Chem. Sect. B, 35, 418–425.  Google Scholar
First citationKrishnapillay, M., Krishnakumar, R., Natarajan, A. & Jeyaraman, G. (2000). Indian J. Chem. Sect. B, 39, 419–425.  Google Scholar
First citationMichael, J. P. (1997). Nat. Prod. Rep. 14, 619–636.  CrossRef CAS PubMed Web of Science Google Scholar
First citationMichael, J. P. (2001). The Alkaloids, Vol. 55, edited by G. A. Cordell. San Diego: Academic Press.  Google Scholar
First citationNardelli, M. (1983). Acta Cryst. C39, 1141–1142.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationPinder, A. R. (1992). Nat. Prod. Rep. 9, 491–504.  CrossRef CAS Web of Science Google Scholar
First citationRubiralta, M., Giralt, E. & Diez, A. (1991). Piperidine. Structure, Preparation, Reactivity and Synthetic Applications of Piperidine and Its Derivatives. Amsterdam: Elsevier.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSubha Nandhini, M., Vijayakumar, V., Mostad, A., Sundaravadivelu, M. & Natarajan, S. (2003). Acta Cryst. E59, o1672–o1674.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYeung, J. M., Corleto, L. A. & Knaus, E. E. (1982). J. Med. Chem. 25, 720–723.  CrossRef CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 7| July 2009| Pages o1708-o1709
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds