organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-3-Bromo-N′-(2-chloro­benzyl­­idene)benzohydrazide

aDepartment of Chemistry, Ankang University, Ankang Shanxi 725000, People's Republic of China
*Correspondence e-mail: guobiao_cao@126.com

(Received 23 June 2009; accepted 23 June 2009; online 27 June 2009)

The title compound, C14H10BrClN2O, was synthesized by the reaction of 2-chloro­benzaldehyde with an equimolar quantity of 3-bromo­benzohydrazide in methanol. The mol­ecule displays an E configuration about the C=N bond. The dihedral angle between the two benzene rings is 13.0 (2)°. In the crystal structure, mol­ecules are linked through inter­molecular N—H⋯O hydrogen bonds, forming chains propagating along the c axis.

Related literature

For the crystal structures of hydrazone compounds, see: Mohd Lair et al. (2009[Mohd Lair, N., Mohd Ali, H. & Ng, S. W. (2009). Acta Cryst. E65, o189.]); Fun et al. (2008[Fun, H.-K., Patil, P. S., Rao, J. N., Kalluraya, B. & Chantrapromma, S. (2008). Acta Cryst. E64, o1707.]); Li & Ban (2009[Li, C.-M. & Ban, H.-Y. (2009). Acta Cryst. E65, o1466.]); Zhu et al. (2009[Zhu, C.-G., Wei, Y.-J. & Zhu, Q.-Y. (2009). Acta Cryst. E65, o85.]); Yang (2007[Yang, D.-S. (2007). J. Chem. Crystallogr. 37, 343-348.]); You et al. (2008[You, Z.-L., Dai, W.-M., Xu, X.-Q. & Hu, Y.-Q. (2008). Pol. J. Chem. 82, 2215-2219.]). For hydrazone compounds reported previously by our group, see: Qu et al. (2008[Qu, L.-Z., Yang, T., Cao, G.-B. & Wang, X.-Y. (2008). Acta Cryst. E64, o2061.]); Yang et al. (2008[Yang, T., Cao, G.-B., Xiang, J.-M. & Zhang, L.-H. (2008). Acta Cryst. E64, o1186.]); Cao & Lu (2009a[Cao, G.-B. & Lu, X.-H. (2009a). Acta Cryst. E65, o1587.],b[Cao, G.-B. & Lu, X.-H. (2009b). Acta Cryst. E65, o1600.]).

[Scheme 1]

Experimental

Crystal data
  • C14H10BrClN2O

  • Mr = 337.60

  • Monoclinic, P 21 /c

  • a = 13.140 (1) Å

  • b = 12.632 (1) Å

  • c = 8.377 (1) Å

  • β = 98.174 (2)°

  • V = 1376.3 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.17 mm−1

  • T = 298 K

  • 0.27 × 0.25 × 0.22 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.481, Tmax = 0.542 (expected range = 0.442–0.498)

  • 8319 measured reflections

  • 2998 independent reflections

  • 2235 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.076

  • S = 1.03

  • 2998 reflections

  • 176 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.52 e Å−3

  • Δρmin = −0.65 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O1i 0.89 (1) 1.98 (1) 2.854 (2) 165 (3)
Symmetry code: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Study on the crystal structures of hydrazone derivatives is a hot topic in structural chemistry. In the last few years, the crystal structures of a large number of hydrazone compounds have been reported (Mohd Lair et al., 2009; Fun et al., 2008; Li & Ban, 2009; Zhu et al., 2009; Yang, 2007; You et al., 2008). As a continuation of our work in this area (Qu et al., 2008; Yang et al., 2008; Cao & Lu, 2009a,b), the title new hydrazone compound derived from the reaction of 2-chlorobenzaldehyde with an equimolar quantity of 3-bromobenzohydrazide is reported.

In the title compound (Fig. 1), the dihedral angle between the two benzene rings is 13.0 (2)°. The molecule displays an E configuration about the CN bond. In the crystal structure, molecules are linked through intermolecular N—H···O hydrogen bonds (Table 1) to form chains running along the c axis (Fig. 2).

Related literature top

For the crystal structures of hydrazone compounds, see: Mohd Lair et al. (2009); Fun et al. (2008); Li & Ban (2009); Zhu et al. (2009); Yang (2007); You et al. (2008). For hydrazone compounds reported previously by our group, see: Qu et al. (2008); Yang et al. (2008); Cao & Lu (2009a,b).

Experimental top

The title compound was prepared by refluxing equimolar quantities of 2-chlorobenzaldehyde with 3-bromobenzohydrazide in methanol. Colourless block-like crystals were formed by slow evaporation of the solution in air.

Refinement top

Atom H2 was located in a difference Fourier map and refined isotropically, with the N-H distance restrained to 0.90 (1) Å. The other H atoms were placed in idealized positions and constrained to ride on their parent atoms, with C-H distances of 0.93 Å, and with Uiso(H) set at 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the b axis. H atoms not involved in hydrogen bonding (dashed lines) have been omitted for clarity.
(E)-3-Bromo-N'-(2-chlorobenzylidene)benzohydrazide top
Crystal data top
C14H10BrClN2OF(000) = 672
Mr = 337.60Dx = 1.629 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2981 reflections
a = 13.140 (1) Åθ = 2.2–27.5°
b = 12.632 (1) ŵ = 3.17 mm1
c = 8.377 (1) ÅT = 298 K
β = 98.174 (2)°Block, colourless
V = 1376.3 (2) Å30.27 × 0.25 × 0.22 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
2998 independent reflections
Radiation source: fine-focus sealed tube2235 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ω scansθmax = 27.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1615
Tmin = 0.481, Tmax = 0.542k = 1613
8319 measured reflectionsl = 1010
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.076 w = 1/[σ2(Fo2) + (0.0266P)2 + 0.7889P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
2998 reflectionsΔρmax = 0.52 e Å3
176 parametersΔρmin = 0.65 e Å3
1 restraintExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0155 (8)
Crystal data top
C14H10BrClN2OV = 1376.3 (2) Å3
Mr = 337.60Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.140 (1) ŵ = 3.17 mm1
b = 12.632 (1) ÅT = 298 K
c = 8.377 (1) Å0.27 × 0.25 × 0.22 mm
β = 98.174 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2998 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2235 reflections with I > 2σ(I)
Tmin = 0.481, Tmax = 0.542Rint = 0.025
8319 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0331 restraint
wR(F2) = 0.076H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.52 e Å3
2998 reflectionsΔρmin = 0.65 e Å3
176 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br11.03493 (2)0.63367 (3)0.15480 (4)0.06855 (15)
Cl10.71461 (6)1.15851 (6)0.46918 (11)0.0757 (3)
N10.69113 (14)0.83453 (15)0.6106 (2)0.0358 (4)
N20.74414 (15)0.76627 (15)0.5225 (2)0.0378 (4)
O10.75662 (14)0.64019 (12)0.71573 (18)0.0477 (4)
C10.62315 (16)1.00731 (17)0.6291 (3)0.0342 (5)
C20.62851 (18)1.11440 (19)0.5940 (3)0.0433 (6)
C30.5678 (2)1.1884 (2)0.6563 (3)0.0542 (7)
H30.57321.25960.63100.065*
C40.4996 (2)1.1563 (2)0.7553 (3)0.0572 (7)
H40.45811.20570.79700.069*
C50.4924 (2)1.0510 (2)0.7933 (3)0.0523 (7)
H50.44591.02930.86070.063*
C60.55369 (18)0.9775 (2)0.7319 (3)0.0429 (6)
H60.54870.90660.75960.052*
C70.68317 (17)0.92838 (18)0.5560 (3)0.0367 (5)
H70.71590.94690.46860.044*
C80.77228 (16)0.67075 (17)0.5825 (2)0.0336 (5)
C90.82605 (15)0.60205 (17)0.4763 (2)0.0319 (5)
C100.89265 (16)0.64395 (18)0.3775 (3)0.0359 (5)
H100.90360.71660.37420.043*
C110.94190 (17)0.5767 (2)0.2851 (3)0.0395 (5)
C120.9267 (2)0.4693 (2)0.2864 (3)0.0487 (6)
H120.96030.42490.22250.058*
C130.8606 (2)0.4287 (2)0.3844 (3)0.0498 (6)
H130.84900.35610.38590.060*
C140.81123 (18)0.49435 (18)0.4804 (3)0.0411 (5)
H140.76790.46580.54790.049*
H20.749 (2)0.784 (2)0.4206 (17)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0647 (2)0.0867 (3)0.0630 (2)0.00759 (16)0.03940 (15)0.00891 (15)
Cl10.0682 (5)0.0610 (5)0.1056 (6)0.0046 (4)0.0393 (4)0.0307 (4)
N10.0373 (10)0.0395 (11)0.0326 (9)0.0065 (8)0.0121 (8)0.0033 (8)
N20.0477 (11)0.0400 (11)0.0292 (9)0.0105 (9)0.0168 (8)0.0004 (8)
O10.0696 (12)0.0445 (10)0.0339 (8)0.0059 (8)0.0236 (8)0.0038 (7)
C10.0307 (11)0.0393 (12)0.0322 (11)0.0033 (9)0.0031 (9)0.0017 (9)
C20.0375 (12)0.0439 (14)0.0487 (14)0.0022 (10)0.0063 (10)0.0019 (10)
C30.0551 (15)0.0383 (14)0.0686 (18)0.0081 (12)0.0063 (14)0.0028 (12)
C40.0551 (16)0.0562 (17)0.0609 (17)0.0170 (13)0.0102 (14)0.0140 (13)
C50.0474 (14)0.0642 (18)0.0484 (15)0.0073 (13)0.0175 (12)0.0042 (13)
C60.0429 (13)0.0435 (14)0.0443 (13)0.0035 (11)0.0127 (11)0.0016 (11)
C70.0383 (12)0.0423 (14)0.0314 (11)0.0033 (10)0.0114 (9)0.0015 (10)
C80.0352 (11)0.0369 (12)0.0300 (11)0.0002 (9)0.0096 (9)0.0022 (9)
C90.0297 (11)0.0382 (12)0.0280 (10)0.0051 (9)0.0049 (8)0.0002 (9)
C100.0369 (12)0.0392 (12)0.0329 (11)0.0027 (10)0.0088 (9)0.0006 (9)
C110.0341 (11)0.0526 (15)0.0336 (11)0.0064 (10)0.0112 (9)0.0018 (10)
C120.0508 (14)0.0518 (16)0.0450 (14)0.0149 (12)0.0119 (11)0.0089 (12)
C130.0573 (15)0.0353 (13)0.0576 (15)0.0054 (12)0.0114 (12)0.0040 (11)
C140.0410 (13)0.0413 (14)0.0427 (13)0.0021 (10)0.0120 (10)0.0025 (10)
Geometric parameters (Å, º) top
Br1—C111.892 (2)C5—C61.376 (3)
Cl1—C21.738 (2)C5—H50.93
N1—C71.270 (3)C6—H60.93
N1—N21.386 (2)C7—H70.93
N2—C81.339 (3)C8—C91.491 (3)
N2—H20.893 (10)C9—C141.376 (3)
O1—C81.226 (2)C9—C101.392 (3)
C1—C21.388 (3)C10—C111.372 (3)
C1—C61.393 (3)C10—H100.93
C1—C71.459 (3)C11—C121.372 (4)
C2—C31.378 (3)C12—C131.376 (4)
C3—C41.366 (4)C12—H120.93
C3—H30.93C13—C141.379 (3)
C4—C51.374 (4)C13—H130.93
C4—H40.93C14—H140.93
C7—N1—N2114.24 (17)N1—C7—H7119.7
C8—N2—N1119.58 (17)C1—C7—H7119.7
C8—N2—H2122 (2)O1—C8—N2123.53 (19)
N1—N2—H2118 (2)O1—C8—C9121.02 (19)
C2—C1—C6116.9 (2)N2—C8—C9115.44 (18)
C2—C1—C7122.0 (2)C14—C9—C10119.6 (2)
C6—C1—C7121.1 (2)C14—C9—C8118.69 (19)
C3—C2—C1122.1 (2)C10—C9—C8121.7 (2)
C3—C2—Cl1118.1 (2)C11—C10—C9119.2 (2)
C1—C2—Cl1119.79 (18)C11—C10—H10120.4
C4—C3—C2119.6 (2)C9—C10—H10120.4
C4—C3—H3120.2C10—C11—C12121.8 (2)
C2—C3—H3120.2C10—C11—Br1119.05 (18)
C3—C4—C5120.1 (2)C12—C11—Br1119.17 (17)
C3—C4—H4120.0C11—C12—C13118.6 (2)
C5—C4—H4120.0C11—C12—H12120.7
C4—C5—C6120.2 (2)C13—C12—H12120.7
C4—C5—H5119.9C12—C13—C14120.8 (2)
C6—C5—H5119.9C12—C13—H13119.6
C5—C6—C1121.3 (2)C14—C13—H13119.6
C5—C6—H6119.4C9—C14—C13120.0 (2)
C1—C6—H6119.4C9—C14—H14120.0
N1—C7—C1120.54 (19)C13—C14—H14120.0
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O1i0.89 (1)1.98 (1)2.854 (2)165 (3)
Symmetry code: (i) x, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formulaC14H10BrClN2O
Mr337.60
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)13.140 (1), 12.632 (1), 8.377 (1)
β (°) 98.174 (2)
V3)1376.3 (2)
Z4
Radiation typeMo Kα
µ (mm1)3.17
Crystal size (mm)0.27 × 0.25 × 0.22
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.481, 0.542
No. of measured, independent and
observed [I > 2σ(I)] reflections
8319, 2998, 2235
Rint0.025
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.076, 1.03
No. of reflections2998
No. of parameters176
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.52, 0.65

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O1i0.89 (1)1.98 (1)2.854 (2)165 (3)
Symmetry code: (i) x, y+3/2, z1/2.
 

Acknowledgements

The Vital Foundation of Ankang University (Project No. 2008AKXY012) and the Special Scientific Research Foundation of the Education Office of Shanxi Province (Project No. 02 J K202) are gratefully acknowledged.

References

First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCao, G.-B. & Lu, X.-H. (2009a). Acta Cryst. E65, o1587.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCao, G.-B. & Lu, X.-H. (2009b). Acta Cryst. E65, o1600.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Patil, P. S., Rao, J. N., Kalluraya, B. & Chantrapromma, S. (2008). Acta Cryst. E64, o1707.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, C.-M. & Ban, H.-Y. (2009). Acta Cryst. E65, o1466.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMohd Lair, N., Mohd Ali, H. & Ng, S. W. (2009). Acta Cryst. E65, o189.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationQu, L.-Z., Yang, T., Cao, G.-B. & Wang, X.-Y. (2008). Acta Cryst. E64, o2061.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, D.-S. (2007). J. Chem. Crystallogr. 37, 343–348.  Web of Science CSD CrossRef CAS Google Scholar
First citationYang, T., Cao, G.-B., Xiang, J.-M. & Zhang, L.-H. (2008). Acta Cryst. E64, o1186.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYou, Z.-L., Dai, W.-M., Xu, X.-Q. & Hu, Y.-Q. (2008). Pol. J. Chem. 82, 2215–2219.  CAS Google Scholar
First citationZhu, C.-G., Wei, Y.-J. & Zhu, Q.-Y. (2009). Acta Cryst. E65, o85.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds