metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 7| July 2009| Pages m780-m781

(Acetone-2κO){μ-6,6′-dimeth­­oxy-2,2′-[propane-1,2-diylbis(nitrilo­methyl­­idyne)]diphenolato-κ81:2O6,O1,O1′,O6′:O1,N,N′,O1′}tris­(nitrato-1κ2O,O′)copper(II)terbium(III)

aKey Laboratory of Functional Inorganic Material Chemistry (HLJU), Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China, and bSchool of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China
*Correspondence e-mail: gmli@hlju.edu.cn

(Received 19 May 2009; accepted 10 June 2009; online 17 June 2009)

In the title heteronuclear complex, [CuTb(C19H20N2O4)(NO3)3(CH3COCH3)], the CuII ion is five-coordinated by two O and two N atoms from the 6,6′-dimeth­oxy-2,2′-[propane-1,2-diylbis(nitrilo­methyl­idyne)]diphenolate ligand (L) and an O atom from the acetone mol­ecule in a square-pyramidal geometry. The TbIII ion is ten-coordinated by six O atoms from three chelating nitrate ligands and four O atoms from the L ligand. In L, the CH2–CH–CH3 fragment is disordered over two conformations, with refined occupancies of 0.725 (11) and 0.275 (11).

Related literature

For the copper–gadolinium and copper–praseodymium complexes of the N,N′-bis­(3-methoxy­salicyl­idene)propane-1,2-diamino ligand, see: Kara et al. (2000[Kara, H., Elerman, Y. & Prout, K. (2000). Z. Naturforsch. Teil B, 55, 1131-1136.]) and Sun et al. (2007[Sun, W.-B., Gao, T., Yan, P.-F., Li, G.-M. & Hou, G.-F. (2007). Acta Cryst. E63, m2192.]), respectively.

[Scheme 1]

Experimental

Crystal data
  • [CuTb(C19H20N2O4)(NO3)3(C3H6O)]

  • Mr = 806.94

  • Monoclinic, P 21 /c

  • a = 9.8923 (9) Å

  • b = 18.8321 (18) Å

  • c = 15.5982 (15) Å

  • β = 95.085 (2)°

  • V = 2894.4 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.23 mm−1

  • T = 291 K

  • 0.20 × 0.19 × 0.18 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.563, Tmax = 0.591 (expected range = 0.532–0.559)

  • 15732 measured reflections

  • 5696 independent reflections

  • 4296 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.092

  • S = 1.02

  • 5696 reflections

  • 421 parameters

  • 48 restraints

  • H-atom parameters constrained

  • Δρmax = 1.12 e Å−3

  • Δρmin = −0.53 e Å−3

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The Schiff base Cu—Ln (Ln = rare earth) dinuclear complexes have attracted an attention due to their magnetic properties. In the title compound (Fig. 1), the octadentate Schiff base ligand links Cu and Tb atoms into a dinuclear complex through two phenolate O atoms, that is similar with the bonding reported for other copper-gadolinium and copper-praseodymium complexes of the ligand L = N,N'-bis(3- Methoxysalicylidene)propane-1,2-diamine (Kara et al., 2000; Sun et al., 2007). The TbIII centre in the title complex is ten-coordinated by four oxygen atoms from ligand L and six oxygen atoms from three nitrato ligands. The CuII center is five-coordinate by two nitrogen atoms and two oxygen atoms from the ligand and one oxygen atom from acetone in a square-pyramidal geometry.

Related literature top

For the copper–gadolinium and copper–praseodymium complexes of the N,N'-bis(3-methoxysalicylidene)propane-1,2-diamino ligand, see: Kara et al. (2000) and Sun et al. (2007), respectively.

Experimental top

To a 1:1 MeOH/Me2CO solution (20 ml) of the ligand L (0.086 g, 0.250 mmol) was slowly added an aqueous solution (8 ml) of [Cu(Ac)2H2O] (0.050 g, 0.25 mmol). After refluxing and stirring for 3 h, was slowly added a MeOH solution (10 ml) of Tb(NO3)36H2O (0.114 g, 0.25 mmol) at ambient temperature. After stirring for 5 h, red solid was collected by filtration and washed with MeOH, [CuTb(C19H20N2O4)(CH3COCH3)(NO3)3], yield 0.172 g (85%). Single crystals suitable for X-ray determination were obtained by slow diffusion of diethylether into a methanol solution of the powder sample over one week. Analysis calculated for C22H26CuN5O14Tb: C, 32.75; H, 3.25; N, 8.68; found: C, 32.81; H, 3.30; N, 8.80%.

Refinement top

H atoms bound to C atoms were placed in calculated positions and treated as riding on their parent atoms, with C—H = 0.93 Å (aromatic C), C—H = 0.98 Å (methylene C), C—H = 0.96 Å (methly C) and with Uiso(H) = 1.2Ueq(C). Atoms C8, C9 and C10 with the attached H atoms were treated as disordered over two positions with the occupancies refined to 0.725 (11) and 0.275 (11), respectively.

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing the atomic numbering and 30% probability displacement ellipsoids. Only major part of the disordered fragment is shown. H atoms omitted for clarity.
(Acetone-2κO){µ-6,6'-dimethoxy-2,2'-[propane-1,2- diylbis(nitrilomethylidyne)]diphenolato- κ81:2O6,O1,O1',O6': O1,N,N',O1'}tris(nitrato- 1κ2O,O')copper(II)terbium(III) top
Crystal data top
[CuTb(C19H20N2O4)(NO3)3(C3H6O)]F(000) = 1596
Mr = 806.94Dx = 1.852 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3804 reflections
a = 9.8923 (9) Åθ = 2.3–21.9°
b = 18.8321 (18) ŵ = 3.23 mm1
c = 15.5982 (15) ÅT = 291 K
β = 95.085 (2)°Block, red
V = 2894.4 (5) Å30.20 × 0.19 × 0.18 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID
diffractometer
5696 independent reflections
Radiation source: fine-focus sealed tube4296 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
ω scansθmax = 26.1°, θmin = 1.7°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1212
Tmin = 0.563, Tmax = 0.591k = 2316
15732 measured reflectionsl = 1915
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0427P)2 + 0.3818P]
where P = (Fo2 + 2Fc2)/3
5696 reflections(Δ/σ)max = 0.003
421 parametersΔρmax = 1.12 e Å3
48 restraintsΔρmin = 0.53 e Å3
Crystal data top
[CuTb(C19H20N2O4)(NO3)3(C3H6O)]V = 2894.4 (5) Å3
Mr = 806.94Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.8923 (9) ŵ = 3.23 mm1
b = 18.8321 (18) ÅT = 291 K
c = 15.5982 (15) Å0.20 × 0.19 × 0.18 mm
β = 95.085 (2)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
5696 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
4296 reflections with I > 2σ(I)
Tmin = 0.563, Tmax = 0.591Rint = 0.037
15732 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04048 restraints
wR(F2) = 0.092H-atom parameters constrained
S = 1.02Δρmax = 1.12 e Å3
5696 reflectionsΔρmin = 0.53 e Å3
421 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Tb10.28678 (3)0.074476 (12)0.751003 (15)0.04448 (10)
Cu10.20813 (8)0.24090 (4)0.67475 (5)0.0633 (2)
N10.2390 (6)0.3365 (3)0.7107 (4)0.0942 (19)
N20.1210 (6)0.2826 (3)0.5712 (4)0.0845 (17)
N30.5440 (5)0.0470 (3)0.6857 (3)0.0578 (12)
N40.0279 (7)0.0890 (3)0.8196 (4)0.0816 (17)
N50.2699 (6)0.0635 (2)0.8377 (3)0.0685 (14)
O10.4538 (4)0.12109 (18)0.8774 (2)0.0554 (9)
O20.3134 (4)0.19791 (18)0.7687 (2)0.0580 (10)
O30.1984 (4)0.14580 (18)0.6349 (2)0.0586 (10)
O40.2368 (4)0.01506 (19)0.6000 (2)0.0560 (9)
O50.4863 (4)0.1047 (2)0.6734 (3)0.0729 (12)
O60.4893 (4)0.0038 (2)0.7354 (3)0.0671 (11)
O70.6477 (5)0.0309 (3)0.6551 (4)0.1129 (18)
O80.1350 (6)0.1106 (3)0.8570 (3)0.1117 (19)
O90.0401 (5)0.0624 (3)0.7478 (3)0.0940 (15)
O100.0824 (6)0.0945 (3)0.8491 (4)0.130 (2)
O110.3161 (5)0.0093 (2)0.8754 (3)0.0913 (15)
O120.2238 (5)0.0545 (2)0.7621 (3)0.0768 (13)
O130.2657 (6)0.1202 (2)0.8738 (3)0.1142 (19)
C190.5588 (7)0.0802 (3)0.9243 (4)0.080 (2)
H1A0.64250.10620.92760.120*
H1B0.57000.03590.89530.120*
H1C0.53380.07110.98140.120*
C20.4457 (5)0.1926 (3)0.8984 (3)0.0519 (13)
C30.5042 (6)0.2224 (3)0.9726 (4)0.0738 (18)
H10.55250.19481.01430.089*
C40.4894 (7)0.2961 (4)0.9841 (5)0.088 (2)
H20.52610.31731.03470.106*
C50.4232 (6)0.3357 (3)0.9229 (5)0.084 (2)
H30.41710.38440.93190.101*
C60.3635 (6)0.3078 (3)0.8468 (4)0.0629 (16)
C10.3703 (5)0.2330 (3)0.8362 (4)0.0512 (13)
C70.3023 (6)0.3546 (3)0.7814 (6)0.088 (2)
H40.31020.40300.79220.106*
C80.1969 (14)0.3843 (6)0.6358 (7)0.098 (4)0.688 (12)
H80.16810.42940.65980.118*0.688 (12)
C90.0831 (18)0.3580 (4)0.5792 (11)0.159 (10)0.688 (12)
H9A0.07670.38190.52390.191*0.688 (12)
H9B0.00200.36320.60500.191*0.688 (12)
C100.2949 (16)0.4011 (8)0.5767 (10)0.165 (7)0.688 (12)
H10A0.30650.36100.54010.247*0.688 (12)
H10B0.37990.41250.60810.247*0.688 (12)
H10C0.26380.44110.54220.247*0.688 (12)
C8'0.128 (2)0.3834 (11)0.6722 (16)0.086 (6)0.312 (12)
H8'0.04450.38150.70110.104*0.312 (12)
C9'0.114 (4)0.3599 (6)0.5828 (18)0.093 (7)0.312 (12)
H9'10.18450.38190.55270.112*0.312 (12)
H9'20.02720.37660.55630.112*0.312 (12)
C10'0.160 (3)0.4509 (17)0.642 (2)0.145 (13)0.312 (12)
H10D0.12630.48660.67810.217*0.312 (12)
H10E0.11870.45680.58400.217*0.312 (12)
H10F0.25660.45560.64180.217*0.312 (12)
C110.0870 (7)0.2485 (5)0.5039 (5)0.090 (2)
H50.05020.27480.45700.108*
C120.0984 (6)0.1733 (4)0.4908 (4)0.0711 (18)
C130.0550 (7)0.1448 (5)0.4103 (4)0.088 (2)
H60.01580.17470.36760.105*
C140.0686 (7)0.0750 (5)0.3928 (4)0.093 (3)
H70.03620.05760.33910.112*
C150.1290 (6)0.0298 (4)0.4528 (3)0.0719 (18)
H150.14040.01790.43970.086*
C160.1730 (5)0.0556 (3)0.5332 (3)0.0553 (14)
C170.1551 (5)0.1262 (3)0.5541 (3)0.0555 (14)
C180.2845 (7)0.0536 (3)0.5759 (4)0.0720 (17)
H18A0.20830.08410.56080.108*
H18B0.33970.07380.62340.108*
H18C0.33720.04870.52750.108*
O140.0246 (4)0.2439 (2)0.7447 (3)0.0792 (13)
C200.2527 (8)0.2460 (5)0.7791 (5)0.113 (3)
H20A0.26830.20620.81540.169*
H20B0.33440.25680.74370.169*
H20C0.22630.28640.81430.169*
C210.1421 (7)0.2283 (3)0.7233 (4)0.0689 (17)
C220.1803 (7)0.1933 (4)0.6404 (4)0.090 (2)
H22A0.10000.17680.61620.135*
H22B0.22720.22650.60170.135*
H22C0.23850.15370.64920.135*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Tb10.05575 (17)0.03633 (15)0.04035 (16)0.00036 (12)0.00140 (11)0.00182 (11)
Cu10.0784 (5)0.0434 (4)0.0669 (5)0.0103 (3)0.0002 (4)0.0158 (3)
N10.104 (5)0.044 (3)0.128 (5)0.001 (3)0.023 (4)0.018 (3)
N20.104 (4)0.077 (4)0.073 (4)0.034 (3)0.011 (3)0.037 (3)
N30.058 (3)0.047 (3)0.071 (3)0.001 (2)0.021 (3)0.004 (3)
N40.088 (5)0.073 (4)0.088 (5)0.007 (3)0.032 (4)0.006 (3)
N50.091 (4)0.043 (3)0.068 (4)0.016 (3)0.014 (3)0.016 (3)
O10.066 (2)0.046 (2)0.051 (2)0.0027 (18)0.0140 (18)0.0006 (17)
O20.073 (3)0.036 (2)0.062 (2)0.0043 (17)0.012 (2)0.0011 (17)
O30.080 (3)0.053 (2)0.041 (2)0.0143 (19)0.0046 (19)0.0065 (17)
O40.069 (2)0.055 (2)0.044 (2)0.0031 (19)0.0036 (18)0.0063 (18)
O50.077 (3)0.056 (3)0.089 (3)0.009 (2)0.023 (2)0.021 (2)
O60.069 (3)0.047 (2)0.086 (3)0.005 (2)0.011 (2)0.010 (2)
O70.098 (4)0.084 (3)0.166 (5)0.015 (3)0.063 (3)0.012 (3)
O80.089 (4)0.157 (5)0.093 (4)0.015 (4)0.031 (3)0.047 (4)
O90.072 (3)0.121 (4)0.089 (4)0.004 (3)0.006 (3)0.021 (3)
O100.089 (4)0.160 (6)0.150 (6)0.001 (4)0.060 (4)0.004 (4)
O110.151 (4)0.059 (3)0.058 (3)0.038 (3)0.016 (3)0.006 (2)
O120.099 (3)0.066 (3)0.061 (3)0.022 (2)0.019 (2)0.012 (2)
O130.170 (5)0.058 (3)0.106 (4)0.032 (3)0.037 (4)0.035 (3)
C190.093 (5)0.061 (4)0.079 (5)0.007 (3)0.034 (4)0.002 (3)
C20.055 (3)0.042 (3)0.058 (3)0.006 (2)0.000 (3)0.012 (3)
C30.071 (4)0.073 (4)0.075 (4)0.005 (3)0.009 (3)0.018 (4)
C40.078 (5)0.079 (5)0.108 (6)0.018 (4)0.001 (4)0.051 (4)
C50.060 (4)0.052 (4)0.139 (7)0.000 (3)0.003 (4)0.032 (4)
C60.050 (3)0.049 (4)0.090 (5)0.008 (3)0.008 (3)0.018 (3)
C10.042 (3)0.047 (3)0.063 (4)0.001 (2)0.002 (3)0.007 (3)
C70.067 (4)0.034 (3)0.162 (8)0.000 (3)0.002 (5)0.005 (4)
C80.125 (8)0.042 (5)0.129 (8)0.015 (5)0.024 (7)0.035 (5)
C90.25 (3)0.102 (12)0.117 (12)0.018 (12)0.056 (14)0.049 (10)
C100.170 (11)0.142 (10)0.186 (11)0.007 (8)0.030 (8)0.002 (8)
C8'0.090 (10)0.072 (9)0.098 (9)0.012 (8)0.017 (8)0.016 (7)
C9'0.103 (11)0.085 (9)0.092 (9)0.032 (9)0.010 (8)0.009 (9)
C10'0.150 (16)0.142 (16)0.145 (16)0.002 (10)0.025 (10)0.001 (10)
C110.082 (5)0.121 (7)0.068 (5)0.039 (5)0.014 (4)0.043 (5)
C120.055 (3)0.106 (6)0.052 (4)0.012 (4)0.007 (3)0.029 (4)
C130.070 (4)0.144 (8)0.047 (4)0.008 (5)0.006 (3)0.025 (5)
C140.076 (5)0.165 (9)0.037 (4)0.015 (5)0.001 (3)0.006 (5)
C150.059 (4)0.115 (6)0.042 (4)0.013 (4)0.005 (3)0.009 (4)
C160.048 (3)0.071 (4)0.047 (3)0.001 (3)0.006 (3)0.003 (3)
C170.046 (3)0.087 (5)0.033 (3)0.006 (3)0.004 (2)0.008 (3)
C180.084 (4)0.067 (4)0.065 (4)0.010 (3)0.009 (3)0.016 (3)
O140.068 (3)0.082 (3)0.088 (3)0.014 (2)0.010 (2)0.017 (2)
C200.085 (5)0.128 (7)0.131 (7)0.005 (5)0.046 (5)0.018 (6)
C210.063 (4)0.058 (4)0.086 (5)0.002 (3)0.009 (4)0.006 (3)
C220.074 (4)0.098 (6)0.096 (5)0.015 (4)0.005 (4)0.014 (4)
Geometric parameters (Å, º) top
Tb1—O22.353 (3)C4—H20.9300
Tb1—O32.360 (3)C5—C61.382 (8)
Tb1—O82.427 (5)C5—H30.9300
Tb1—O62.436 (4)C6—C11.419 (7)
Tb1—O92.446 (5)C6—C71.441 (9)
Tb1—O52.472 (4)C7—H40.9300
Tb1—O112.498 (4)C8—C101.431 (7)
Tb1—O122.517 (4)C8—C91.455 (7)
Tb1—O12.610 (3)C8—H80.9800
Tb1—O42.616 (3)C9—H9A0.9700
Tb1—N32.871 (5)C9—H9B0.9700
Tb1—N42.875 (6)C10—H10A0.9600
Cu1—O31.895 (4)C10—H10B0.9600
Cu1—O21.901 (3)C10—H10C0.9600
Cu1—N11.903 (6)C8'—C10'1.40 (4)
Cu1—N21.929 (5)C8'—C9'1.457 (7)
N1—C71.265 (9)C8'—H8'0.9800
N1—C8'1.490 (7)C9'—H9'10.9700
N1—C81.504 (6)C9'—H9'20.9700
N2—C111.251 (9)C10'—H10D0.9600
N2—C9'1.469 (7)C10'—H10E0.9600
N2—C91.476 (7)C10'—H10F0.9600
N3—O71.208 (6)C11—C121.438 (10)
N3—O51.234 (6)C11—H50.9300
N3—O61.277 (5)C12—C131.399 (9)
N4—O101.225 (7)C12—C171.405 (7)
N4—O81.233 (7)C13—C141.350 (9)
N4—O91.242 (7)C13—H60.9300
N5—O131.211 (6)C14—C151.364 (9)
N5—O121.237 (6)C14—H70.9300
N5—O111.244 (6)C15—C161.379 (7)
O1—C21.390 (6)C15—H150.9300
O1—C191.440 (6)C16—C171.385 (8)
O2—C11.326 (6)C18—H18A0.9600
O3—C171.346 (6)C18—H18B0.9600
O4—C161.396 (6)C18—H18C0.9600
O4—C181.437 (6)O14—C211.217 (7)
C19—H1A0.9600C20—C211.495 (9)
C19—H1B0.9600C20—H20A0.9600
C19—H1C0.9600C20—H20B0.9600
C2—C31.368 (7)C20—H20C0.9600
C2—C11.397 (7)C21—C221.471 (8)
C3—C41.408 (8)C22—H22A0.9600
C3—H10.9300C22—H22B0.9600
C4—C51.337 (9)C22—H22C0.9600
O2—Tb1—O363.73 (12)C17—O3—Cu1124.6 (3)
O2—Tb1—O873.33 (17)C17—O3—Tb1128.9 (3)
O3—Tb1—O898.85 (18)Cu1—O3—Tb1106.35 (15)
O2—Tb1—O6117.86 (13)C16—O4—C18115.7 (4)
O3—Tb1—O6119.11 (13)C16—O4—Tb1118.3 (3)
O8—Tb1—O6141.76 (18)C18—O4—Tb1125.4 (3)
O2—Tb1—O9101.25 (15)N3—O5—Tb195.7 (3)
O3—Tb1—O974.70 (15)N3—O6—Tb196.2 (3)
O8—Tb1—O950.48 (17)N4—O8—Tb198.2 (4)
O6—Tb1—O9140.80 (15)N4—O9—Tb197.0 (4)
O2—Tb1—O575.17 (13)N5—O11—Tb197.9 (3)
O3—Tb1—O575.56 (13)N5—O12—Tb197.2 (3)
O8—Tb1—O5146.97 (18)O1—C19—H1A109.5
O6—Tb1—O551.47 (13)O1—C19—H1B109.5
O9—Tb1—O5148.17 (16)H1A—C19—H1B109.5
O2—Tb1—O11121.96 (13)O1—C19—H1C109.5
O3—Tb1—O11164.89 (15)H1A—C19—H1C109.5
O8—Tb1—O1171.6 (2)H1B—C19—H1C109.5
O6—Tb1—O1172.08 (15)C3—C2—O1124.6 (5)
O9—Tb1—O1190.24 (17)C3—C2—C1121.6 (5)
O5—Tb1—O11118.88 (16)O1—C2—C1113.8 (4)
O2—Tb1—O12166.19 (14)C2—C3—C4118.1 (6)
O3—Tb1—O12121.65 (13)C2—C3—H1120.9
O8—Tb1—O1292.96 (18)C4—C3—H1120.9
O6—Tb1—O1271.95 (14)C5—C4—C3120.6 (6)
O9—Tb1—O1270.09 (16)C5—C4—H2119.7
O5—Tb1—O12117.97 (15)C3—C4—H2119.7
O11—Tb1—O1249.42 (13)C4—C5—C6123.0 (6)
O2—Tb1—O161.47 (11)C4—C5—H3118.5
O3—Tb1—O1123.72 (12)C6—C5—H3118.5
O8—Tb1—O177.27 (16)C5—C6—C1117.2 (6)
O6—Tb1—O177.77 (12)C5—C6—C7119.8 (6)
O9—Tb1—O1127.60 (15)C1—C6—C7123.0 (6)
O5—Tb1—O179.22 (13)O2—C1—C2116.3 (5)
O11—Tb1—O166.65 (12)O2—C1—C6124.5 (5)
O12—Tb1—O1114.63 (12)C2—C1—C6119.2 (5)
O2—Tb1—O4122.57 (12)N1—C7—C6126.7 (6)
O3—Tb1—O461.61 (12)N1—C7—H4116.6
O8—Tb1—O4130.88 (16)C6—C7—H4116.6
O6—Tb1—O476.55 (13)C10—C8—C9102.5 (14)
O9—Tb1—O480.41 (15)C10—C8—N1118.4 (11)
O5—Tb1—O475.68 (13)C9—C8—N1114.4 (10)
O11—Tb1—O4115.40 (13)C10—C8—H8106.9
O12—Tb1—O467.72 (12)C9—C8—H8106.9
O1—Tb1—O4151.75 (11)N1—C8—H8106.9
O2—Tb1—N397.24 (13)C8—C9—N2101.0 (10)
O3—Tb1—N396.33 (14)C8—C9—H9A111.6
O8—Tb1—N3156.01 (17)N2—C9—H9A111.6
O6—Tb1—N326.24 (12)C8—C9—H9B111.6
O9—Tb1—N3152.87 (16)N2—C9—H9B111.6
O5—Tb1—N325.33 (13)H9A—C9—H9B109.4
O11—Tb1—N396.66 (16)C10'—C8'—C9'87.5 (18)
O12—Tb1—N394.76 (15)C10'—C8'—N1120 (2)
O1—Tb1—N378.85 (13)C9'—C8'—N1102.3 (19)
O4—Tb1—N372.91 (12)C10'—C8'—H8'114.4
O2—Tb1—N487.52 (15)C9'—C8'—H8'114.4
O3—Tb1—N487.12 (16)N1—C8'—H8'114.4
O8—Tb1—N425.11 (16)C8'—C9'—N2114.7 (19)
O6—Tb1—N4148.99 (15)C8'—C9'—H9'1108.6
O9—Tb1—N425.39 (16)N2—C9'—H9'1108.6
O5—Tb1—N4159.54 (15)C8'—C9'—H9'2108.6
O11—Tb1—N479.46 (18)N2—C9'—H9'2108.6
O12—Tb1—N480.33 (16)H9'1—C9'—H9'2107.6
O1—Tb1—N4102.25 (17)C8'—C10'—H10D109.5
O4—Tb1—N4105.80 (17)C8'—C10'—H10E109.5
N3—Tb1—N4175.01 (15)H10D—C10'—H10E109.5
O3—Cu1—O281.88 (15)C8'—C10'—H10F109.5
O3—Cu1—N1173.3 (2)H10D—C10'—H10F109.5
O2—Cu1—N196.5 (2)H10E—C10'—H10F109.5
O3—Cu1—N296.0 (2)N2—C11—C12127.3 (6)
O2—Cu1—N2172.7 (2)N2—C11—H5116.4
N1—Cu1—N284.8 (3)C12—C11—H5116.4
O3—Cu1—Tb141.50 (10)C13—C12—C17117.5 (7)
O2—Cu1—Tb141.33 (11)C13—C12—C11118.9 (6)
N1—Cu1—Tb1137.72 (17)C17—C12—C11123.6 (6)
N2—Cu1—Tb1137.4 (2)C14—C13—C12121.8 (7)
C7—N1—C8'118.8 (11)C14—C13—H6119.1
C7—N1—C8126.7 (7)C12—C13—H6119.1
C8'—N1—C835.8 (9)C13—C14—C15120.9 (7)
C7—N1—Cu1124.4 (5)C13—C14—H7119.5
C8'—N1—Cu1110.4 (10)C15—C14—H7119.5
C8—N1—Cu1108.2 (6)C14—C15—C16119.2 (7)
C11—N2—C9'126.8 (13)C14—C15—H15120.4
C11—N2—C9120.9 (8)C16—C15—H15120.4
C9'—N2—C912 (2)C15—C16—C17121.1 (6)
C11—N2—Cu1124.1 (5)C15—C16—O4124.8 (6)
C9'—N2—Cu1108.9 (12)C17—C16—O4114.1 (5)
C9—N2—Cu1114.8 (7)O3—C17—C16116.5 (5)
O7—N3—O5123.8 (5)O3—C17—C12124.0 (6)
O7—N3—O6120.0 (5)C16—C17—C12119.4 (5)
O5—N3—O6116.2 (4)O4—C18—H18A109.5
O7—N3—Tb1174.9 (4)O4—C18—H18B109.5
O5—N3—Tb159.0 (3)H18A—C18—H18B109.5
O6—N3—Tb157.5 (3)O4—C18—H18C109.5
O10—N4—O8123.5 (7)H18A—C18—H18C109.5
O10—N4—O9122.3 (7)H18B—C18—H18C109.5
O8—N4—O9114.2 (6)C21—C20—H20A109.5
O10—N4—Tb1179.4 (5)C21—C20—H20B109.5
O8—N4—Tb156.7 (3)H20A—C20—H20B109.5
O9—N4—Tb157.6 (3)C21—C20—H20C109.5
O13—N5—O12122.6 (5)H20A—C20—H20C109.5
O13—N5—O11122.0 (5)H20B—C20—H20C109.5
O12—N5—O11115.3 (5)O14—C21—C22120.9 (6)
O13—N5—Tb1178.7 (5)O14—C21—C20121.1 (7)
O12—N5—Tb158.2 (3)C22—C21—C20117.9 (6)
O11—N5—Tb157.3 (3)C21—C22—H22A109.5
C2—O1—C19116.9 (4)C21—C22—H22B109.5
C2—O1—Tb1117.3 (3)H22A—C22—H22B109.5
C19—O1—Tb1125.7 (3)C21—C22—H22C109.5
C1—O2—Cu1124.4 (3)H22A—C22—H22C109.5
C1—O2—Tb1128.4 (3)H22B—C22—H22C109.5
Cu1—O2—Tb1106.42 (16)

Experimental details

Crystal data
Chemical formula[CuTb(C19H20N2O4)(NO3)3(C3H6O)]
Mr806.94
Crystal system, space groupMonoclinic, P21/c
Temperature (K)291
a, b, c (Å)9.8923 (9), 18.8321 (18), 15.5982 (15)
β (°) 95.085 (2)
V3)2894.4 (5)
Z4
Radiation typeMo Kα
µ (mm1)3.23
Crystal size (mm)0.20 × 0.19 × 0.18
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.563, 0.591
No. of measured, independent and
observed [I > 2σ(I)] reflections
15732, 5696, 4296
Rint0.037
(sin θ/λ)max1)0.618
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.092, 1.02
No. of reflections5696
No. of parameters421
No. of restraints48
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.12, 0.53

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The authors gratefully acknowledge financial support from the National Natural Science Foundation of China (grant Nos. 20572018 and 20672032), Heilongjiang Province (grant Nos. 11531284, 1055HZ001, ZJG0504 and JC200605) and Heilongjiang University (grant Nos. 09k137, 09k117 and 09k118).

References

First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationKara, H., Elerman, Y. & Prout, K. (2000). Z. Naturforsch. Teil B, 55, 1131–1136.  CAS Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, W.-B., Gao, T., Yan, P.-F., Li, G.-M. & Hou, G.-F. (2007). Acta Cryst. E63, m2192.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 7| July 2009| Pages m780-m781
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds