organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4,4′-Di-4-pyridyl-2,2′-di­thio­di­pyrimidine

aSchool of Chemistry and Chemical Engineering, Southeast University, Nanjing, People's Republic of China
*Correspondence e-mail: zhuhaibin@seu.edu.cn

(Received 3 June 2009; accepted 10 June 2009; online 17 June 2009)

In the title mol­ecule, C18H12N6S2, the C—S—S—C torsion angle is 96.12 (9)°. The dihedral angles between the pyridyl and pyrimidinyl rings are 16.7 (1) and 1.27 (9)°. In the crystal, inter­molecular ππ inter­actions between the aromatic rings [centroid–centroid distances = 3.888 (2) and 3.572 (1) Å] link mol­ecules into chains propagating in [011].

Related literature

For related crystal structures, see: Ji et al. (2009[Ji, J.-F., Li, L. & Zhu, H.-B. (2009). Acta Cryst. E65, o1253.]); Higashi et al. (1978[Higashi, L. S., Lundeen, M. & Seff, J. (1978). J. Am. Chem. Soc. 100, 8101-8106.]); Tabellion et al. (2001[Tabellion, F. M., Seidel, S. R., Arif, A. M. & Stang, P. J. (2001). J. Am Chem. Soc. 123, 7740-7741.]). For general background to heterocyclic disulfides, see: Horikoshi & Mochida (2006[Horikoshi, R. & Mochida, T. (2006). Coord. Chem. Rev. 250, 2595-2609.]).

[Scheme 1]

Experimental

Crystal data
  • C18H12N6S2

  • Mr = 376.48

  • Triclinic, [P \overline 1]

  • a = 9.1060 (8) Å

  • b = 9.3861 (9) Å

  • c = 10.9176 (10) Å

  • α = 84.228 (1)°

  • β = 74.926 (1)°

  • γ = 72.983 (1)°

  • V = 861.27 (14) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.32 mm−1

  • T = 298 K

  • 0.14 × 0.12 × 0.10 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.884, Tmax = 0.920 (expected range = 0.930–0.968)

  • 5665 measured reflections

  • 3982 independent reflections

  • 3283 reflections with I > 2σ(I)

  • Rint = 0.093

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.158

  • S = 1.12

  • 3982 reflections

  • 235 parameters

  • H-atom parameters constrained

  • Δρmax = 0.63 e Å−3

  • Δρmin = −0.50 e Å−3

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2007[Bruker (2007). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Heterocylic disulfide ligands have been considerably studied in the field of supramolecular chemistry over past years (Horikoshi & Mochida, 2006). Herein, we report the molecular structure of the title compound (I) - the newly synthesized disulfide ligand.

In (I) (Fig. 1), the C—S—S—C torsion angle of 96.12 (9)° is much larger than that in its analogue, namely 2,2'-dithiobis(4-pyridin-3-yl-pyrimidine) (Ji et al., 2009).The S—S bond length of 2.0239 (8) Å in (I) is within the normal range (Higashi et al., 1978; Tabellion et al., 2001). In the crystal, molecules are linked into chains through intermolecular aromatic π-π interactions (Table 1) .

Related literature top

For related crystal structures, see: Ji et al. (2009); Higashi et al. (1978); Tabellion et al. (2001). For general background to heterocyclic disulfides, see: Horikoshi & Mochida (2006).

Experimental top

A solution of SO2Cl2 (0.5 ml) in CH2Cl2 (20 ml) was added dropwise into the suspension containing 4-(pyridin-4-yl)pyrimidine-2-thiol (1.89 g) and 30 ml of CH2Cl2. Upon addition, the mixture was stirred at room temperature for 30 min. The solid was collected by filtration and dissolved into 30 ml of H2O. The solution PH was adjusted into the range of 8–9 to give white precipitates. Single crystals suitable for X-ray diffraction analysis were obtained by slow evaporation of the CH2Cl2 solution of the title compound.

Refinement top

All H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing the atomic numbering and 30% probability displacement ellipsoids.
4,4'-Di-4-pyridyl-2,2'-dithiodipyrimidine top
Crystal data top
C18H12N6S2Z = 2
Mr = 376.48F(000) = 388
Triclinic, P1Dx = 1.452 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.1060 (8) ÅCell parameters from 3982 reflections
b = 9.3861 (9) Åθ = 2.3–25.5°
c = 10.9176 (10) ŵ = 0.32 mm1
α = 84.228 (1)°T = 298 K
β = 74.926 (1)°Block, yellow
γ = 72.983 (1)°0.14 × 0.12 × 0.10 mm
V = 861.27 (14) Å3
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3982 independent reflections
Radiation source: fine-focus sealed tube3283 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.093
ϕ and ω scansθmax = 28.3°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1112
Tmin = 0.884, Tmax = 0.920k = 1011
5665 measured reflectionsl = 1413
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.158H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + (0.092P)2]
where P = (Fo2 + 2Fc2)/3
3982 reflections(Δ/σ)max = 0.026
235 parametersΔρmax = 0.63 e Å3
0 restraintsΔρmin = 0.50 e Å3
Crystal data top
C18H12N6S2γ = 72.983 (1)°
Mr = 376.48V = 861.27 (14) Å3
Triclinic, P1Z = 2
a = 9.1060 (8) ÅMo Kα radiation
b = 9.3861 (9) ŵ = 0.32 mm1
c = 10.9176 (10) ÅT = 298 K
α = 84.228 (1)°0.14 × 0.12 × 0.10 mm
β = 74.926 (1)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3982 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
3283 reflections with I > 2σ(I)
Tmin = 0.884, Tmax = 0.920Rint = 0.093
5665 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0560 restraints
wR(F2) = 0.158H-atom parameters constrained
S = 1.12Δρmax = 0.63 e Å3
3982 reflectionsΔρmin = 0.50 e Å3
235 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.17317 (7)0.15307 (5)0.45673 (4)0.04865 (18)
S20.04746 (6)0.10746 (6)0.34511 (5)0.05008 (19)
N50.33888 (18)0.04716 (16)0.21420 (13)0.0350 (3)
N30.23093 (18)0.39811 (16)0.49060 (14)0.0390 (3)
C130.4305 (2)0.12822 (18)0.11230 (16)0.0350 (4)
C100.1865 (2)0.00258 (19)0.21737 (17)0.0372 (4)
C140.6028 (2)0.18393 (19)0.10565 (16)0.0359 (4)
N40.1100 (2)0.01902 (19)0.13474 (17)0.0465 (4)
N20.1638 (2)0.39133 (19)0.29373 (16)0.0488 (4)
C180.7094 (2)0.2658 (2)0.00391 (19)0.0450 (4)
H18A0.67330.28890.06180.054*
C90.1901 (2)0.3355 (2)0.40474 (17)0.0391 (4)
C150.6663 (2)0.1528 (2)0.19982 (18)0.0445 (4)
H15A0.60090.09760.26950.053*
C60.2505 (2)0.53454 (19)0.45950 (17)0.0382 (4)
C50.2986 (2)0.6052 (2)0.55342 (17)0.0398 (4)
N60.9295 (2)0.2845 (2)0.09198 (18)0.0547 (5)
C10.3575 (2)0.7282 (2)0.5210 (2)0.0477 (5)
H1A0.36890.76920.43910.057*
C170.8683 (3)0.3123 (3)0.0009 (2)0.0537 (5)
H17A0.93720.36620.06840.064*
C110.2021 (2)0.0998 (2)0.03537 (19)0.0481 (5)
H11A0.15560.11890.02540.058*
C70.2231 (3)0.6050 (2)0.3465 (2)0.0510 (5)
H7A0.23370.70050.32530.061*
C120.3641 (2)0.1563 (2)0.01909 (19)0.0445 (4)
H12A0.42650.21120.05170.053*
C160.8274 (3)0.2050 (3)0.1883 (2)0.0525 (5)
H16A0.86730.18310.25220.063*
C40.2837 (3)0.5510 (3)0.6763 (2)0.0586 (6)
H4B0.24500.46860.70180.070*
N10.3860 (3)0.7375 (2)0.7322 (2)0.0695 (6)
C80.1796 (3)0.5286 (2)0.2664 (2)0.0546 (5)
H8A0.16050.57470.19040.066*
C20.3989 (3)0.7884 (3)0.6135 (2)0.0584 (6)
H2B0.43870.87040.59050.070*
C30.3270 (4)0.6206 (3)0.7623 (2)0.0737 (8)
H3B0.31420.58370.84550.088*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0729 (4)0.0372 (3)0.0380 (3)0.0224 (2)0.0072 (2)0.0058 (2)
S20.0442 (3)0.0486 (3)0.0559 (3)0.0174 (2)0.0021 (2)0.0188 (2)
N50.0447 (8)0.0311 (7)0.0309 (7)0.0148 (6)0.0068 (6)0.0009 (6)
N30.0498 (9)0.0321 (7)0.0342 (7)0.0121 (6)0.0061 (6)0.0053 (6)
C130.0472 (9)0.0291 (8)0.0291 (8)0.0153 (7)0.0047 (7)0.0005 (6)
C100.0462 (10)0.0306 (8)0.0372 (9)0.0179 (7)0.0061 (7)0.0008 (7)
C140.0467 (10)0.0302 (8)0.0311 (8)0.0141 (7)0.0065 (7)0.0013 (6)
N40.0465 (9)0.0481 (9)0.0506 (9)0.0194 (7)0.0123 (7)0.0064 (7)
N20.0622 (11)0.0463 (9)0.0425 (9)0.0183 (8)0.0164 (8)0.0035 (7)
C180.0487 (11)0.0450 (10)0.0391 (9)0.0091 (8)0.0082 (8)0.0087 (8)
C90.0438 (9)0.0359 (9)0.0345 (8)0.0099 (7)0.0032 (7)0.0071 (7)
C150.0516 (11)0.0480 (11)0.0344 (9)0.0162 (8)0.0078 (8)0.0036 (8)
C60.0430 (9)0.0324 (8)0.0372 (9)0.0090 (7)0.0062 (7)0.0047 (7)
C50.0448 (10)0.0307 (8)0.0414 (9)0.0081 (7)0.0061 (8)0.0084 (7)
N60.0498 (10)0.0580 (11)0.0529 (10)0.0117 (8)0.0121 (8)0.0037 (8)
C10.0515 (11)0.0438 (10)0.0470 (11)0.0161 (8)0.0045 (8)0.0085 (8)
C170.0528 (12)0.0509 (12)0.0489 (11)0.0052 (9)0.0055 (9)0.0087 (9)
C110.0554 (11)0.0548 (12)0.0429 (10)0.0236 (9)0.0148 (9)0.0085 (9)
C70.0694 (13)0.0378 (10)0.0502 (11)0.0189 (9)0.0198 (10)0.0054 (8)
C120.0541 (11)0.0462 (11)0.0367 (9)0.0179 (8)0.0092 (8)0.0101 (8)
C160.0558 (12)0.0634 (13)0.0444 (11)0.0225 (10)0.0180 (9)0.0042 (9)
C40.0924 (17)0.0458 (12)0.0475 (12)0.0306 (11)0.0207 (11)0.0032 (9)
N10.0925 (16)0.0651 (13)0.0639 (13)0.0318 (11)0.0235 (12)0.0193 (10)
C80.0737 (14)0.0501 (12)0.0465 (11)0.0202 (10)0.0255 (11)0.0069 (9)
C20.0635 (14)0.0516 (13)0.0656 (15)0.0244 (10)0.0103 (11)0.0161 (11)
C30.120 (2)0.0663 (16)0.0496 (13)0.0387 (16)0.0302 (15)0.0036 (11)
Geometric parameters (Å, º) top
S1—C91.7867 (19)C5—C41.374 (3)
S1—S22.0238 (7)C5—C11.388 (3)
S2—C101.7734 (19)N6—C171.339 (3)
N5—C101.321 (2)N6—C161.331 (3)
N5—C131.352 (2)C1—C21.385 (3)
N3—C91.335 (2)C1—H1A0.9300
N3—C61.342 (2)C17—H17A0.9300
C13—C121.392 (2)C11—C121.384 (3)
C13—C141.486 (3)C11—H11A0.9300
C10—N41.336 (2)C7—C81.382 (3)
C14—C181.393 (3)C7—H7A0.9300
C14—C151.395 (3)C12—H12A0.9300
N4—C111.332 (3)C16—H16A0.9300
N2—C81.333 (3)C4—C31.389 (3)
N2—C91.323 (2)C4—H4B0.9300
C18—C171.377 (3)N1—C21.323 (3)
C18—H18A0.9300N1—C31.335 (3)
C15—C161.380 (3)C8—H8A0.9300
C15—H15A0.9300C2—H2B0.9300
C6—C71.386 (3)C3—H3B0.9300
C6—C51.491 (2)
Cg1···Cg2i3.888 (2)Cg3···Cg4ii3.572 (1)
C9—S1—S2104.02 (6)C2—C1—C5118.5 (2)
C10—S2—S1106.81 (6)C2—C1—H1A120.8
C10—N5—C13115.68 (14)C5—C1—H1A120.8
C9—N3—C6115.86 (16)N6—C17—C18123.76 (19)
N5—C13—C12120.70 (17)N6—C17—H17A118.1
N5—C13—C14116.75 (15)C18—C17—H17A118.1
C12—C13—C14122.55 (16)N4—C11—C12122.50 (16)
N5—C10—N4128.71 (17)N4—C11—H11A118.8
N5—C10—S2122.14 (13)C12—C11—H11A118.7
N4—C10—S2109.10 (13)C8—C7—C6117.84 (19)
C18—C14—C15116.68 (17)C8—C7—H7A121.1
C18—C14—C13121.97 (16)C6—C7—H7A121.1
C15—C14—C13121.33 (16)C11—C12—C13117.66 (17)
C10—N4—C11114.73 (16)C11—C12—H12A121.2
C8—N2—C9114.58 (16)C13—C12—H12A121.2
C17—C18—C14119.77 (18)N6—C16—C15124.43 (18)
C17—C18—H18A120.1N6—C16—H16A117.8
C14—C18—H18A120.1C15—C16—H16A117.8
N3—C9—N2128.50 (18)C5—C4—C3119.3 (2)
N3—C9—S1111.00 (14)C5—C4—H4B120.4
N2—C9—S1120.50 (14)C3—C4—H4B120.4
C16—C15—C14119.14 (18)C2—N1—C3116.0 (2)
C16—C15—H15A120.4N2—C8—C7122.63 (19)
C14—C15—H15A120.4N2—C8—H8A118.7
N3—C6—C7120.54 (17)C7—C8—H8A118.7
N3—C6—C5116.60 (16)N1—C2—C1124.7 (2)
C7—C6—C5122.84 (17)N1—C2—H2B117.6
C4—C5—C1117.73 (18)C1—C2—H2B117.6
C4—C5—C6120.55 (18)N1—C3—C4123.8 (2)
C1—C5—C6121.71 (18)N1—C3—H3B118.1
C17—N6—C16116.21 (18)C4—C3—H3B118.1
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC18H12N6S2
Mr376.48
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)9.1060 (8), 9.3861 (9), 10.9176 (10)
α, β, γ (°)84.228 (1), 74.926 (1), 72.983 (1)
V3)861.27 (14)
Z2
Radiation typeMo Kα
µ (mm1)0.32
Crystal size (mm)0.14 × 0.12 × 0.10
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.884, 0.920
No. of measured, independent and
observed [I > 2σ(I)] reflections
5665, 3982, 3283
Rint0.093
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.158, 1.12
No. of reflections3982
No. of parameters235
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.63, 0.50

Computer programs: APEX2 (Bruker, 2007), SAINT-Plus (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The authors acknowledge the support of the National Natural Science Foundation of China (grant No. 20801011).

References

First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHigashi, L. S., Lundeen, M. & Seff, J. (1978). J. Am. Chem. Soc. 100, 8101–8106.  CSD CrossRef CAS Web of Science Google Scholar
First citationHorikoshi, R. & Mochida, T. (2006). Coord. Chem. Rev. 250, 2595–2609.  Web of Science CrossRef CAS Google Scholar
First citationJi, J.-F., Li, L. & Zhu, H.-B. (2009). Acta Cryst. E65, o1253.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTabellion, F. M., Seidel, S. R., Arif, A. M. & Stang, P. J. (2001). J. Am Chem. Soc. 123, 7740–7741.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds