organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-(5-Bromo-2-meth­oxy­benzyl­­idene)-3,4-methyl­ene­dioxy­benzohydrazide

aDepartment of Chemistry, Chifeng University, Chifeng 024001, People's Republic of China
*Correspondence e-mail: sangyali0814@126.com

(Received 9 June 2009; accepted 13 June 2009; online 20 June 2009)

In the title mol­ecule, C16H13BrN2O4, the two benzene rings form a dihedral angle of 74.9 (2)°. In the crystal, mol­ecules are linked via inter­molecular N—H⋯O hydrogen bonds into chains propagating along the c axis.

Related literature

For the biological activity of hydrazone derivatives, see: Khattab (2005[Khattab, S. N. (2005). Molecules, 10, 1218-1228.]); Küçükgüzel et al. (2003[Küçükgüzel, S. G., Mazi, A., Sahin, F., Öztürk, S. & Stables, J. (2003). Eur. J. Med. Chem. 38, 1005-1013.]); Cukurovali et al. (2006[Cukurovali, A., Yilmaz, I., Gur, S. & Kazaz, C. (2006). Eur. J. Med. Chem. 41, 201-207.]). For the crystal structures of related compounds, see: Fun et al. (2008[Fun, H.-K., Patil, P. S., Rao, J. N., Kalluraya, B. & Chantrapromma, S. (2008). Acta Cryst. E64, o1707.]); Wei et al. (2009[Wei, Y.-J., Wang, F.-W. & Zhu, Q.-Y. (2009). Acta Cryst. E65, o688.]); Khaledi et al. (2008[Khaledi, H., Mohd Ali, H. & Ng, S. W. (2008). Acta Cryst. E64, o2481.]); Yang et al. (2008[Yang, T., Cao, G.-B., Xiang, J.-M. & Zhang, L.-H. (2008). Acta Cryst. E64, o1186.]).

[Scheme 1]

Experimental

Crystal data
  • C16H13BrN2O4

  • Mr = 377.19

  • Monoclinic, P 21 /c

  • a = 12.678 (1) Å

  • b = 16.217 (2) Å

  • c = 7.846 (2) Å

  • β = 104.804 (3)°

  • V = 1559.6 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.66 mm−1

  • T = 298 K

  • 0.30 × 0.28 × 0.27 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.503, Tmax = 0.534 (expected range = 0.460–0.488)

  • 8368 measured reflections

  • 3110 independent reflections

  • 1932 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.096

  • S = 1.04

  • 3110 reflections

  • 212 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.47 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O2i 0.89 (3) 1.96 (3) 2.841 (3) 168 (3)
Symmetry code: (i) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2002[Bruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Hydrazone compounds have been widely investigated due to their interesting biological properties, such as antibacterial and antitumor activities (Khattab, 2005; Küçükgüzel et al., 2003; Cukurovali et al., 2006). Recently, a number of crystal structures of hydrazone derivatives have been reported (Fun et al., 2008; Wei et al., 2009; Khaledi et al., 2008; Yang et al., 2008). In this paper, the crystal structure of the title new hydrazone compound is reported.

The molecular structure of the title compound is shown inFig. 1. The molecule adopts an E configuration with respect to the CN bond. The dihedral angle between the two substituted benzene rings is 74.9 (2)°.

In the crystal, the molecules are linked via intermolecular N—H···O hydrogen bonds (Table 1) into chains propagated along c axis.

Related literature top

For the biological activity of hydrazone derivatives, see: Khattab (2005); Küçükgüzel et al. (2003); Cukurovali et al. (2006). For the crystal structures of related compounds, see: Fun et al. (2008); Wei et al. (2009); Khaledi et al. (2008); Yang et al. (2008).

Experimental top

3,4-(Methylenedioxy)benzohydrazide (1.0 mmol, 180.2 mg) and 5-bromo-2-methoxybenzaldehyde (1.0 mmol, 215.0 mg) were mixed and refluxed in ethanol (50 ml). The mixture was stirred for 1 h to give a clear colorless solution. Colourless crystals of the title compound were formed by slow evaporation of the solution in air.

Refinement top

Atom H2 attached to N2 was located in a difference map and refined with N–H distance restraint of 0.90 (3) Å. The other H atoms were positioned geometrically [d(C–H) = 0.93–0.97 Å], and refined using a riding model, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structures of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme.
N'-(5-Bromo-2-methoxybenzylidene)-3,4-methylenedioxybenzohydrazide top
Crystal data top
C16H13BrN2O4F(000) = 760
Mr = 377.19Dx = 1.606 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2058 reflections
a = 12.678 (1) Åθ = 2.5–24.5°
b = 16.217 (2) ŵ = 2.66 mm1
c = 7.846 (2) ÅT = 298 K
β = 104.804 (3)°Block, colourless
V = 1559.6 (5) Å30.30 × 0.28 × 0.27 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
3110 independent reflections
Radiation source: fine-focus sealed tube1932 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ω scansθmax = 26.2°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1215
Tmin = 0.503, Tmax = 0.534k = 1919
8368 measured reflectionsl = 94
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0397P)2 + 0.3363P]
where P = (Fo2 + 2Fc2)/3
3110 reflections(Δ/σ)max < 0.001
212 parametersΔρmax = 0.26 e Å3
1 restraintΔρmin = 0.47 e Å3
Crystal data top
C16H13BrN2O4V = 1559.6 (5) Å3
Mr = 377.19Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.678 (1) ŵ = 2.66 mm1
b = 16.217 (2) ÅT = 298 K
c = 7.846 (2) Å0.30 × 0.28 × 0.27 mm
β = 104.804 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3110 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1932 reflections with I > 2σ(I)
Tmin = 0.503, Tmax = 0.534Rint = 0.032
8368 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0391 restraint
wR(F2) = 0.096H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.26 e Å3
3110 reflectionsΔρmin = 0.47 e Å3
212 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.79365 (3)0.77734 (2)0.01187 (6)0.08050 (19)
O10.47896 (16)0.98772 (12)0.2718 (3)0.0551 (6)
O20.23491 (16)0.66086 (12)0.0682 (3)0.0495 (5)
O30.13891 (18)0.56492 (16)0.0073 (3)0.0777 (7)
O40.1167 (2)0.54766 (14)0.3048 (4)0.0750 (7)
N10.38458 (18)0.76267 (14)0.1294 (3)0.0420 (6)
N20.29501 (19)0.73440 (14)0.1821 (3)0.0427 (6)
C10.5282 (2)0.86061 (18)0.1769 (4)0.0426 (7)
C20.5525 (2)0.94368 (18)0.2108 (4)0.0434 (7)
C30.6454 (2)0.9767 (2)0.1762 (4)0.0542 (8)
H30.66031.03270.19440.065*
C40.7157 (3)0.9274 (2)0.1152 (4)0.0561 (8)
H40.77870.94980.09390.067*
C50.6934 (2)0.8455 (2)0.0857 (4)0.0504 (8)
C60.6000 (2)0.81226 (19)0.1145 (4)0.0482 (8)
H60.58480.75660.09180.058*
C70.4292 (2)0.82617 (17)0.2101 (4)0.0423 (7)
H70.39820.85140.29220.051*
C80.2255 (2)0.68194 (17)0.0780 (4)0.0392 (7)
C90.1363 (2)0.64994 (16)0.1497 (4)0.0382 (7)
C100.0401 (2)0.62571 (18)0.0293 (4)0.0495 (8)
H100.03060.63120.09170.059*
C110.0387 (2)0.59384 (18)0.0980 (5)0.0490 (8)
C120.0262 (2)0.58422 (18)0.2737 (5)0.0521 (8)
C130.0667 (3)0.6066 (2)0.3945 (4)0.0583 (9)
H130.07500.59940.51480.070*
C140.1485 (2)0.64061 (18)0.3280 (4)0.0480 (7)
H140.21310.65760.40600.058*
C150.1939 (3)0.5446 (2)0.1383 (6)0.0819 (12)
H15A0.25240.58350.13510.098*
H15B0.22500.48970.11730.098*
C160.5016 (3)1.07233 (19)0.3115 (4)0.0610 (9)
H16A0.56911.07730.40050.092*
H16B0.44371.09610.35380.092*
H16C0.50731.10080.20700.092*
H20.278 (3)0.7609 (18)0.271 (3)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0737 (3)0.0813 (3)0.1027 (3)0.0049 (2)0.0521 (2)0.0014 (2)
O10.0564 (13)0.0467 (13)0.0667 (14)0.0076 (10)0.0240 (12)0.0086 (11)
O20.0570 (13)0.0515 (12)0.0467 (12)0.0134 (10)0.0255 (11)0.0098 (10)
O30.0461 (14)0.0882 (18)0.098 (2)0.0217 (13)0.0169 (14)0.0130 (15)
O40.0626 (15)0.0723 (17)0.105 (2)0.0207 (13)0.0492 (16)0.0006 (15)
N10.0403 (13)0.0441 (15)0.0456 (15)0.0083 (11)0.0186 (12)0.0008 (12)
N20.0427 (14)0.0452 (14)0.0465 (15)0.0125 (12)0.0226 (12)0.0047 (12)
C10.0418 (17)0.0469 (18)0.0389 (17)0.0100 (14)0.0097 (14)0.0029 (14)
C20.0441 (17)0.0469 (18)0.0390 (17)0.0061 (14)0.0104 (14)0.0006 (14)
C30.0524 (19)0.0492 (19)0.062 (2)0.0178 (15)0.0176 (17)0.0060 (16)
C40.0467 (18)0.064 (2)0.061 (2)0.0142 (16)0.0199 (17)0.0026 (18)
C50.0470 (18)0.056 (2)0.0521 (19)0.0026 (15)0.0204 (16)0.0014 (16)
C60.0516 (18)0.0436 (17)0.0513 (19)0.0060 (15)0.0165 (16)0.0023 (15)
C70.0441 (17)0.0437 (18)0.0420 (17)0.0062 (14)0.0164 (14)0.0020 (14)
C80.0405 (16)0.0356 (16)0.0446 (17)0.0027 (13)0.0168 (14)0.0003 (14)
C90.0357 (15)0.0357 (15)0.0455 (17)0.0015 (12)0.0148 (14)0.0006 (14)
C100.0450 (18)0.055 (2)0.0494 (19)0.0050 (15)0.0141 (16)0.0023 (16)
C110.0330 (16)0.0450 (18)0.069 (2)0.0062 (14)0.0126 (16)0.0056 (16)
C120.0466 (19)0.0402 (17)0.079 (2)0.0097 (15)0.0341 (18)0.0024 (17)
C130.070 (2)0.062 (2)0.052 (2)0.0107 (18)0.0309 (19)0.0063 (17)
C140.0442 (17)0.0503 (19)0.0515 (19)0.0075 (14)0.0158 (15)0.0019 (15)
C150.048 (2)0.075 (3)0.128 (4)0.0163 (19)0.031 (3)0.006 (3)
C160.072 (2)0.047 (2)0.067 (2)0.0021 (17)0.0240 (19)0.0059 (17)
Geometric parameters (Å, º) top
Br1—C51.884 (3)C4—H40.9300
O1—C21.355 (3)C5—C61.371 (4)
O1—C161.420 (4)C6—H60.9300
O2—C81.232 (3)C7—H70.9300
O3—C111.370 (3)C8—C91.479 (4)
O3—C151.420 (4)C9—C141.376 (4)
O4—C121.367 (3)C9—C101.395 (4)
O4—C151.419 (5)C10—C111.353 (4)
N1—C71.264 (3)C10—H100.9300
N1—N21.382 (3)C11—C121.356 (4)
N2—C81.341 (4)C12—C131.359 (4)
N2—H20.89 (3)C13—C141.389 (4)
C1—C61.382 (4)C13—H130.9300
C1—C21.392 (4)C14—H140.9300
C1—C71.458 (4)C15—H15A0.9700
C2—C31.383 (4)C15—H15B0.9700
C3—C41.372 (4)C16—H16A0.9600
C3—H30.9300C16—H16B0.9600
C4—C51.366 (4)C16—H16C0.9600
C2—O1—C16117.9 (2)C14—C9—C10120.5 (3)
C11—O3—C15105.4 (3)C14—C9—C8121.8 (3)
C12—O4—C15105.3 (3)C10—C9—C8117.6 (3)
C7—N1—N2114.6 (2)C11—C10—C9116.4 (3)
C8—N2—N1119.4 (2)C11—C10—H10121.8
C8—N2—H2122 (2)C9—C10—H10121.8
N1—N2—H2117 (2)C10—C11—C12122.9 (3)
C6—C1—C2118.9 (3)C10—C11—O3127.2 (3)
C6—C1—C7121.4 (3)C12—C11—O3109.9 (3)
C2—C1—C7119.6 (3)C11—C12—C13122.2 (3)
O1—C2—C3124.2 (3)C11—C12—O4110.2 (3)
O1—C2—C1116.1 (2)C13—C12—O4127.5 (3)
C3—C2—C1119.7 (3)C12—C13—C14116.2 (3)
C4—C3—C2120.3 (3)C12—C13—H13121.9
C4—C3—H3119.8C14—C13—H13121.9
C2—C3—H3119.8C9—C14—C13121.7 (3)
C5—C4—C3120.1 (3)C9—C14—H14119.2
C5—C4—H4119.9C13—C14—H14119.2
C3—C4—H4119.9O4—C15—O3107.9 (3)
C4—C5—C6120.3 (3)O4—C15—H15A110.1
C4—C5—Br1119.7 (2)O3—C15—H15A110.1
C6—C5—Br1119.9 (3)O4—C15—H15B110.1
C5—C6—C1120.7 (3)O3—C15—H15B110.1
C5—C6—H6119.7H15A—C15—H15B108.4
C1—C6—H6119.7O1—C16—H16A109.5
N1—C7—C1121.2 (3)O1—C16—H16B109.5
N1—C7—H7119.4H16A—C16—H16B109.5
C1—C7—H7119.4O1—C16—H16C109.5
O2—C8—N2122.5 (2)H16A—C16—H16C109.5
O2—C8—C9121.5 (3)H16B—C16—H16C109.5
N2—C8—C9116.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O2i0.89 (3)1.96 (3)2.841 (3)168 (3)
Symmetry code: (i) x, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC16H13BrN2O4
Mr377.19
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)12.678 (1), 16.217 (2), 7.846 (2)
β (°) 104.804 (3)
V3)1559.6 (5)
Z4
Radiation typeMo Kα
µ (mm1)2.66
Crystal size (mm)0.30 × 0.28 × 0.27
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.503, 0.534
No. of measured, independent and
observed [I > 2σ(I)] reflections
8368, 3110, 1932
Rint0.032
(sin θ/λ)max1)0.621
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.096, 1.04
No. of reflections3110
No. of parameters212
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.26, 0.47

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O2i0.89 (3)1.96 (3)2.841 (3)168 (3)
Symmetry code: (i) x, y+3/2, z+1/2.
 

Acknowledgements

We gratefullly acknowledge Chifeng University for the funding of this study.

References

First citationBruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCukurovali, A., Yilmaz, I., Gur, S. & Kazaz, C. (2006). Eur. J. Med. Chem. 41, 201–207.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFun, H.-K., Patil, P. S., Rao, J. N., Kalluraya, B. & Chantrapromma, S. (2008). Acta Cryst. E64, o1707.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKhaledi, H., Mohd Ali, H. & Ng, S. W. (2008). Acta Cryst. E64, o2481.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKhattab, S. N. (2005). Molecules, 10, 1218–1228.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKüçükgüzel, S. G., Mazi, A., Sahin, F., Öztürk, S. & Stables, J. (2003). Eur. J. Med. Chem. 38, 1005–1013.  Web of Science PubMed Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWei, Y.-J., Wang, F.-W. & Zhu, Q.-Y. (2009). Acta Cryst. E65, o688.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYang, T., Cao, G.-B., Xiang, J.-M. & Zhang, L.-H. (2008). Acta Cryst. E64, o1186.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds