organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4,6,7,9,10,12-Hexa­hydro-1,3-di­thiolo[4,5-f][1,4,9]oxadi­thia­cyclo­undecine-2-thione

aKey Laboratory of Organism Functional Factors of Changbai Mountain, Yanbian University, Ministry of Education, Yanji 133002, People's Republic of China, and bState Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
*Correspondence e-mail: zqcong@ybu.edu.cn

(Received 10 June 2009; accepted 23 June 2009; online 27 June 2009)

In the title mol­ecule, C9H12S5O, the five-membered ring and attached S atom are essentially coplanar [mean deviation from the mean plane = 0.020 (1) Å]. The two S atoms belonging to the macrocycle deviate from this plane by 1.005 (1) and 1.337 (2) Å. In the crystal, ππ inter­actions link the mol­ecules into centrosymmetric dimers with a short distance of 3.753 (5) Å between the centroids of the five-membered rings.

Related literature

The title compound was prepared according to Chen et al. (2005[Chen, T., Liu, W. J., Cong, Z. Q. & Yin, B. Z. (2005). Chin. J. Org. Chem. 25, 570-575.]). For background literature concerning crown-ether-annulated 1,3-dithiol-2-thione derivatives, see: Hansen et al. (1992[Hansen, T. K., Jφrgensen, T., Stein, P. C. & Becher, J. (1992). J. Org. Chem. 57, 6403-6409.]); Trippé et al. (2002[Trippé, G., Levillain, E., Le Derf, F., Gorgues, A., Sallé, M., Jeppesen, J. O., Nielsen, K. & Becher, J. (2002). Org. Lett. 4, 2461-2464.]).

[Scheme 1]

Experimental

Crystal data
  • C9H12OS5

  • Mr = 296.49

  • Triclinic, [P \overline 1]

  • a = 8.3425 (17) Å

  • b = 8.9611 (18) Å

  • c = 9.820 (2) Å

  • α = 98.10 (3)°

  • β = 106.58 (3)°

  • γ = 112.74 (3)°

  • V = 622.2 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.90 mm−1

  • T = 291 K

  • 0.15 × 0.12 × 0.12 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.877, Tmax = 0.900

  • 6141 measured reflections

  • 2813 independent reflections

  • 2560 reflections with I > 2σ(I)

  • Rint = 0.017

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.106

  • S = 1.06

  • 2813 reflections

  • 136 parameters

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.36 e Å−3

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Crown ether annulated 1,3-dithiol-2-thione derivatives have been intensively investigated as key intermediate of the crowned tetrathiafulvalenes because the latter molecules show electrochemical signaling for various metal cations (Hansen et al.,1992; Trippé et al., 2002). We report hererin the crystal structure of the title compound, (I).

In (I) (Fig. 1), five-membered ring and attached S2 atom are essentially coplanar with the mean deviation of 0.020 (1) Å from the mean plane P. The plane defined by the rest non-hydrogen atoms forms an angle of 70.25 (4) ° with P. The π-π interactions with the short distance of 3.753 (5) Å between the centroids of five-membered rings link the molecules into centrosymmetric dimers.

Related literature top

The title compound was prepared according to Chen et al. (2005). For background literature concerning crown-ether-annulated 1,3-dithiol-2-thione derivatives, see: Hansen et al. (1992); Trippé et al. (2002).

Experimental top

The title compound was prepared according to the literature (Chen et al., 2005). Single crystals suitable for X-ray diffraction were prepared by slow evaporation a mixture of dichloromethane and petroleum at room temperatue.

Refinement top

Carbon-bound H-atoms were placed in calculated positions with C—H 0.97 Å and were included in the refinement in the riding model, with Uiso(H) = 1.2 Ueq(C).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom numbering. Displacement ellipsoids of non-H atoms are drawn at the 30% probalility level.
4,6,7,9,10,12-Hexahydro-1,3- dithiolo[4,5-f][1,4,9]oxadithiacycloundecine-2-thione top
Crystal data top
C9H12OS5Z = 2
Mr = 296.49F(000) = 308
Triclinic, P1Dx = 1.583 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.3425 (17) ÅCell parameters from 5678 reflections
b = 8.9611 (18) Åθ = 3.4–27.0°
c = 9.820 (2) ŵ = 0.90 mm1
α = 98.10 (3)°T = 291 K
β = 106.58 (3)°Block, yellow
γ = 112.74 (3)°0.15 × 0.12 × 0.12 mm
V = 622.2 (2) Å3
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2813 independent reflections
Radiation source: fine-focus sealed tube2560 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
ω scansθmax = 27.5°, θmin = 3.4°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1010
Tmin = 0.877, Tmax = 0.900k = 1111
6141 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0645P)2 + 0.2783P]
where P = (Fo2 + 2Fc2)/3
2813 reflections(Δ/σ)max = 0.003
136 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = 0.36 e Å3
Crystal data top
C9H12OS5γ = 112.74 (3)°
Mr = 296.49V = 622.2 (2) Å3
Triclinic, P1Z = 2
a = 8.3425 (17) ÅMo Kα radiation
b = 8.9611 (18) ŵ = 0.90 mm1
c = 9.820 (2) ÅT = 291 K
α = 98.10 (3)°0.15 × 0.12 × 0.12 mm
β = 106.58 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2813 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2560 reflections with I > 2σ(I)
Tmin = 0.877, Tmax = 0.900Rint = 0.017
6141 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.106H-atom parameters constrained
S = 1.06Δρmax = 0.41 e Å3
2813 reflectionsΔρmin = 0.36 e Å3
136 parameters
Special details top

Experimental. (See detailed section in the paper)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3295 (3)0.6916 (3)0.4927 (2)0.0376 (4)
C20.2130 (3)0.8764 (2)0.3463 (2)0.0300 (4)
C30.1113 (3)0.9792 (2)0.3073 (2)0.0354 (4)
H3A0.11941.00510.21610.042*
H3B0.17241.08510.38480.042*
C40.2203 (3)0.6799 (3)0.1413 (3)0.0408 (5)
H4A0.14450.62330.17460.049*
H4B0.34690.60750.13150.049*
C50.2231 (3)0.6956 (3)0.0092 (3)0.0486 (5)
H5A0.29750.58520.08110.058*
H5B0.28050.76770.03780.058*
C60.0193 (3)0.6766 (3)0.1285 (3)0.0466 (5)
H6A0.11080.66640.22080.056*
H6B0.04230.56390.12110.056*
C70.1742 (3)0.7686 (3)0.1276 (2)0.0439 (5)
H7A0.19910.88460.12290.053*
H7B0.17540.71900.22150.053*
C80.4004 (3)0.9279 (2)0.1782 (2)0.0367 (4)
H8A0.53281.00560.22430.044*
H8B0.33420.99200.14430.044*
C90.3363 (2)0.8552 (2)0.2922 (2)0.0294 (4)
O10.0377 (2)0.7650 (2)0.0088 (2)0.0600 (5)
S10.43959 (7)0.73453 (6)0.36855 (5)0.03533 (15)
S20.36763 (14)0.58331 (12)0.60929 (8)0.0708 (3)
S30.17163 (8)0.77394 (7)0.48048 (6)0.03867 (15)
S40.13328 (7)0.87314 (7)0.28369 (6)0.04162 (16)
S50.36387 (8)0.77082 (7)0.01819 (6)0.04019 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0448 (11)0.0454 (11)0.0277 (9)0.0247 (9)0.0138 (8)0.0110 (8)
C20.0293 (8)0.0333 (9)0.0239 (8)0.0121 (7)0.0089 (7)0.0061 (7)
C30.0375 (10)0.0361 (9)0.0347 (10)0.0190 (8)0.0136 (8)0.0087 (8)
C40.0313 (9)0.0420 (10)0.0486 (12)0.0163 (8)0.0140 (9)0.0140 (9)
C50.0318 (10)0.0615 (14)0.0431 (12)0.0164 (10)0.0121 (9)0.0057 (10)
C60.0439 (11)0.0526 (12)0.0361 (11)0.0199 (10)0.0127 (9)0.0023 (9)
C70.0506 (12)0.0565 (13)0.0329 (10)0.0266 (10)0.0214 (9)0.0172 (9)
C80.0388 (10)0.0339 (9)0.0361 (10)0.0107 (8)0.0200 (8)0.0097 (8)
C90.0283 (8)0.0289 (8)0.0276 (9)0.0101 (7)0.0105 (7)0.0059 (7)
O10.0356 (8)0.0692 (11)0.0481 (10)0.0048 (8)0.0198 (7)0.0146 (8)
S10.0340 (3)0.0422 (3)0.0348 (3)0.0204 (2)0.0152 (2)0.0112 (2)
S20.1147 (7)0.0990 (6)0.0578 (4)0.0820 (6)0.0517 (4)0.0521 (4)
S30.0443 (3)0.0543 (3)0.0322 (3)0.0285 (2)0.0224 (2)0.0188 (2)
S40.0399 (3)0.0544 (3)0.0438 (3)0.0303 (2)0.0214 (2)0.0135 (2)
S50.0468 (3)0.0511 (3)0.0357 (3)0.0300 (2)0.0217 (2)0.0135 (2)
Geometric parameters (Å, º) top
C1—S21.642 (2)C5—H5A0.9700
C1—S11.726 (2)C5—H5B0.9700
C1—S31.726 (2)C6—O11.402 (3)
C2—C91.346 (3)C6—C71.499 (3)
C2—C31.495 (3)C6—H6A0.9700
C2—S31.7471 (19)C6—H6B0.9700
C3—S41.814 (2)C7—S51.796 (2)
C3—H3A0.9700C7—H7A0.9700
C3—H3B0.9700C7—H7B0.9700
C4—C51.498 (3)C8—C91.497 (3)
C4—S41.802 (2)C8—S51.820 (2)
C4—H4A0.9700C8—H8A0.9700
C4—H4B0.9700C8—H8B0.9700
C5—O11.426 (3)C9—S11.747 (2)
S2—C1—S1124.30 (13)O1—C6—H6A109.7
S2—C1—S3123.21 (13)C7—C6—H6A109.7
S1—C1—S3112.49 (12)O1—C6—H6B109.7
C9—C2—C3127.67 (18)C7—C6—H6B109.7
C9—C2—S3115.53 (15)H6A—C6—H6B108.2
C3—C2—S3116.79 (14)C6—C7—S5117.34 (17)
C2—C3—S4112.96 (14)C6—C7—H7A108.0
C2—C3—H3A109.0S5—C7—H7A108.0
S4—C3—H3A109.0C6—C7—H7B108.0
C2—C3—H3B109.0S5—C7—H7B108.0
S4—C3—H3B109.0H7A—C7—H7B107.2
H3A—C3—H3B107.8C9—C8—S5114.07 (14)
C5—C4—S4116.74 (17)C9—C8—H8A108.7
C5—C4—H4A108.1S5—C8—H8A108.7
S4—C4—H4A108.1C9—C8—H8B108.7
C5—C4—H4B108.1S5—C8—H8B108.7
S4—C4—H4B108.1H8A—C8—H8B107.6
H4A—C4—H4B107.3C2—C9—C8127.63 (18)
O1—C5—C4110.55 (19)C2—C9—S1116.14 (15)
O1—C5—H5A109.5C8—C9—S1116.20 (14)
C4—C5—H5A109.5C6—O1—C5113.57 (18)
O1—C5—H5B109.5C1—S1—C997.73 (10)
C4—C5—H5B109.5C1—S3—C298.01 (10)
H5A—C5—H5B108.1C4—S4—C3102.59 (10)
O1—C6—C7109.68 (19)C7—S5—C8103.70 (11)

Experimental details

Crystal data
Chemical formulaC9H12OS5
Mr296.49
Crystal system, space groupTriclinic, P1
Temperature (K)291
a, b, c (Å)8.3425 (17), 8.9611 (18), 9.820 (2)
α, β, γ (°)98.10 (3), 106.58 (3), 112.74 (3)
V3)622.2 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.90
Crystal size (mm)0.15 × 0.12 × 0.12
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.877, 0.900
No. of measured, independent and
observed [I > 2σ(I)] reflections
6141, 2813, 2560
Rint0.017
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.106, 1.06
No. of reflections2813
No. of parameters136
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.41, 0.36

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

 

Acknowledgements

The authors acknowledge financial support from the National Natural Science Foundation of China (grant No. 20662010), the Specialized Research Fund for the Doctoral Program of Higher Education (grant No. 2006184001) and the Open Project of the State Key Laboratory of Supramolecular Structure and Materials, Jilin University.

References

First citationChen, T., Liu, W. J., Cong, Z. Q. & Yin, B. Z. (2005). Chin. J. Org. Chem. 25, 570–575.  CAS Google Scholar
First citationHansen, T. K., Jφrgensen, T., Stein, P. C. & Becher, J. (1992). J. Org. Chem. 57, 6403–6409.  CrossRef CAS Web of Science Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTrippé, G., Levillain, E., Le Derf, F., Gorgues, A., Sallé, M., Jeppesen, J. O., Nielsen, K. & Becher, J. (2002). Org. Lett. 4, 2461–2464.  Web of Science PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds