metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 7| July 2009| Pages m840-m841

(Acetone-2κO){μ-6,6′-dimeth­­oxy-2,2′-[propane-1,2-diylbis(nitrilo­methyl­­idyne)]diphenolato-κ81:2O6,O1,O1′,O6′:O1,N,N′,O1′}tris­­(nitrato-1κ2O,O′)copper(II)samarium(III)

aKey Laboratory of Functional Inorganic Material Chemistry (HLJU), Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China
*Correspondence e-mail: gmli@hlju.edu.cn

(Received 16 June 2009; accepted 23 June 2009; online 27 June 2009)

In the title heteronuclear complex, [CuSm(C19H20N2O4)(NO3)3(CH3COCH3)], the CuII ion is five-coordinated by two O and two N atoms from the 6,6′-dimeth­oxy-2,2′-[propane-1,2-diylbis(nitrilo­methyl­idyne)]diphenolate ligand (L) and by an O atom from the acetone mol­ecule in a square-pyramidal geometry. The SmIII ion is ten-coordinated by six O atoms from the three nitrate ligands and four O atoms from the L ligand. In L, the C atoms of the diamino­propane fragment are disordered over two positions in a 0.674 (10):0.326 (10) ratio.

Related literature

For similar Cu–Ln (Ln = Gd, Pr and Tb) dinuclear complexes of the N,N′-bis­(3-methoxy­salicyl­idene)propane-1,2-diamine ligand, see: Kara et al. (2000[Kara, H., Elerman, Y. & Prout, K. (2000). Z. Naturforsch. Teil B, 55, 1131-1136.]); Sun et al. (2007[Sun, W.-B., Gao, T., Yan, P.-F., Li, G.-M. & Hou, G.-F. (2007). Acta Cryst. E63, m2192.], 2009[Sun, W.-B., Yan, P.-F., Li, G.-M. & Hou, G.-F. (2009). Acta Cryst. E65, m780-m781.]).

[Scheme 1]

Experimental

Crystal data
  • [CuSm(C19H20N2O4)(NO3)3(C3H6O)]

  • Mr = 797.38

  • Monoclinic, P 21 /c

  • a = 9.882 (4) Å

  • b = 18.868 (5) Å

  • c = 15.631 (5) Å

  • β = 95.320 (16)°

  • V = 2901.9 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.81 mm−1

  • T = 291 K

  • 0.39 × 0.33 × 0.29 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.404, Tmax = 0.500 (expected range = 0.357–0.442)

  • 28125 measured reflections

  • 6634 independent reflections

  • 5584 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.088

  • S = 1.07

  • 6634 reflections

  • 421 parameters

  • 36 restraints

  • H-atom parameters constrained

  • Δρmax = 1.03 e Å−3

  • Δρmin = −0.74 e Å−3

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In continuation of our study of heteronuclear complexes of N,N'-bis(3- methoxysalicylidene)propane-1,2-diamine ligand (Sun et al., 2007, 2009), we present here the crystal structure of the title compound. As shown in Fig. 1, ligand L links Cu and Sm atoms into a dinuclear complex through two phenolate O atoms, and the SmIII centre in the complex is ten-coordinated by four oxygen atoms from L and six oxygen atoms from three nitrato ions. The CuII center is five-coordinate by two nitrogen atoms and two oxygen atoms from the ligand and one oxygen atom from acetone in a square-pyramidal geometry. The title compound is isostructural with the previous Cu—Ln complexes (Ln = Gd, Pr and Tb) (Kara et al., 2000; Sun et al., 2007, 2009) derived from the same ligand.

Related literature top

For similar Cu–Ln (Ln = Gd, Pr and Tb) dinuclear complexes of the N,N'-bis(3-methoxysalicylidene)propane- 1,2-diamine ligand, see: Kara et al. (2000); Sun et al. (2007, 2009)

Experimental top

To a 1:1 MeOH/Me2CO solution (20 ml) of the Schiff ligand (0.086 g, 0.250 mmol) was slowly added an aqueous solution (8 ml) of [Cu(Ac)2H2O] (0.050 g, 0.25 mmol), after refluxing and stirring for 3 h, was slowly added a MeOH solution (10 ml) of Sm(NO3)36H2O (0.105 g, 0.25 mmol) at ambient temperature. After stirring for 5 h, red solid was collected by filtration and washed with MeOH, [CuSm(C19H20N2O4)(CH3COCH3)(NO3)3], yield 0.180 g (87%). Single crystals suitable for X-ray determination were obtained by slow diffusion of diethylether into a methanol solution of the powder sample over one week. Analysis calculated for C22H26CuN5O14Sm: C, 33.10; H, 3.28; N, 8.77; found: C, 33.01; H, 3.31; N, 8.92%.

Refinement top

H atoms bound to C atoms were placed in calculated positions and treated as riding on their parent atoms, with C—H = 0.93 Å (aromatic C), C—H = 0.98 Å (methylene C), C—H = 0.96 Å (methly C) and with Uiso(H) = 1.2Ueq(C). The C atoms of the diaminopropane fragment were treated as disordered over two positions with the occupancy factors refined to 0.674 (10) and 0.326 (10), respectively.

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing the atomic numbering and 40% probability displacement ellipsoids. Only major part of the disordered fragment is shown.
(Acetone-2κO){µ-6,6'-dimethoxy-2,2'-[propane-1,2- diylbis(nitrilomethylidyne)]diphenolato- κ81:2O6,O1,O1',O6': O1,N,N',O1'}tris(nitrato- 1κ2O,O')copper(II)samarium(III) top
Crystal data top
[CuSm(C19H20N2O4)(NO3)3(C3H6O)]F(000) = 1580
Mr = 797.38Dx = 1.825 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 23031 reflections
a = 9.882 (4) Åθ = 3.0–27.5°
b = 18.868 (5) ŵ = 2.81 mm1
c = 15.631 (5) ÅT = 291 K
β = 95.320 (16)°Block, brown
V = 2901.9 (16) Å30.39 × 0.33 × 0.29 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID
diffractometer
6634 independent reflections
Radiation source: fine-focus sealed tube5584 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ω scansθmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1212
Tmin = 0.404, Tmax = 0.500k = 2424
28125 measured reflectionsl = 1920
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.088H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0469P)2 + 1.8845P]
where P = (Fo2 + 2Fc2)/3
6634 reflections(Δ/σ)max = 0.006
421 parametersΔρmax = 1.03 e Å3
36 restraintsΔρmin = 0.74 e Å3
Crystal data top
[CuSm(C19H20N2O4)(NO3)3(C3H6O)]V = 2901.9 (16) Å3
Mr = 797.38Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.882 (4) ŵ = 2.81 mm1
b = 18.868 (5) ÅT = 291 K
c = 15.631 (5) Å0.39 × 0.33 × 0.29 mm
β = 95.320 (16)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
6634 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
5584 reflections with I > 2σ(I)
Tmin = 0.404, Tmax = 0.500Rint = 0.031
28125 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03336 restraints
wR(F2) = 0.088H-atom parameters constrained
S = 1.07Δρmax = 1.03 e Å3
6634 reflectionsΔρmin = 0.74 e Å3
421 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C8'0.1263 (19)0.1131 (8)0.6707 (10)0.071 (4)0.326 (10)
H4'0.03590.12130.68970.086*0.326 (10)
C9'0.145 (3)0.0470 (10)0.6393 (18)0.150 (11)0.326 (10)
H5A0.13100.04790.57780.225*0.326 (10)
H6A0.08170.01490.66150.225*0.326 (10)
H7A0.23620.03150.65660.225*0.326 (10)
C10'0.1389 (17)0.1317 (7)0.5793 (11)0.051 (4)0.326 (10)
H8A0.07010.10720.54210.061*0.326 (10)
H9A0.22770.11820.56310.061*0.326 (10)
C80.1982 (10)0.1147 (4)0.6338 (6)0.075 (2)0.674 (10)
H40.17150.06910.65690.091*0.674 (10)
C90.2955 (13)0.1009 (7)0.5751 (7)0.129 (4)0.674 (10)
H50.30490.14180.53970.193*0.674 (10)
H60.26630.06120.53960.193*0.674 (10)
H70.38150.09020.60620.193*0.674 (10)
C100.0731 (13)0.1457 (5)0.5815 (8)0.096 (4)0.674 (10)
H80.05450.12160.52680.115*0.674 (10)
H90.00690.14370.61300.115*0.674 (10)
Sm10.28473 (2)0.426361 (8)0.751802 (10)0.03909 (7)
Cu0.20496 (6)0.25917 (2)0.67412 (3)0.05590 (14)
O10.3107 (3)0.30109 (12)0.76905 (17)0.0528 (7)
O20.4514 (3)0.37744 (13)0.87833 (16)0.0527 (7)
O30.1956 (3)0.35392 (13)0.63401 (16)0.0525 (7)
O40.2338 (3)0.48443 (14)0.59859 (16)0.0512 (6)
O50.4888 (3)0.39591 (16)0.6739 (2)0.0659 (8)
O60.6496 (5)0.4695 (2)0.6546 (3)0.1085 (16)
O70.4919 (3)0.49733 (14)0.7349 (2)0.0609 (7)
O80.2232 (4)0.55708 (17)0.7635 (2)0.0720 (10)
O90.2694 (5)0.62299 (18)0.8738 (3)0.1104 (17)
O100.3179 (5)0.51210 (16)0.87669 (19)0.0808 (11)
O110.1305 (5)0.3903 (3)0.8594 (3)0.0988 (13)
O120.0836 (5)0.4062 (3)0.8508 (4)0.132 (2)
O130.0338 (4)0.4383 (2)0.7491 (3)0.0904 (12)
O140.0249 (4)0.25774 (19)0.7448 (2)0.0749 (9)
N10.2387 (5)0.16408 (19)0.7111 (3)0.0851 (14)
N20.1181 (5)0.2182 (2)0.5703 (3)0.0780 (13)
N30.5473 (4)0.45422 (18)0.6863 (2)0.0566 (8)
N40.2711 (4)0.56584 (17)0.8385 (2)0.0606 (10)
N50.0199 (5)0.4123 (2)0.8212 (3)0.0754 (12)
C10.3693 (4)0.26602 (18)0.8360 (3)0.0465 (8)
C20.4440 (4)0.30587 (19)0.8984 (2)0.0494 (9)
C30.5035 (5)0.2754 (3)0.9723 (3)0.0700 (13)
H10.55250.30281.01380.084*
C40.4889 (6)0.2021 (3)0.9838 (4)0.0815 (16)
H20.52520.18091.03460.098*
C50.4224 (5)0.1622 (2)0.9217 (4)0.0770 (15)
H30.41640.11350.92980.092*
C60.3628 (4)0.1918 (2)0.8460 (3)0.0559 (10)
C70.3007 (5)0.1443 (2)0.7817 (4)0.0759 (15)
C110.0826 (6)0.2515 (3)0.5020 (3)0.0829 (16)
H100.04420.22530.45550.099*
C120.0966 (5)0.3270 (3)0.4898 (3)0.0638 (12)
C130.0536 (5)0.3555 (4)0.4084 (3)0.0800 (16)
H110.01410.32580.36560.096*
C140.0686 (6)0.4248 (3)0.3915 (3)0.0792 (16)
H120.03770.44230.33750.095*
C150.1281 (5)0.4698 (3)0.4517 (2)0.0652 (12)
H130.13980.51740.43870.078*
C160.1710 (4)0.4441 (2)0.5324 (2)0.0508 (9)
C170.1542 (4)0.3732 (2)0.5535 (2)0.0511 (9)
C180.2810 (6)0.5531 (2)0.5755 (3)0.0662 (12)
H140.20460.58250.55690.099*
H150.33880.54840.52980.099*
H160.33110.57440.62450.099*
C190.5576 (6)0.4172 (2)0.9257 (3)0.0725 (14)
H170.56950.46160.89750.109*
H180.64090.39070.92830.109*
H190.53350.42570.98290.109*
C200.2540 (7)0.2557 (4)0.7781 (5)0.108 (2)
H200.30300.29830.78860.162*
H210.21610.23620.83190.162*
H220.31490.22180.74930.162*
C210.1422 (5)0.2722 (2)0.7232 (3)0.0635 (11)
C220.1820 (6)0.3064 (3)0.6394 (4)0.0856 (16)
H230.24820.34260.64670.128*
H240.22030.27150.59950.128*
H250.10350.32720.61770.128*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C8'0.072 (5)0.071 (5)0.072 (5)0.0003 (10)0.0066 (11)0.0003 (10)
C9'0.158 (14)0.134 (13)0.159 (14)0.015 (9)0.018 (9)0.004 (9)
C10'0.056 (7)0.029 (5)0.069 (7)0.006 (5)0.015 (6)0.023 (5)
C80.077 (2)0.073 (2)0.076 (2)0.0005 (10)0.0069 (10)0.0024 (10)
C90.129 (5)0.128 (4)0.129 (4)0.0003 (10)0.0126 (11)0.0001 (10)
C100.101 (9)0.075 (6)0.107 (7)0.005 (6)0.011 (7)0.049 (5)
Sm10.04727 (12)0.03289 (10)0.03616 (10)0.00080 (7)0.00128 (7)0.00168 (6)
Cu0.0668 (3)0.0395 (2)0.0598 (3)0.0081 (2)0.0022 (2)0.0138 (2)
O10.0649 (19)0.0321 (11)0.0580 (15)0.0026 (11)0.0123 (13)0.0002 (10)
O20.0618 (18)0.0416 (12)0.0507 (14)0.0020 (12)0.0166 (13)0.0029 (11)
O30.0677 (19)0.0485 (14)0.0396 (13)0.0129 (13)0.0046 (12)0.0065 (10)
O40.0583 (17)0.0523 (14)0.0421 (13)0.0003 (12)0.0003 (12)0.0079 (11)
O50.065 (2)0.0495 (15)0.085 (2)0.0083 (14)0.0213 (17)0.0209 (15)
O60.092 (3)0.073 (2)0.172 (4)0.019 (2)0.074 (3)0.014 (3)
O70.0613 (19)0.0437 (14)0.0786 (19)0.0055 (13)0.0112 (15)0.0144 (13)
O80.099 (3)0.0538 (16)0.0581 (17)0.0220 (17)0.0187 (17)0.0100 (13)
O90.175 (5)0.0548 (19)0.092 (3)0.032 (2)0.038 (3)0.0323 (18)
O100.134 (3)0.0544 (17)0.0495 (16)0.0307 (19)0.0160 (18)0.0106 (13)
O110.080 (3)0.139 (4)0.081 (3)0.004 (3)0.028 (2)0.038 (3)
O120.087 (3)0.167 (5)0.151 (5)0.000 (3)0.069 (4)0.007 (4)
O130.061 (2)0.117 (3)0.093 (3)0.005 (2)0.008 (2)0.022 (2)
O140.060 (2)0.082 (2)0.082 (2)0.0122 (17)0.0029 (18)0.0157 (17)
N10.091 (3)0.0357 (18)0.124 (4)0.0006 (19)0.016 (3)0.015 (2)
N20.093 (3)0.071 (2)0.070 (3)0.030 (2)0.010 (2)0.036 (2)
N30.056 (2)0.0450 (17)0.070 (2)0.0027 (16)0.0151 (18)0.0000 (16)
N40.078 (3)0.0443 (17)0.057 (2)0.0107 (16)0.0078 (19)0.0121 (14)
N50.070 (3)0.074 (3)0.087 (3)0.008 (2)0.032 (3)0.007 (2)
C10.043 (2)0.0379 (17)0.059 (2)0.0019 (14)0.0029 (17)0.0066 (15)
C20.044 (2)0.0475 (19)0.055 (2)0.0063 (16)0.0028 (17)0.0117 (16)
C30.067 (3)0.068 (3)0.071 (3)0.003 (2)0.016 (2)0.015 (2)
C40.072 (3)0.074 (3)0.095 (4)0.007 (3)0.011 (3)0.044 (3)
C50.054 (3)0.050 (2)0.126 (5)0.004 (2)0.001 (3)0.033 (3)
C60.041 (2)0.0401 (18)0.086 (3)0.0040 (16)0.004 (2)0.0095 (18)
C70.062 (3)0.0345 (19)0.129 (5)0.0030 (19)0.003 (3)0.000 (2)
C110.087 (4)0.105 (4)0.056 (3)0.030 (3)0.004 (3)0.038 (3)
C120.054 (3)0.092 (3)0.045 (2)0.011 (2)0.0046 (18)0.021 (2)
C130.062 (3)0.133 (5)0.042 (2)0.006 (3)0.007 (2)0.023 (3)
C140.060 (3)0.135 (5)0.041 (2)0.010 (3)0.005 (2)0.000 (3)
C150.054 (3)0.100 (3)0.042 (2)0.015 (2)0.0065 (19)0.009 (2)
C160.045 (2)0.072 (2)0.0357 (17)0.0054 (18)0.0040 (15)0.0003 (16)
C170.047 (2)0.071 (2)0.0347 (17)0.0033 (18)0.0016 (15)0.0089 (16)
C180.077 (3)0.059 (2)0.063 (3)0.004 (2)0.009 (2)0.019 (2)
C190.079 (3)0.056 (2)0.075 (3)0.011 (2)0.033 (3)0.001 (2)
C200.077 (4)0.131 (6)0.122 (5)0.005 (4)0.033 (4)0.010 (5)
C210.055 (3)0.058 (2)0.078 (3)0.003 (2)0.006 (2)0.001 (2)
C220.065 (3)0.092 (4)0.097 (4)0.017 (3)0.005 (3)0.012 (3)
Geometric parameters (Å, º) top
C8'—C9'1.358 (10)O8—N41.234 (4)
C8'—C10'1.49 (2)O9—N41.212 (4)
C8'—N11.559 (17)O10—N41.243 (4)
C8'—H4'0.9800O11—N51.266 (6)
C9'—H5A0.9600O12—N51.166 (5)
C9'—H6A0.9600O13—N51.249 (6)
C9'—H7A0.9600O14—C211.208 (6)
C10'—N21.648 (15)N1—C71.267 (7)
C10'—H8A0.9700N2—C111.261 (7)
C10'—H9A0.9700C1—C21.388 (5)
C8—C91.414 (9)C1—C61.412 (5)
C8—C101.533 (15)C2—C31.373 (5)
C8—N11.549 (9)C3—C41.405 (7)
C8—H40.9800C3—H10.9300
C9—H50.9600C4—C51.350 (8)
C9—H60.9600C4—H20.9300
C9—H70.9600C5—C61.389 (6)
C10—N21.455 (12)C5—H30.9300
C10—H80.9700C6—C71.441 (7)
C10—H90.9700C11—C121.444 (8)
Sm1—O12.390 (2)C11—H100.9300
Sm1—O32.394 (2)C12—C171.404 (5)
Sm1—O112.467 (4)C12—C131.410 (7)
Sm1—O72.481 (3)C13—C141.346 (8)
Sm1—O132.486 (4)C13—H110.9300
Sm1—O52.517 (3)C14—C151.361 (7)
Sm1—O102.533 (3)C14—H120.9300
Sm1—O82.551 (3)C15—C161.380 (5)
Sm1—O22.621 (3)C15—H130.9300
Sm1—O42.639 (3)C16—C171.392 (6)
Sm1—Cu3.4452 (9)C18—H140.9600
Cu—O31.894 (3)C18—H150.9600
Cu—N11.905 (4)C18—H160.9600
Cu—O11.906 (3)C19—H170.9600
Cu—N21.926 (4)C19—H180.9600
Cu—O142.616 (4)C19—H190.9600
O1—C11.325 (4)C20—C211.495 (8)
O2—C21.390 (4)C20—H200.9600
O2—C191.438 (5)C20—H210.9600
O3—C171.337 (4)C20—H220.9600
O4—C161.384 (5)C21—C221.479 (7)
O4—C181.435 (5)C22—H230.9600
O5—N31.250 (5)C22—H240.9600
O6—N31.202 (5)C22—H250.9600
O7—N31.271 (4)
C9'—C8'—C10'81.1 (16)C2—O2—Sm1118.0 (2)
C9'—C8'—N1126.6 (19)C19—O2—Sm1125.6 (2)
C10'—C8'—N197.1 (12)C17—O3—Cu124.7 (2)
C9'—C8'—H4'114.5C17—O3—Sm1128.8 (2)
C10'—C8'—H4'114.5Cu—O3—Sm1106.33 (11)
N1—C8'—H4'114.5C16—O4—C18116.3 (3)
C8'—C9'—H5A109.4C16—O4—Sm1119.0 (2)
C8'—C9'—H6A109.4C18—O4—Sm1124.3 (2)
H5A—C9'—H6A109.5N3—O5—Sm196.0 (2)
C8'—C9'—H7A109.6N3—O7—Sm197.1 (2)
H5A—C9'—H7A109.5N4—O8—Sm197.2 (2)
H6A—C9'—H7A109.5N4—O10—Sm197.8 (2)
C8'—C10'—N2107.2 (10)N5—O11—Sm198.6 (3)
C8'—C10'—H8A110.3N5—O13—Sm198.2 (3)
N2—C10'—H8A110.3C21—O14—Cu136.6 (3)
C8'—C10'—H9A110.3C7—N1—C8124.8 (5)
N2—C10'—H9A110.3C7—N1—C8'116.1 (7)
H8A—C10'—H9A108.5C8—N1—C8'35.8 (6)
C9—C8—C10106.7 (10)C7—N1—Cu126.8 (3)
C9—C8—N1118.4 (8)C8—N1—Cu107.7 (4)
C10—C8—N1109.0 (6)C8'—N1—Cu111.1 (6)
C9—C8—H4107.4C11—N2—C10120.5 (6)
C10—C8—H4107.4C11—N2—C10'126.1 (7)
N1—C8—H4107.4C10—N2—C10'25.3 (6)
N2—C10—C8100.5 (8)C11—N2—Cu125.5 (3)
N2—C10—H8111.7C10—N2—Cu113.2 (5)
C8—C10—H8111.7C10'—N2—Cu106.4 (7)
N2—C10—H9111.7O6—N3—O5122.8 (4)
C8—C10—H9111.7O6—N3—O7121.2 (4)
H8—C10—H9109.4O5—N3—O7115.9 (3)
O1—Sm1—O363.26 (9)O9—N4—O8122.1 (4)
O1—Sm1—O1173.56 (14)O9—N4—O10121.8 (4)
O3—Sm1—O1199.22 (14)O8—N4—O10116.1 (3)
O1—Sm1—O7117.70 (10)O12—N5—O13124.8 (6)
O3—Sm1—O7118.33 (10)O12—N5—O11122.1 (6)
O11—Sm1—O7142.13 (14)O13—N5—O11113.1 (4)
O1—Sm1—O13100.85 (12)O1—C1—C2116.7 (3)
O3—Sm1—O1375.16 (13)O1—C1—C6124.2 (4)
O11—Sm1—O1350.10 (14)C2—C1—C6119.1 (4)
O7—Sm1—O13141.33 (11)C3—C2—C1121.5 (4)
O1—Sm1—O575.31 (10)C3—C2—O2124.7 (4)
O3—Sm1—O575.62 (10)C1—C2—O2113.8 (3)
O11—Sm1—O5147.14 (14)C2—C3—C4118.7 (5)
O7—Sm1—O550.62 (9)C2—C3—H1120.7
O13—Sm1—O5148.77 (13)C4—C3—H1120.7
O1—Sm1—O10122.67 (9)C5—C4—C3120.4 (4)
O3—Sm1—O10165.75 (12)C5—C4—H2119.8
O11—Sm1—O1072.23 (16)C3—C4—H2119.8
O7—Sm1—O1071.85 (12)C4—C5—C6121.9 (4)
O13—Sm1—O1090.71 (15)C4—C5—H3119.1
O5—Sm1—O10117.81 (13)C6—C5—H3119.1
O1—Sm1—O8166.37 (12)C5—C6—C1118.3 (4)
O3—Sm1—O8122.28 (10)C5—C6—C7117.6 (4)
O11—Sm1—O892.93 (15)C1—C6—C7124.1 (4)
O7—Sm1—O871.98 (12)N1—C7—C6124.4 (4)
O13—Sm1—O870.68 (14)N2—C11—C12125.5 (4)
O5—Sm1—O8117.56 (12)N2—C11—H10117.2
O10—Sm1—O848.83 (10)C12—C11—H10117.2
O1—Sm1—O260.88 (8)C17—C12—C13118.1 (5)
O3—Sm1—O2122.66 (9)C17—C12—C11123.8 (4)
O11—Sm1—O276.89 (13)C13—C12—C11118.1 (4)
O7—Sm1—O278.67 (10)C14—C13—C12121.2 (5)
O13—Sm1—O2126.90 (12)C14—C13—H11119.4
O5—Sm1—O279.01 (11)C12—C13—H11119.4
O10—Sm1—O267.43 (9)C13—C14—C15121.3 (5)
O8—Sm1—O2115.05 (9)C13—C14—H12119.4
O1—Sm1—O4121.49 (9)C15—C14—H12119.4
O3—Sm1—O460.90 (9)C14—C15—C16119.3 (5)
O11—Sm1—O4130.92 (13)C14—C15—H13120.3
O7—Sm1—O476.65 (10)C16—C15—H13120.3
O13—Sm1—O480.85 (12)C15—C16—O4124.6 (4)
O5—Sm1—O475.50 (11)C15—C16—C17121.4 (4)
O10—Sm1—O4115.74 (9)O4—C16—C17114.0 (3)
O8—Sm1—O468.73 (9)O3—C17—C16116.8 (3)
O2—Sm1—O4152.18 (10)O3—C17—C12124.6 (4)
O1—Sm1—Cu32.10 (6)C16—C17—C12118.6 (4)
O3—Sm1—Cu31.84 (6)O4—C18—H14109.5
O11—Sm1—Cu81.50 (12)O4—C18—H15109.5
O7—Sm1—Cu128.37 (6)H14—C18—H15109.5
O13—Sm1—Cu83.23 (11)O4—C18—H16109.5
O5—Sm1—Cu77.75 (7)H14—C18—H16109.5
O10—Sm1—Cu149.93 (8)H15—C18—H16109.5
O8—Sm1—Cu149.58 (8)O2—C19—H17109.5
O2—Sm1—Cu92.91 (6)O2—C19—H18109.5
O4—Sm1—Cu92.42 (6)H17—C19—H18109.5
O3—Cu—N1172.44 (19)O2—C19—H19109.5
O3—Cu—O182.66 (11)H17—C19—H19109.5
N1—Cu—O194.96 (16)H18—C19—H19109.5
O3—Cu—N295.50 (16)C21—C20—H20109.5
N1—Cu—N286.0 (2)C21—C20—H21109.5
O1—Cu—N2172.76 (17)H20—C20—H21109.5
O3—Cu—O1497.58 (12)C21—C20—H22109.5
N1—Cu—O1489.80 (18)H20—C20—H22109.5
O1—Cu—O1496.32 (13)H21—C20—H22109.5
N2—Cu—O1490.86 (17)O14—C21—C22121.1 (5)
O3—Cu—Sm141.83 (7)O14—C21—C20122.2 (5)
N1—Cu—Sm1136.67 (14)C22—C21—C20116.7 (5)
O1—Cu—Sm141.80 (7)C21—C22—H23109.5
N2—Cu—Sm1137.23 (14)C21—C22—H24109.5
O14—Cu—Sm192.28 (8)H23—C22—H24109.5
C1—O1—Cu125.1 (2)C21—C22—H25109.5
C1—O1—Sm1128.1 (2)H23—C22—H25109.5
Cu—O1—Sm1106.11 (11)H24—C22—H25109.5
C2—O2—C19116.2 (3)

Experimental details

Crystal data
Chemical formula[CuSm(C19H20N2O4)(NO3)3(C3H6O)]
Mr797.38
Crystal system, space groupMonoclinic, P21/c
Temperature (K)291
a, b, c (Å)9.882 (4), 18.868 (5), 15.631 (5)
β (°) 95.320 (16)
V3)2901.9 (16)
Z4
Radiation typeMo Kα
µ (mm1)2.81
Crystal size (mm)0.39 × 0.33 × 0.29
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.404, 0.500
No. of measured, independent and
observed [I > 2σ(I)] reflections
28125, 6634, 5584
Rint0.031
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.088, 1.07
No. of reflections6634
No. of parameters421
No. of restraints36
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.03, 0.74

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The authors gratefully acknowledge financial support from the National Natural Science Foundation of China (grant Nos. 20572018 and 20672032), Heilongjiang Province (grant Nos. 11531284, 1055HZ001, ZJG0504 and JC200605) and Heilongjiang University (grant Nos. 09k137, 09k117 and 09k118).

References

First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationKara, H., Elerman, Y. & Prout, K. (2000). Z. Naturforsch. Teil B, 55, 1131–1136.  CAS Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, W.-B., Gao, T., Yan, P.-F., Li, G.-M. & Hou, G.-F. (2007). Acta Cryst. E63, m2192.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSun, W.-B., Yan, P.-F., Li, G.-M. & Hou, G.-F. (2009). Acta Cryst. E65, m780–m781.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 7| July 2009| Pages m840-m841
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds