organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Amino-3-nitro­pyridinium hydrogen selenate

aLaboratoire de chimie des Matériaux, Faculté des Sciences de Bizerte, 7021 Zarzouna Bizerte, Tunisia
*Correspondence e-mail: samah.akriche@fsb.rnu.tn

(Received 14 May 2009; accepted 14 June 2009; online 20 June 2009)

The asymmetric unit of the title compound, C5H6N3O2+·HSeO4, contains two monoprotonated 2-amino-3-nitro­pyridinium cations and two hydrogen selenate anions which are connected through N—H⋯O and O—H⋯O hydrogen bonds, building chains parallel to the a direction. These chains are further connected to each other by weaker C—H⋯O hydrogen-bonding inter­actions, leading to the formation of a three-dimensional network.

Related literature

For related structures, see: Akriche et al. (2009[Akriche, S. & Rzaigui, M. (2009). Acta Cryst. E65, o793.]); Fleck (2006[Fleck, M. (2006). Acta Cryst. E62, o4939-o4941.]); Le Fur, Masse & Nicoud (1998[Le Fur, Y., Masse, R. & Nicoud, J. F. (1998). New J. Chem. pp. 159-163.]); Nicoud et al. (1997[Nicoud, J. F., Masse, R., Bourgogne, C. & Evans, C. (1997). J. Mater. Chem. 7, 35-39.]); Maalej et al. (2008[Maalej, W., Elaoud, Z., Mhiri, T., Daoud, A. & Driss, A. (2008). Acta Cryst. E64, o2172.]).

[Scheme 1]

Experimental

Crystal data
  • C5H6N3O2+·HSeO4

  • Mr = 284.10

  • Monoclinic, P 21 /c

  • a = 9.090 (3) Å

  • b = 20.130 (2) Å

  • c = 10.434 (4) Å

  • β = 104.84 (2)°

  • V = 1845.6 (10) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 4.09 mm−1

  • T = 298 K

  • 0.37 × 0.29 × 0.19 mm

Data collection
  • Enraf–Nonius Turbo-CAD-4 diffractometer

  • Absorption correction: multi-scan (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.145, Tmax = 0.298 (expected range = 0.224–0.460)

  • 7325 measured reflections

  • 4433 independent reflections

  • 2980 reflections with I > 2σ(I)

  • Rint = 0.040

  • 2 standard reflections frequency: 120 min intensity decay: 4%

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.112

  • S = 1.01

  • 4433 reflections

  • 274 parameters

  • H-atom parameters constrained

  • Δρmax = 0.80 e Å−3

  • Δρmin = −0.75 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O6 0.82 1.75 2.565 (5) 170
O5—H5⋯O2i 0.82 1.80 2.601 (5) 167
N1—H1A⋯O4 0.86 1.84 2.679 (5) 166
N2—H2A⋯O3 0.86 2.02 2.870 (6) 172
N2—H2B⋯O9 0.86 2.09 2.675 (6) 124
N2—H2B⋯O8ii 0.86 2.28 2.933 (5) 133
N4—H4⋯O7 0.86 2.05 2.864 (5) 157
N5—H5A⋯O8 0.86 2.07 2.900 (5) 163
N5—H5B⋯O3ii 0.86 2.11 2.798 (5) 137
N5—H5B⋯O11 0.86 2.12 2.693 (5) 124
C3—H3⋯O5iii 0.93 2.54 3.443 (5) 163
C4—H4A⋯O12iv 0.93 2.47 3.290 (6) 148
C8—H8⋯O6iii 0.93 2.57 3.463 (6) 162
C10—H10⋯O4v 0.93 2.35 3.228 (6) 158
Symmetry codes: (i) x+1, y, z; (ii) -x+1, -y+1, -z; (iii) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (v) -x+2, -y+1, -z+1.

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The important advantage of hybrid organic inorganic salts is the opportunity offered by the chromophores that when anchored onto inorganic host matrices, lead to non-centrosymmetric frameworks suitable for NLO devices. The approach of this new engineering has been applied to 2-amino-3-nitropyridinium cation (2 A3NP+) encapsulated in various anionic subnetworks (Akriche et al., 2009, Nicoud et al.,1997, Le Fur et al., 1998). The attempt using (HSO4-) n polymeric anions has been successful with the cristallization of the non-centrosymmetric 2-Amino-3-nitropyridinium sulfate (Le Fur et al., 1998). The encapsulation of this cation in (HSeO4-)n polymeric anions leads to the title compound (I).

The asymmetric unit of (I) contains two monoprotonated 2-amino-3-nitropyridinium cations and two hydrogen selenate anions (Fig.1) which are connected through N—H···O, C—H···O and O—H···O hydrogen bonds. The hydrogen selenate anions are interconnected between themselves by H-bonds involving the proton of selenate groups leading to (HSeO4-) n chains parallel to the a axis (Fig. 2).

In this atomic arrangement the HSeO4- tetraedra are slightly distorted with Se—O distances from 1.594 (6) to 1.713 (4) Å. The Se—O bonds in selenate tetrahedra depends greatly on the nature of the O atoms acting as an acceptor or a donor atoms: the longer bonds (1.713 (4) and 1.692 (5) Å) involve oxygen atoms acting as a H-donor whereas shorter bonds ranging from 1.594 (6) to 1.623 (4) relate to oxygen atoms acting as H-acceptor participating in hydrogen bonds of type N—H···O and C—H···O. As expected, the geometrical features of anion agree with those previously observed for this group in other analogues (Fleck, 2006, Maalej et al., 2008).

The 2-amino-3-nitropyridinium cations are onchored onto anionic chains through short hydrogen bonds originating from the NH2 and NH+ groups. The unique inter-cation contact C4—H4A···O11(H4A···O11 = 2.45 Å) induces the aggregation of cations in pairs (2 A3NP+)2 elongated in -(a+c) direction. Two hydrogen bonds, N2—H2B···O10 (2.10 Å) and N5—H5B···O12 (2.11 Å) (see Table 1) ensure the intra-cation links. This situation is well observed in nitroaniline derivatives in which nitro and amino groups are ortho to one another which precludes the rotation of the nitro group with respect to the pyridinium rings. The diedral angles between the planes of the NO2 groups and the two pyridinium planes are 19.0 (3) and 15.9 (4) % indicating a distortion of the NO2 groups under the influence of C—H···O hydrogn bonds of neighbouring cations. This situation is alawys observed in other 2-amino-3-nitropyridinium salts (Nicoud et al.,1997, Le Fur et al., 1998). The bond lengths and angles in (I) are normal and comparable with the corresponding values observed in the related structure (Akriche et al., 2009, Nicoud et al.,1997, Le Fur et al., 1998).

Related literature top

For related structures, see: Akriche et al. (2009); Fleck (2006); Le Fur, Masse & Nicoud (1998); Nicoud et al. (1997); Maalej et al. (2008).

Experimental top

The title compound (I) was cristallized by slow evaporation at room temperature of an aqueous solution (20 ml) of 2-amino-3-nitropyridine (4 mmol) and selenic acid (4 mmol) in a 1:1 stochiometric ratio.

Refinement top

All H atoms attached to C, N and H atoms were fixed geometrically and treated as riding with C—H = 0.93 Å, N—H = 0.86Å and O—H = 0.82 Å with Uiso(H) = 1.2Ueq(C or N) and Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. An ORTEP view of (I) with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii. Hydrogen bonds are represented as dashed lines.
[Figure 2] Fig. 2. A perspective view of (I) showing the (HSeO4-) n polymeric anions running along the a axis. The C—H···O bonds are omitted for clarity of figure.
2-Amino-3-nitropyridinium hydrogen selenate top
Crystal data top
C5H6N3O2+·HO4SeF(000) = 1120
Mr = 284.10Dx = 2.045 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 9.090 (3) Åθ = 9–11°
b = 20.130 (2) ŵ = 4.09 mm1
c = 10.434 (4) ÅT = 298 K
β = 104.84 (2)°Prism, yellow
V = 1845.6 (10) Å30.37 × 0.29 × 0.19 mm
Z = 8
Data collection top
Enraf–Nonius Turbo-CAD-4
diffractometer
2980 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.040
Graphite monochromatorθmax = 28.0°, θmin = 2.0°
ω scansh = 1111
Absorption correction: multi-scan
(Blessing, 1995)
k = 026
Tmin = 0.145, Tmax = 0.298l = 613
7325 measured reflections2 standard reflections every 120 min
4433 independent reflections intensity decay: 4%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.112 w = 1/[σ2(Fo2) + (0.0549P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.001
4433 reflectionsΔρmax = 0.80 e Å3
274 parametersΔρmin = 0.75 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0106 (7)
Crystal data top
C5H6N3O2+·HO4SeV = 1845.6 (10) Å3
Mr = 284.10Z = 8
Monoclinic, P21/cMo Kα radiation
a = 9.090 (3) ŵ = 4.09 mm1
b = 20.130 (2) ÅT = 298 K
c = 10.434 (4) Å0.37 × 0.29 × 0.19 mm
β = 104.84 (2)°
Data collection top
Enraf–Nonius Turbo-CAD-4
diffractometer
2980 reflections with I > 2σ(I)
Absorption correction: multi-scan
(Blessing, 1995)
Rint = 0.040
Tmin = 0.145, Tmax = 0.2982 standard reflections every 120 min
7325 measured reflections intensity decay: 4%
4433 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.112H-atom parameters constrained
S = 1.01Δρmax = 0.80 e Å3
4433 reflectionsΔρmin = 0.75 e Å3
274 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Se10.39573 (5)0.57437 (2)0.26743 (5)0.03205 (15)
Se20.88010 (5)0.61095 (2)0.28019 (5)0.02924 (14)
O10.4598 (4)0.65134 (18)0.2463 (5)0.0680 (13)
H10.55190.65300.27860.102*
O30.3344 (5)0.5426 (2)0.1228 (4)0.0756 (14)
O20.2627 (4)0.58545 (19)0.3409 (4)0.0576 (11)
O40.5374 (4)0.53198 (15)0.3555 (3)0.0411 (8)
O51.0304 (3)0.66505 (15)0.3064 (4)0.0401 (8)
H51.10910.64430.31090.060*
O60.7514 (3)0.65653 (16)0.3186 (4)0.0433 (8)
O70.9371 (4)0.54843 (15)0.3783 (3)0.0405 (8)
O80.8397 (4)0.58792 (17)0.1281 (3)0.0478 (9)
O90.4200 (5)0.2899 (2)0.0205 (4)0.0656 (12)
O100.6241 (5)0.23103 (19)0.0156 (4)0.0672 (12)
O110.8828 (4)0.33319 (18)0.0323 (4)0.0498 (9)
O121.0837 (4)0.27232 (16)0.0052 (4)0.0503 (9)
N10.6363 (4)0.41805 (19)0.2743 (4)0.0361 (9)
H1A0.60100.45650.28690.043*
N20.4378 (4)0.4105 (2)0.0899 (4)0.0442 (10)
H2A0.40980.44940.10820.053*
H2B0.38620.38970.02110.053*
N30.5509 (5)0.2774 (2)0.0413 (5)0.0454 (10)
N41.1029 (4)0.44386 (17)0.2922 (4)0.0333 (9)
H41.07230.48210.31160.040*
N50.9152 (4)0.4497 (2)0.0988 (4)0.0413 (10)
H5A0.89140.48810.12360.050*
H5B0.86530.43350.02410.050*
N61.0111 (5)0.31667 (18)0.0290 (4)0.0348 (9)
C10.5601 (5)0.3828 (2)0.1677 (5)0.0337 (10)
C20.6231 (5)0.3199 (2)0.1535 (5)0.0339 (10)
C30.7524 (5)0.2982 (2)0.2424 (5)0.0400 (12)
H30.79220.25680.23030.048*
C40.8245 (5)0.3366 (3)0.3493 (5)0.0427 (12)
H4A0.91140.32140.41030.051*
C50.7647 (5)0.3970 (2)0.3629 (5)0.0381 (11)
H5C0.81200.42430.43330.046*
C61.0279 (5)0.4158 (2)0.1752 (4)0.0288 (9)
C71.0836 (5)0.3528 (2)0.1496 (4)0.0286 (9)
C81.2031 (5)0.3237 (2)0.2393 (5)0.0387 (11)
H81.23660.28190.22160.046*
C91.2739 (6)0.3557 (3)0.3550 (5)0.0443 (12)
H91.35620.33630.41500.053*
C101.2217 (5)0.4159 (2)0.3799 (5)0.0402 (11)
H101.26800.43820.45800.048*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Se10.0214 (2)0.0312 (2)0.0401 (3)0.00508 (17)0.00162 (18)0.0022 (2)
Se20.0249 (2)0.0232 (2)0.0358 (3)0.00061 (17)0.00088 (18)0.00011 (18)
O10.0320 (19)0.040 (2)0.129 (4)0.0059 (17)0.015 (2)0.030 (2)
O30.079 (3)0.075 (3)0.049 (3)0.045 (2)0.026 (2)0.021 (2)
O20.040 (2)0.055 (2)0.088 (3)0.0112 (18)0.034 (2)0.009 (2)
O40.0365 (17)0.0333 (17)0.045 (2)0.0110 (14)0.0050 (15)0.0029 (15)
O50.0281 (16)0.0327 (17)0.057 (2)0.0049 (13)0.0061 (16)0.0020 (16)
O60.0299 (17)0.0338 (17)0.066 (2)0.0023 (14)0.0125 (16)0.0058 (17)
O70.0416 (18)0.0311 (16)0.048 (2)0.0056 (14)0.0099 (16)0.0142 (15)
O80.055 (2)0.0375 (18)0.041 (2)0.0050 (17)0.0043 (17)0.0050 (16)
O90.054 (2)0.061 (3)0.071 (3)0.007 (2)0.004 (2)0.023 (2)
O100.084 (3)0.046 (2)0.074 (3)0.004 (2)0.026 (2)0.023 (2)
O110.0348 (18)0.057 (2)0.050 (2)0.0048 (17)0.0036 (17)0.0155 (18)
O120.066 (2)0.0294 (18)0.057 (2)0.0063 (17)0.018 (2)0.0091 (16)
N10.037 (2)0.031 (2)0.038 (2)0.0060 (17)0.0050 (18)0.0043 (18)
N20.039 (2)0.041 (2)0.046 (3)0.0080 (19)0.000 (2)0.004 (2)
N30.055 (3)0.029 (2)0.055 (3)0.006 (2)0.019 (2)0.0050 (19)
N40.039 (2)0.0234 (17)0.032 (2)0.0039 (16)0.0007 (17)0.0015 (15)
N50.046 (2)0.036 (2)0.033 (2)0.0113 (18)0.0072 (19)0.0061 (17)
N60.043 (2)0.0291 (19)0.034 (2)0.0076 (17)0.0117 (19)0.0040 (16)
C10.033 (2)0.032 (2)0.037 (3)0.0022 (19)0.010 (2)0.003 (2)
C20.034 (2)0.031 (2)0.038 (3)0.0001 (19)0.012 (2)0.000 (2)
C30.042 (3)0.027 (2)0.055 (3)0.008 (2)0.020 (2)0.007 (2)
C40.037 (3)0.047 (3)0.042 (3)0.009 (2)0.005 (2)0.014 (2)
C50.035 (2)0.041 (3)0.035 (3)0.002 (2)0.003 (2)0.001 (2)
C60.032 (2)0.029 (2)0.023 (2)0.0036 (18)0.0041 (19)0.0005 (18)
C70.035 (2)0.023 (2)0.029 (2)0.0039 (17)0.0094 (19)0.0007 (18)
C80.043 (3)0.027 (2)0.047 (3)0.006 (2)0.012 (2)0.005 (2)
C90.041 (3)0.045 (3)0.038 (3)0.013 (2)0.005 (2)0.005 (2)
C100.044 (3)0.038 (3)0.031 (3)0.003 (2)0.005 (2)0.000 (2)
Geometric parameters (Å, º) top
Se1—O31.602 (4)N4—C101.347 (5)
Se1—O21.604 (3)N4—C61.359 (5)
Se1—O41.620 (3)N4—H40.8600
Se1—O11.689 (4)N5—C61.316 (5)
Se2—O81.603 (3)N5—H5A0.8600
Se2—O61.616 (3)N5—H5B0.8600
Se2—O71.621 (3)N6—C71.456 (5)
Se2—O51.713 (3)C1—C21.412 (6)
O1—H10.8200C2—C31.369 (7)
O5—H50.8200C3—C41.377 (7)
O9—N31.225 (5)C3—H30.9300
O10—N31.216 (5)C4—C51.355 (7)
O11—N61.224 (5)C4—H4A0.9300
O12—N61.217 (5)C5—H5C0.9300
N1—C11.352 (6)C6—C71.417 (6)
N1—C51.357 (6)C7—C81.370 (6)
N1—H1A0.8600C8—C91.374 (7)
N2—C11.321 (6)C8—H80.9300
N2—H2A0.8600C9—C101.351 (7)
N2—H2B0.8600C9—H90.9300
N3—C21.463 (6)C10—H100.9300
O3—Se1—O2112.5 (2)O11—N6—C7118.4 (4)
O3—Se1—O4111.03 (18)N2—C1—N1117.2 (4)
O2—Se1—O4112.89 (19)N2—C1—C2127.9 (5)
O3—Se1—O1106.9 (3)N1—C1—C2114.9 (4)
O2—Se1—O1105.2 (2)C3—C2—C1121.1 (4)
O4—Se1—O1107.86 (17)C3—C2—N3119.1 (4)
O8—Se2—O6114.36 (18)C1—C2—N3119.8 (4)
O8—Se2—O7110.84 (17)C2—C3—C4121.1 (4)
O6—Se2—O7114.76 (17)C2—C3—H3119.4
O8—Se2—O5108.25 (19)C4—C3—H3119.4
O6—Se2—O5101.41 (16)C5—C4—C3117.9 (4)
O7—Se2—O5106.24 (17)C5—C4—H4A121.0
Se1—O1—H1109.5C3—C4—H4A121.0
Se2—O5—H5109.5C4—C5—N1120.4 (5)
C1—N1—C5124.5 (4)C4—C5—H5C119.8
C1—N1—H1A117.7N1—C5—H5C119.8
C5—N1—H1A117.7N5—C6—N4117.6 (4)
C1—N2—H2A120.0N5—C6—C7127.6 (4)
C1—N2—H2B120.0N4—C6—C7114.8 (4)
H2A—N2—H2B120.0C8—C7—C6120.8 (4)
O10—N3—O9123.6 (5)C8—C7—N6118.7 (4)
O10—N3—C2117.8 (4)C6—C7—N6120.4 (4)
O9—N3—C2118.6 (4)C7—C8—C9120.8 (4)
C10—N4—C6124.6 (4)C7—C8—H8119.6
C10—N4—H4117.7C9—C8—H8119.6
C6—N4—H4117.7C10—C9—C8118.7 (4)
C6—N5—H5A120.0C10—C9—H9120.6
C6—N5—H5B120.0C8—C9—H9120.6
H5A—N5—H5B120.0N4—C10—C9120.3 (4)
O12—N6—O11124.2 (4)N4—C10—H10119.9
O12—N6—C7117.5 (4)C9—C10—H10119.9
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O60.821.752.565 (5)170
O5—H5···O2i0.821.802.601 (5)167
N1—H1A···O40.861.842.679 (5)166
N2—H2A···O30.862.022.870 (6)172
N2—H2B···O90.862.092.675 (6)124
N2—H2B···O8ii0.862.282.933 (5)133
N4—H4···O70.862.052.864 (5)157
N5—H5A···O80.862.072.900 (5)163
N5—H5B···O3ii0.862.112.798 (5)137
N5—H5B···O110.862.122.693 (5)124
C3—H3···O5iii0.932.543.443 (5)163
C4—H4A···O12iv0.932.473.290 (6)148
C8—H8···O6iii0.932.573.463 (6)162
C10—H10···O4v0.932.353.228 (6)158
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z; (iii) x+2, y1/2, z+1/2; (iv) x, y+1/2, z+1/2; (v) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC5H6N3O2+·HO4Se
Mr284.10
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)9.090 (3), 20.130 (2), 10.434 (4)
β (°) 104.84 (2)
V3)1845.6 (10)
Z8
Radiation typeMo Kα
µ (mm1)4.09
Crystal size (mm)0.37 × 0.29 × 0.19
Data collection
DiffractometerEnraf–Nonius Turbo-CAD-4
diffractometer
Absorption correctionMulti-scan
(Blessing, 1995)
Tmin, Tmax0.145, 0.298
No. of measured, independent and
observed [I > 2σ(I)] reflections
7325, 4433, 2980
Rint0.040
(sin θ/λ)max1)0.660
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.112, 1.01
No. of reflections4433
No. of parameters274
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.80, 0.75

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg & Putz, 2005), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O60.821.752.565 (5)169.8
O5—H5···O2i0.821.802.601 (5)167.0
N1—H1A···O40.861.842.679 (5)166.2
N2—H2A···O30.862.022.870 (6)171.9
N2—H2B···O90.862.092.675 (6)124.3
N2—H2B···O8ii0.862.282.933 (5)132.6
N4—H4···O70.862.052.864 (5)156.9
N5—H5A···O80.862.072.900 (5)163.0
N5—H5B···O3ii0.862.112.798 (5)136.7
N5—H5B···O110.862.122.693 (5)123.7
C3—H3···O5iii0.932.543.443 (5)162.7
C4—H4A···O12iv0.932.473.290 (6)147.7
C8—H8···O6iii0.932.573.463 (6)162.4
C10—H10···O4v0.932.353.228 (6)157.6
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z; (iii) x+2, y1/2, z+1/2; (iv) x, y+1/2, z+1/2; (v) x+2, y+1, z+1.
 

References

First citationAkriche, S. & Rzaigui, M. (2009). Acta Cryst. E65, o793.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFleck, M. (2006). Acta Cryst. E62, o4939–o4941.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationLe Fur, Y., Masse, R. & Nicoud, J. F. (1998). New J. Chem. pp. 159–163.  Web of Science CSD CrossRef CAS Google Scholar
First citationMaalej, W., Elaoud, Z., Mhiri, T., Daoud, A. & Driss, A. (2008). Acta Cryst. E64, o2172.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNicoud, J. F., Masse, R., Bourgogne, C. & Evans, C. (1997). J. Mater. Chem. 7, 35-39.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds