organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(2,6-Di­methyl­phen­yl)-4-methyl­benzamide

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, bFaculty of Chemical and Food Technology, Slovak Technical University, Radlinského 9, SK-812 37 Bratislava, Slovak Republic, and cInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 3 June 2009; accepted 12 June 2009; online 17 June 2009)

In the mol­ecular structure of the title compound, C16H17NO, the two aromatic rings are close to orthogonal to each other [dihedral angle 78.8 (1)°], while the central –NH—C(=O)– amide core is nearly coplanar with the benzoyl ring, forming a dihedral angle of 3.5 (2)°. Inter­molecular N—H⋯O hydrogen bonds in the crystal structure link the mol­ecules into infinite chains running along the c axis of the crystal, and a C—H⋯O interaction also occurs.

Related literature

For the preparation of the title compound, see: Gowda et al. (2003[Gowda, B. T., Jyothi, K., Paulus, H. & Fuess, H. (2003). Z. Naturforsch. Teil A, 58, 225-230.]). For related structures, see: Gowda, Foro et al. (2008[Gowda, B. T., Foro, S., Sowmya, B. P. & Fuess, H. (2008). Acta Cryst. E64, o1605.], 2009[Gowda, B. T., Foro, S., Sowmya, B. P. & Fuess, H. (2009). Private communication (refcode 691312). CCDC, Union Road, Cambridge, England.]); Gowda, Tokarčík et al. (2008[Gowda, B. T., Tokarčík, M., Kožíšek, J., Sowmya, B. P. & Fuess, H. (2008). Acta Cryst. E64, o1299.]).

[Scheme 1]

Experimental

Crystal data
  • C16H17NO

  • Mr = 239.31

  • Tetragonal, I 41 /a

  • a = 16.6224 (5) Å

  • c = 19.9508 (7) Å

  • V = 5512.5 (3) Å3

  • Z = 16

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 295 K

  • 0.48 × 0.07 × 0.07 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]) Tmin = 0.977, Tmax = 0.992

  • 17659 measured reflections

  • 2649 independent reflections

  • 1250 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.108

  • S = 0.99

  • 2649 reflections

  • 169 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.09 e Å−3

  • Δρmin = −0.12 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.892 (13) 2.025 (14) 2.8814 (16) 160.6 (15)
C7—H7⋯O1i 0.93 2.48 3.385 (2) 165
Symmetry code: (i) [y-{\script{1\over 4}}, -x+{\script{3\over 4}}, z-{\script{1\over 4}}].

Data collection: CrysAlis CCD (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2002[Brandenburg, K. (2002). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97, PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

As part of a study of the substituent effects on the crystal structures of benzanilides (Gowda, Foro et al., 2008, 2009; Gowda, Tokarčík et al., 2008), in the present work, the structure of 4-methyl-N-(2,6-dimethylphenyl)benzamide (I) has been determined. The conformations of the N—H and CO bonds in the amide segment of the structure are anti to each other (Fig.1), similar to that observed in 4-methyl-N-(phenyl)benzamide (Gowda, Foro et al., 2009), N-(2,6-dimethylphenyl)benzamide (Gowda, Tokarčík et al., 2008), 2-methyl-N-(2,6-dimethylphenyl)benzamide (Gowda, Foro et al., 2008) and other benzanilides, with similar bond parameters. The two aromatic rings in the structure of (I) make the dihedral angle of 78.8 (1)°, while the central amide core –NH—C(O)– is nearly coplanar with the benzoyl ring, forming a dihedral angle of 3.5 (2)°. Part of the crystal structure of (I), showing the formation of hydrogen-bonded chains (Table 1) running in [001] direction is shown in Fig.2.

Related literature top

For preparation of the title compound, see: Gowda et al. (2003). For related structures, see: Gowda, Foro et al. (2008, 2009); Gowda, Tokarčík et al. (2008).

Experimental top

The title compound was prepared according to the method described by Gowda et al. (2003). The purity of the compound was checked by determining its melting point. It was characterized by recording its infrared and NMR spectra. Needle-like colourless single crystals of the title compound were obtained by slow evaporation from an ethanol solution of the compound (0.5 g in about 30 ml of ethanol) at room temperature.

Refinement top

All H atoms except amide H atom were placed in calculated positions with C—H distances in the range 0.93–0.96 Å and constrained to ride on their parent atoms. The C14 methyl group was refined as orientationally disordered using the instruction AFIX 127. Amide H atom was seen in difference map and was refined with the N—H distance restrained to 0.86 (2) Å. The Uiso(H) values were set at 1.2Ueq(C-aromatic,N) or 1.5Ueq(C-methyl).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2002); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) showing the atom labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Part of the crystal structure of (I), showing the formation of hydrogen-bonded chains running in [001] direction. Symmetry code (i): y - 1/4, -x + 3/4, z - 1/4. H atoms not involved in hydrogen bonding have been omitted.
N-(2,6-Dimethylphenyl)-4-methylbenzamide top
Crystal data top
C16H17NODx = 1.153 Mg m3
Mr = 239.31Mo Kα radiation, λ = 0.71073 Å
Tetragonal, I41/aCell parameters from 3736 reflections
Hall symbol: -I 4adθ = 3.2–29.6°
a = 16.6224 (5) ŵ = 0.07 mm1
c = 19.9508 (7) ÅT = 295 K
V = 5512.5 (3) Å3Needle, colourless
Z = 160.48 × 0.07 × 0.07 mm
F(000) = 2048
Data collection top
Oxford Diffraction Xcalibur
diffractometer
2649 independent reflections
Graphite monochromator1250 reflections with I > 2σ(I)
Detector resolution: 10.434 pixels mm-1Rint = 0.039
ω scans with κ offsetsθmax = 25.8°, θmin = 3.2°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2008)
h = 1920
Tmin = 0.977, Tmax = 0.992k = 1820
17659 measured reflectionsl = 2424
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108H atoms treated by a mixture of independent and constrained refinement
S = 0.99 w = [exp(2.10(sinθ/λ)2)]/[σ2(Fo2) + (0.0579P)2],
where P = 0.33333Fo2 + 0.66667Fc2
2649 reflections(Δ/σ)max < 0.001
169 parametersΔρmax = 0.09 e Å3
2 restraintsΔρmin = 0.12 e Å3
Crystal data top
C16H17NOZ = 16
Mr = 239.31Mo Kα radiation
Tetragonal, I41/aµ = 0.07 mm1
a = 16.6224 (5) ÅT = 295 K
c = 19.9508 (7) Å0.48 × 0.07 × 0.07 mm
V = 5512.5 (3) Å3
Data collection top
Oxford Diffraction Xcalibur
diffractometer
2649 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2008)
1250 reflections with I > 2σ(I)
Tmin = 0.977, Tmax = 0.992Rint = 0.039
17659 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0382 restraints
wR(F2) = 0.108H atoms treated by a mixture of independent and constrained refinement
S = 0.99Δρmax = 0.09 e Å3
2649 reflectionsΔρmin = 0.12 e Å3
169 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.27487 (9)0.49299 (9)0.25025 (7)0.0506 (4)
O10.26537 (8)0.52765 (7)0.30418 (5)0.0697 (4)
N10.25165 (9)0.52730 (8)0.19248 (6)0.0573 (4)
H1N0.2648 (10)0.5037 (9)0.1539 (7)0.069*
C20.31055 (9)0.41089 (9)0.24642 (6)0.0483 (4)
C30.33373 (14)0.37365 (12)0.30424 (8)0.0900 (7)
H30.32890.40090.34480.108*
C40.36405 (15)0.29691 (13)0.30384 (9)0.0959 (7)
H40.37890.27350.34430.115*
C50.37308 (10)0.25407 (10)0.24670 (9)0.0606 (5)
C60.34988 (13)0.29146 (12)0.18953 (9)0.0828 (6)
H60.35480.2640.14910.099*
C70.31947 (13)0.36797 (11)0.18884 (8)0.0769 (6)
H70.30460.39110.14820.092*
C80.21647 (11)0.60581 (10)0.18922 (7)0.0565 (4)
C90.13575 (12)0.61467 (10)0.20521 (7)0.0630 (5)
C100.10337 (13)0.69090 (13)0.20139 (10)0.0801 (6)
H100.04960.69880.21250.096*
C110.14898 (17)0.75510 (13)0.18149 (11)0.0937 (7)
H110.1260.8060.17930.112*
C120.22797 (16)0.74490 (12)0.16481 (10)0.0885 (7)
H120.25790.78890.15050.106*
C130.26422 (12)0.66992 (11)0.16895 (9)0.0700 (5)
C140.40544 (13)0.16975 (11)0.24629 (11)0.0866 (6)
H14A0.39160.14410.20470.13*0.5
H14B0.38250.14010.28290.13*0.5
H14C0.46290.17110.2510.13*0.5
H14D0.43310.15940.28770.13*0.5
H14E0.44220.16350.20950.13*0.5
H14F0.36180.13240.24140.13*0.5
C150.08424 (12)0.54478 (13)0.22548 (10)0.0842 (6)
H15A0.08220.50640.18950.126*
H15B0.03090.56340.23530.126*
H15C0.10670.51970.26460.126*
C160.35125 (14)0.65809 (14)0.15300 (11)0.0971 (7)
H16A0.37780.63380.19060.146*
H16B0.37560.70920.14350.146*
H16C0.35630.62370.11460.146*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0587 (10)0.0565 (10)0.0367 (8)0.0018 (8)0.0004 (7)0.0000 (7)
O10.1009 (10)0.0724 (8)0.0358 (6)0.0166 (7)0.0008 (5)0.0073 (5)
N10.0802 (10)0.0571 (9)0.0347 (6)0.0149 (7)0.0026 (6)0.0030 (6)
C20.0532 (9)0.0524 (10)0.0391 (8)0.0019 (8)0.0000 (7)0.0014 (7)
C30.144 (2)0.0805 (15)0.0451 (10)0.0401 (14)0.0106 (11)0.0004 (9)
C40.149 (2)0.0801 (15)0.0588 (12)0.0407 (15)0.0138 (12)0.0123 (10)
C50.0590 (11)0.0547 (11)0.0681 (11)0.0028 (8)0.0006 (8)0.0053 (9)
C60.1222 (18)0.0660 (14)0.0603 (11)0.0237 (12)0.0004 (11)0.0090 (9)
C70.1186 (17)0.0670 (13)0.0450 (9)0.0233 (11)0.0040 (10)0.0010 (8)
C80.0777 (13)0.0525 (11)0.0392 (8)0.0119 (10)0.0078 (8)0.0030 (7)
C90.0758 (14)0.0587 (12)0.0546 (10)0.0104 (10)0.0076 (8)0.0021 (8)
C100.0811 (14)0.0717 (15)0.0874 (13)0.0192 (12)0.0078 (11)0.0007 (11)
C110.116 (2)0.0634 (15)0.1019 (16)0.0252 (15)0.0078 (14)0.0029 (11)
C120.116 (2)0.0550 (13)0.0946 (14)0.0017 (13)0.0019 (13)0.0062 (10)
C130.0870 (15)0.0604 (13)0.0625 (10)0.0017 (11)0.0007 (9)0.0021 (9)
C140.0941 (16)0.0622 (13)0.1034 (15)0.0131 (11)0.0005 (12)0.0093 (11)
C150.0811 (15)0.0787 (14)0.0928 (14)0.0011 (12)0.0017 (11)0.0046 (10)
C160.0926 (17)0.0928 (16)0.1059 (16)0.0052 (13)0.0143 (13)0.0034 (12)
Geometric parameters (Å, º) top
C1—O11.2307 (16)C10—C111.368 (3)
C1—N11.3427 (17)C10—H100.93
C1—C21.490 (2)C11—C121.365 (3)
N1—C81.431 (2)C11—H110.93
N1—H1N0.892 (13)C12—C131.387 (3)
C2—C71.360 (2)C12—H120.93
C2—C31.365 (2)C13—C161.494 (3)
C3—C41.372 (3)C14—H14A0.96
C3—H30.93C14—H14B0.96
C4—C51.352 (2)C14—H14C0.96
C4—H40.93C14—H14D0.96
C5—C61.355 (2)C14—H14E0.96
C5—C141.501 (2)C14—H14F0.96
C6—C71.369 (3)C15—H15A0.96
C6—H60.93C15—H15B0.96
C7—H70.93C15—H15C0.96
C8—C91.387 (2)C16—H16A0.96
C8—C131.389 (2)C16—H16B0.96
C9—C101.379 (2)C16—H16C0.96
C9—C151.499 (3)
O1—C1—N1120.98 (15)C13—C12—H12119.5
O1—C1—C2121.65 (13)C12—C13—C8117.29 (19)
N1—C1—C2117.35 (13)C12—C13—C16121.75 (19)
C1—N1—C8122.94 (12)C8—C13—C16120.95 (18)
C1—N1—H1N119.0 (11)C5—C14—H14A109.5
C8—N1—H1N117.5 (10)C5—C14—H14B109.5
C7—C2—C3116.44 (15)H14A—C14—H14B109.5
C7—C2—C1124.54 (14)C5—C14—H14C109.5
C3—C2—C1118.98 (14)H14A—C14—H14C109.5
C2—C3—C4121.38 (16)H14B—C14—H14C109.5
C2—C3—H3119.3C5—C14—H14D109.5
C4—C3—H3119.3H14A—C14—H14D141.1
C5—C4—C3122.37 (17)H14B—C14—H14D56.3
C5—C4—H4118.8H14C—C14—H14D56.3
C3—C4—H4118.8C5—C14—H14E109.5
C4—C5—C6115.88 (16)H14A—C14—H14E56.3
C4—C5—C14122.41 (17)H14B—C14—H14E141.1
C6—C5—C14121.70 (17)H14C—C14—H14E56.3
C5—C6—C7122.67 (16)H14D—C14—H14E109.5
C5—C6—H6118.7C5—C14—H14F109.5
C7—C6—H6118.7H14A—C14—H14F56.3
C2—C7—C6121.27 (15)H14B—C14—H14F56.3
C2—C7—H7119.4H14C—C14—H14F141.1
C6—C7—H7119.4H14D—C14—H14F109.5
C9—C8—C13122.57 (16)H14E—C14—H14F109.5
C9—C8—N1118.78 (16)C9—C15—H15A109.5
C13—C8—N1118.63 (17)C9—C15—H15B109.5
C10—C9—C8117.55 (18)H15A—C15—H15B109.5
C10—C9—C15120.28 (19)C9—C15—H15C109.5
C8—C9—C15122.17 (16)H15A—C15—H15C109.5
C11—C10—C9121.1 (2)H15B—C15—H15C109.5
C11—C10—H10119.4C13—C16—H16A109.5
C9—C10—H10119.4C13—C16—H16B109.5
C12—C11—C10120.47 (19)H16A—C16—H16B109.5
C12—C11—H11119.8C13—C16—H16C109.5
C10—C11—H11119.8H16A—C16—H16C109.5
C11—C12—C13121.0 (2)H16B—C16—H16C109.5
C11—C12—H12119.5
O1—C1—N1—C81.4 (3)C1—N1—C8—C979.3 (2)
C2—C1—N1—C8179.93 (15)C1—N1—C8—C13101.84 (18)
O1—C1—C2—C7177.04 (17)C13—C8—C9—C101.0 (2)
N1—C1—C2—C71.5 (3)N1—C8—C9—C10179.76 (14)
O1—C1—C2—C30.5 (3)C13—C8—C9—C15178.53 (16)
N1—C1—C2—C3179.03 (17)N1—C8—C9—C150.2 (2)
C7—C2—C3—C40.2 (3)C8—C9—C10—C111.0 (3)
C1—C2—C3—C4177.5 (2)C15—C9—C10—C11178.47 (18)
C2—C3—C4—C50.3 (4)C9—C10—C11—C120.1 (3)
C3—C4—C5—C60.3 (3)C10—C11—C12—C131.4 (3)
C3—C4—C5—C14179.3 (2)C11—C12—C13—C81.4 (3)
C4—C5—C6—C70.3 (3)C11—C12—C13—C16178.01 (19)
C14—C5—C6—C7179.3 (2)C9—C8—C13—C120.2 (2)
C3—C2—C7—C60.2 (3)N1—C8—C13—C12178.56 (15)
C1—C2—C7—C6177.35 (18)C9—C8—C13—C16179.20 (15)
C5—C6—C7—C20.3 (3)N1—C8—C13—C162.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.89 (1)2.03 (1)2.8814 (16)161 (2)
C7—H7···O1i0.932.483.385 (2)165
Symmetry code: (i) y1/4, x+3/4, z1/4.

Experimental details

Crystal data
Chemical formulaC16H17NO
Mr239.31
Crystal system, space groupTetragonal, I41/a
Temperature (K)295
a, c (Å)16.6224 (5), 19.9508 (7)
V3)5512.5 (3)
Z16
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.48 × 0.07 × 0.07
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2008)
Tmin, Tmax0.977, 0.992
No. of measured, independent and
observed [I > 2σ(I)] reflections
17659, 2649, 1250
Rint0.039
(sin θ/λ)max1)0.612
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.108, 0.99
No. of reflections2649
No. of parameters169
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.09, 0.12

Computer programs: CrysAlis CCD (Oxford Diffraction, 2008), CrysAlis RED (Oxford Diffraction, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2002), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.892 (13)2.025 (14)2.8814 (16)160.6 (15)
C7—H7···O1i0.932.483.385 (2)165
Symmetry code: (i) y1/4, x+3/4, z1/4.
 

Acknowledgements

BTG thanks the Alexander von Humboldt Foundation, Bonn, Germany, for an extension of his research fellowship. MT and JK thank the Grant Agency of the Slovak Republic (VEGA 1/0817/08) and Structural Funds, Interreg IIIA, for financial support in purchasing the diffractometer.

References

First citationBrandenburg, K. (2002). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Sowmya, B. P. & Fuess, H. (2008). Acta Cryst. E64, o1605.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Sowmya, B. P. & Fuess, H. (2009). Private communication (refcode 691312). CCDC, Union Road, Cambridge, England.  Google Scholar
First citationGowda, B. T., Jyothi, K., Paulus, H. & Fuess, H. (2003). Z. Naturforsch. Teil A, 58, 225–230.  CAS Google Scholar
First citationGowda, B. T., Tokarčík, M., Kožíšek, J., Sowmya, B. P. & Fuess, H. (2008). Acta Cryst. E64, o1299.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds