metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­aqua­bis­(tetra­zolo[1,5-a]pyridine-8-carboxyl­ato-κ2N1,O)manganese(II) dihydrate

aSchool of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300191, People's Republic of China
*Correspondence e-mail: jiande-zhao@163.com

(Received 7 June 2009; accepted 17 June 2009; online 24 June 2009)

In the title compound, [Mn(C6H3N4O2)2(H2O)2]·2H2O, the MnII atom is located on a twofold rotation axis and is octa­hedrally coordinated by the N and O atoms of the chelating tetra­zolo[1,5-a]pyridine-8-carboxyl­ate anions and the O atoms of two water mol­ecules. Hydrogen bonds of the O—H⋯O and O—H⋯N types lead to the formation of layers parallel to (100).

Related literature

For background to coordination compounds, see: Kulynych & Shimizu (2002[Kulynych, A. K. & Shimizu, G. K. H. (2002). CrystEngComm, 4, 102-105.]); Liu et al. (2001[Liu, C.-M., Gao, S., Hu, H.-M. & Wang, Z.-M. (2001). Chem Commun. pp. 1636-1637.]); Xue & Liu (2009[Xue, M. & Liu, F.-C. (2009). Acta Cryst. E65, m684.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn(C6H3N4O2)2(H2O)2]·2H2O

  • Mr = 453.25

  • Orthorhombic, P n n a

  • a = 19.041 (4) Å

  • b = 11.694 (2) Å

  • c = 7.5371 (15) Å

  • V = 1678.3 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.85 mm−1

  • T = 293 K

  • 0.5 × 0.5 × 0.5 mm

Data collection
  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.60, Tmax = 0.662

  • 16422 measured reflections

  • 1925 independent reflections

  • 1755 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.081

  • S = 1.20

  • 1925 reflections

  • 132 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H11⋯O2i 0.85 1.93 2.7644 (17) 166
O1W—H12⋯O2Wii 0.85 1.91 2.7538 (19) 171
O2W—H21⋯O1 0.89 1.95 2.8287 (18) 172
O2W—H22⋯N2iii 0.76 2.25 3.003 (2) 169
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) x, y, z+1; (iii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: SCXmini (Rigaku, 2006[Rigaku (2006). SCXmini Benchtop Crystallography System Software. Rigaku Americas Corporation, The Woodlands, Texas, USA.]); cell refinement: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Americas Corporation, The Woodlands, Texas, USA.]); data reduction: PROCESS-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]), ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Coordination complexes have attracted great attention in recent years. (Kulynych & Shimizu, 2002). Polydentate ligand have some heteroatom can coordinated to metal in different ways, and can form Hydrogen bonds between to give supermolecule net(Liu et al., 2001). The tetrazolo(1,5-a)pyridine-8-carboxylate have multi-coordinated position and may behavs as a polydentate ligand. The related maganese structure with two water molecules as solvent has been recently reported (Xue & Liu, 2009).

In the title compound, the manganese atom is located on a two fold axis and octahedrally coordinated by two water molecules and two bidentate N,O tetrazolo(1,5-a)pyridine-8-carboxylate,(Fig. 1).

Each tetrazolo(1,5-a) pyridine-8-carboxylate chelates to one manganese atom. One type of water coordinates to the manganese atom whereas the other acts as lattice water. A two dimensional supramolecular network parallel to the (1 0 0) plane, is formed by the hydrogen bond interactions between the water molecules and the nitrogen of the tetrazolo(1,5-a)pyridine-8-carboxylate ligands (Table 1, Fig. 2).

The structure is closely related to the dihydrate complex (Xue & Liu, 2009), the only difference being the occurence of two solvate water molecules in the previous structure.

Related literature top

For background to coordination compounds, see: Kulynych & Shimizu (2002); Liu et al. (2001); Xue & Liu (2009).

Experimental top

A mixture of manganeset(II)nitrate and sodium azide (1 mmol), 2-chloronicotinic acid(0.5 mmol), in 10 ml of water was sealed in a Teflon-lined stainless-steel Parr bomb that was heated at 363 K for 48 h. Red crystals of the title complex were collected after the bomb was allowed to cool to room temperature.Yield 20% based on manganese(II). Caution: Azides may be explosive. Although we have met no problems in this work, only a small amount of them should be prepared and handled with great caution.

Refinement top

All H atoms attached to C atoms were fixed geometrically and treated as riding with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C). H atoms of water molecule were located in difference Fourier maps and included in the subsequent refinement using restraints (O-H= 0.85 (1)Å and H···H= 1.39 (2)Å) with Uiso(H) = 1.5Ueq(O). In the last stage of refinement they were treated as riding on their parent O atoms.

Computing details top

Data collection: SCXmini (Rigaku, 2006); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: PROCESS-AUTO (Rigaku, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the title compound showing the coordination of Mn atom with the atom-labelling scheme. Ellipsoids are drawn at the 30% probability level. H atoms and the solvate water molecule have been omitted for clarity. [ Symmetry codes: (i) -x+1/2, -y, z]
[Figure 2] Fig. 2. Partial packing view showing the formation of layers parallel to the (1 0 0) plane. H atoms not involved in hydrogen bondings have been omitted for clarity. H bonds are shown as dashed lines.
Diaquabis(tetrazolo[1,5-a]pyridine-8-carboxylato- κ2N1,O)manganese(II) dihydrate top
Crystal data top
[Mn(C6H3N4O2)2(H2O)2]·2H2OF(000) = 924
Mr = 453.25Dx = 1.794 Mg m3
Orthorhombic, PnnaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2a 2bcCell parameters from 15650 reflections
a = 19.041 (4) Åθ = 3.2–27.9°
b = 11.694 (2) ŵ = 0.85 mm1
c = 7.5371 (15) ÅT = 293 K
V = 1678.3 (6) Å3Block, yellow
Z = 40.5 × 0.5 × 0.5 mm
Data collection top
Rigaku SCXmini
diffractometer
1925 independent reflections
Radiation source: fine-focus sealed tube1755 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ω scansθmax = 27.5°, θmin = 3.2°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 2424
Tmin = 0.60, Tmax = 0.662k = 1515
16422 measured reflectionsl = 99
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.081H-atom parameters constrained
S = 1.20 w = 1/[σ2(Fo2) + (0.0386P)2 + 0.6168P]
where P = (Fo2 + 2Fc2)/3
1925 reflections(Δ/σ)max = 0.001
132 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
[Mn(C6H3N4O2)2(H2O)2]·2H2OV = 1678.3 (6) Å3
Mr = 453.25Z = 4
Orthorhombic, PnnaMo Kα radiation
a = 19.041 (4) ŵ = 0.85 mm1
b = 11.694 (2) ÅT = 293 K
c = 7.5371 (15) Å0.5 × 0.5 × 0.5 mm
Data collection top
Rigaku SCXmini
diffractometer
1925 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
1755 reflections with I > 2σ(I)
Tmin = 0.60, Tmax = 0.662Rint = 0.029
16422 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.081H-atom parameters constrained
S = 1.20Δρmax = 0.26 e Å3
1925 reflectionsΔρmin = 0.34 e Å3
132 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.25000.00000.86700 (4)0.01925 (12)
O10.19724 (6)0.09901 (10)0.66846 (16)0.0263 (3)
O1W0.21023 (6)0.11467 (10)1.06874 (17)0.0294 (3)
H110.18880.17461.03590.044*
H120.23510.12701.15990.044*
O20.12016 (6)0.21215 (10)0.53402 (17)0.0306 (3)
N10.14757 (7)0.09265 (11)0.85974 (18)0.0233 (3)
N20.12692 (8)0.18779 (12)0.9450 (2)0.0279 (3)
N30.05962 (8)0.20081 (12)0.9411 (2)0.0285 (3)
N40.03454 (7)0.10924 (11)0.84998 (17)0.0212 (3)
C10.13563 (9)0.13028 (13)0.6301 (2)0.0201 (3)
C20.07619 (8)0.05909 (13)0.7039 (2)0.0194 (3)
C30.00732 (9)0.08539 (14)0.6756 (2)0.0244 (3)
H30.00360.15280.61610.029*
C40.04836 (9)0.01396 (14)0.7335 (2)0.0276 (4)
H40.09460.03550.71220.033*
C50.03481 (9)0.08466 (15)0.8190 (2)0.0261 (4)
H50.07060.13360.85510.031*
C60.08933 (8)0.04294 (13)0.7994 (2)0.0185 (3)
O2W0.28824 (7)0.12927 (11)0.37555 (17)0.0354 (3)
H210.25900.11320.46350.053*
H220.31030.17910.40790.053*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.01548 (18)0.02138 (19)0.02089 (19)0.00086 (12)0.0000.000
O10.0199 (6)0.0302 (6)0.0287 (6)0.0007 (5)0.0003 (5)0.0108 (5)
O1W0.0325 (7)0.0280 (6)0.0277 (6)0.0091 (5)0.0033 (5)0.0048 (5)
O20.0297 (6)0.0260 (6)0.0362 (7)0.0035 (5)0.0053 (6)0.0141 (5)
N10.0222 (7)0.0181 (6)0.0295 (7)0.0005 (5)0.0016 (5)0.0066 (5)
N20.0295 (7)0.0215 (7)0.0326 (8)0.0017 (6)0.0003 (6)0.0083 (6)
N30.0312 (8)0.0219 (7)0.0324 (8)0.0038 (6)0.0002 (6)0.0079 (6)
N40.0215 (7)0.0194 (6)0.0226 (7)0.0044 (5)0.0011 (5)0.0018 (5)
C10.0230 (8)0.0190 (7)0.0185 (7)0.0021 (6)0.0002 (6)0.0016 (6)
C20.0224 (8)0.0175 (7)0.0183 (7)0.0011 (6)0.0004 (6)0.0007 (6)
C30.0248 (8)0.0245 (8)0.0239 (8)0.0018 (6)0.0025 (6)0.0016 (6)
C40.0171 (7)0.0369 (9)0.0289 (9)0.0015 (7)0.0009 (7)0.0018 (7)
C50.0178 (8)0.0326 (9)0.0279 (8)0.0068 (7)0.0027 (7)0.0021 (7)
C60.0177 (7)0.0187 (7)0.0190 (7)0.0023 (6)0.0001 (6)0.0003 (6)
O2W0.0383 (8)0.0386 (7)0.0293 (7)0.0081 (6)0.0032 (5)0.0043 (5)
Geometric parameters (Å, º) top
Mn1—O12.1422 (12)N3—N41.3588 (19)
Mn1—O1i2.1422 (12)N4—C61.3546 (19)
Mn1—O1W2.1642 (12)N4—C51.372 (2)
Mn1—O1Wi2.1642 (12)C1—C21.511 (2)
Mn1—N12.2317 (14)C2—C31.364 (2)
Mn1—N1i2.2317 (14)C2—C61.416 (2)
O1—C11.262 (2)C3—C41.418 (2)
O1W—H110.8477C3—H30.9300
O1W—H120.8471C4—C51.346 (2)
O2—C11.2362 (19)C4—H40.9300
N1—C61.332 (2)C5—H50.9300
N1—N21.3438 (19)O2W—H210.8853
N2—N31.291 (2)O2W—H220.7585
O1—Mn1—O1i91.38 (7)N2—N3—N4105.51 (12)
O1—Mn1—O1W89.53 (5)C6—N4—N3108.82 (13)
O1i—Mn1—O1W171.80 (5)C6—N4—C5125.01 (14)
O1—Mn1—O1Wi171.80 (5)N3—N4—C5126.13 (14)
O1i—Mn1—O1Wi89.53 (5)O2—C1—O1125.44 (15)
O1W—Mn1—O1Wi90.73 (7)O2—C1—C2117.64 (14)
O1—Mn1—N180.53 (5)O1—C1—C2116.89 (13)
O1i—Mn1—N197.49 (5)C3—C2—C6116.08 (14)
O1W—Mn1—N190.70 (5)C3—C2—C1122.57 (14)
O1Wi—Mn1—N191.27 (5)C6—C2—C1121.27 (14)
O1—Mn1—N1i97.49 (5)C2—C3—C4122.53 (15)
O1i—Mn1—N1i80.53 (5)C2—C3—H3118.7
O1W—Mn1—N1i91.27 (5)C4—C3—H3118.7
O1Wi—Mn1—N1i90.70 (5)C5—C4—C3120.56 (16)
N1—Mn1—N1i177.19 (7)C5—C4—H4119.7
C1—O1—Mn1138.78 (10)C3—C4—H4119.7
Mn1—O1W—H11118.4C4—C5—N4116.47 (15)
Mn1—O1W—H12118.7C4—C5—H5121.8
H11—O1W—H12111.4N4—C5—H5121.8
C6—N1—N2106.31 (13)N1—C6—N4107.18 (13)
C6—N1—Mn1121.61 (10)N1—C6—C2133.50 (14)
N2—N1—Mn1130.24 (11)N4—C6—C2119.29 (14)
N3—N2—N1112.16 (13)H21—O2W—H22105.7
Symmetry code: (i) x+1/2, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H11···O2ii0.851.932.7644 (17)166
O1W—H12···O2Wiii0.851.912.7538 (19)171
O2W—H21···O10.891.952.8287 (18)172
O2W—H22···N2iv0.762.253.003 (2)169
Symmetry codes: (ii) x, y+1/2, z+3/2; (iii) x, y, z+1; (iv) x+1/2, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formula[Mn(C6H3N4O2)2(H2O)2]·2H2O
Mr453.25
Crystal system, space groupOrthorhombic, Pnna
Temperature (K)293
a, b, c (Å)19.041 (4), 11.694 (2), 7.5371 (15)
V3)1678.3 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.85
Crystal size (mm)0.5 × 0.5 × 0.5
Data collection
DiffractometerRigaku SCXmini
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.60, 0.662
No. of measured, independent and
observed [I > 2σ(I)] reflections
16422, 1925, 1755
Rint0.029
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.081, 1.20
No. of reflections1925
No. of parameters132
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.34

Computer programs: SCXmini (Rigaku, 2006), PROCESS-AUTO (Rigaku, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H11···O2i0.851.932.7644 (17)166.2
O1W—H12···O2Wii0.851.912.7538 (19)170.6
O2W—H21···O10.891.952.8287 (18)172.2
O2W—H22···N2iii0.762.253.003 (2)169.2
Symmetry codes: (i) x, y+1/2, z+3/2; (ii) x, y, z+1; (iii) x+1/2, y+1/2, z+3/2.
 

References

First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationKulynych, A. K. & Shimizu, G. K. H. (2002). CrystEngComm, 4, 102–105.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiu, C.-M., Gao, S., Hu, H.-M. & Wang, Z.-M. (2001). Chem Commun. pp. 1636–1637.  Web of Science CSD CrossRef Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Americas Corporation, The Woodlands, Texas, USA.  Google Scholar
First citationRigaku (2006). SCXmini Benchtop Crystallography System Software. Rigaku Americas Corporation, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXue, M. & Liu, F.-C. (2009). Acta Cryst. E65, m684.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds