metal-organic compounds
Diaquabis(tetrazolo[1,5-a]pyridine-8-carboxylato-κ2N1,O)manganese(II) dihydrate
aSchool of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300191, People's Republic of China
*Correspondence e-mail: jiande-zhao@163.com
In the title compound, [Mn(C6H3N4O2)2(H2O)2]·2H2O, the MnII atom is located on a twofold rotation axis and is octahedrally coordinated by the N and O atoms of the chelating tetrazolo[1,5-a]pyridine-8-carboxylate anions and the O atoms of two water molecules. Hydrogen bonds of the O—H⋯O and O—H⋯N types lead to the formation of layers parallel to (100).
Related literature
For background to coordination compounds, see: Kulynych & Shimizu (2002); Liu et al. (2001); Xue & Liu (2009).
Experimental
Crystal data
|
Refinement
|
Data collection: SCXmini (Rigaku, 2006); cell PROCESS-AUTO (Rigaku, 1998); data reduction: PROCESS-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).
Supporting information
10.1107/S1600536809023253/dn2463sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809023253/dn2463Isup2.hkl
A mixture of manganeset(II)nitrate and sodium azide (1 mmol), 2-chloronicotinic acid(0.5 mmol), in 10 ml of water was sealed in a Teflon-lined stainless-steel Parr bomb that was heated at 363 K for 48 h. Red crystals of the title complex were collected after the bomb was allowed to cool to room temperature.Yield 20% based on manganese(II). Caution:
may be explosive. Although we have met no problems in this work, only a small amount of them should be prepared and handled with great caution.All H atoms attached to C atoms were fixed geometrically and treated as riding with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C). H atoms of water molecule were located in difference Fourier maps and included in the subsequent
using restraints (O-H= 0.85 (1)Å and H···H= 1.39 (2)Å) with Uiso(H) = 1.5Ueq(O). In the last stage of they were treated as riding on their parent O atoms.Data collection: SCXmini (Rigaku, 2006); cell
PROCESS-AUTO (Rigaku, 1998); data reduction: PROCESS-AUTO (Rigaku, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).[Mn(C6H3N4O2)2(H2O)2]·2H2O | F(000) = 924 |
Mr = 453.25 | Dx = 1.794 Mg m−3 |
Orthorhombic, Pnna | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2a 2bc | Cell parameters from 15650 reflections |
a = 19.041 (4) Å | θ = 3.2–27.9° |
b = 11.694 (2) Å | µ = 0.85 mm−1 |
c = 7.5371 (15) Å | T = 293 K |
V = 1678.3 (6) Å3 | Block, yellow |
Z = 4 | 0.5 × 0.5 × 0.5 mm |
Rigaku SCXmini diffractometer | 1925 independent reflections |
Radiation source: fine-focus sealed tube | 1755 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.029 |
ω scans | θmax = 27.5°, θmin = 3.2° |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | h = −24→24 |
Tmin = 0.60, Tmax = 0.662 | k = −15→15 |
16422 measured reflections | l = −9→9 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.032 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.081 | H-atom parameters constrained |
S = 1.20 | w = 1/[σ2(Fo2) + (0.0386P)2 + 0.6168P] where P = (Fo2 + 2Fc2)/3 |
1925 reflections | (Δ/σ)max = 0.001 |
132 parameters | Δρmax = 0.26 e Å−3 |
0 restraints | Δρmin = −0.34 e Å−3 |
[Mn(C6H3N4O2)2(H2O)2]·2H2O | V = 1678.3 (6) Å3 |
Mr = 453.25 | Z = 4 |
Orthorhombic, Pnna | Mo Kα radiation |
a = 19.041 (4) Å | µ = 0.85 mm−1 |
b = 11.694 (2) Å | T = 293 K |
c = 7.5371 (15) Å | 0.5 × 0.5 × 0.5 mm |
Rigaku SCXmini diffractometer | 1925 independent reflections |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | 1755 reflections with I > 2σ(I) |
Tmin = 0.60, Tmax = 0.662 | Rint = 0.029 |
16422 measured reflections |
R[F2 > 2σ(F2)] = 0.032 | 0 restraints |
wR(F2) = 0.081 | H-atom parameters constrained |
S = 1.20 | Δρmax = 0.26 e Å−3 |
1925 reflections | Δρmin = −0.34 e Å−3 |
132 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Mn1 | 0.2500 | 0.0000 | 0.86700 (4) | 0.01925 (12) | |
O1 | 0.19724 (6) | 0.09901 (10) | 0.66846 (16) | 0.0263 (3) | |
O1W | 0.21023 (6) | 0.11467 (10) | 1.06874 (17) | 0.0294 (3) | |
H11 | 0.1888 | 0.1746 | 1.0359 | 0.044* | |
H12 | 0.2351 | 0.1270 | 1.1599 | 0.044* | |
O2 | 0.12016 (6) | 0.21215 (10) | 0.53402 (17) | 0.0306 (3) | |
N1 | 0.14757 (7) | −0.09265 (11) | 0.85974 (18) | 0.0233 (3) | |
N2 | 0.12692 (8) | −0.18779 (12) | 0.9450 (2) | 0.0279 (3) | |
N3 | 0.05962 (8) | −0.20081 (12) | 0.9411 (2) | 0.0285 (3) | |
N4 | 0.03454 (7) | −0.10924 (11) | 0.84998 (17) | 0.0212 (3) | |
C1 | 0.13563 (9) | 0.13028 (13) | 0.6301 (2) | 0.0201 (3) | |
C2 | 0.07619 (8) | 0.05909 (13) | 0.7039 (2) | 0.0194 (3) | |
C3 | 0.00732 (9) | 0.08539 (14) | 0.6756 (2) | 0.0244 (3) | |
H3 | −0.0036 | 0.1528 | 0.6161 | 0.029* | |
C4 | −0.04836 (9) | 0.01396 (14) | 0.7335 (2) | 0.0276 (4) | |
H4 | −0.0946 | 0.0355 | 0.7122 | 0.033* | |
C5 | −0.03481 (9) | −0.08466 (15) | 0.8190 (2) | 0.0261 (4) | |
H5 | −0.0706 | −0.1336 | 0.8551 | 0.031* | |
C6 | 0.08933 (8) | −0.04294 (13) | 0.7994 (2) | 0.0185 (3) | |
O2W | 0.28824 (7) | 0.12927 (11) | 0.37555 (17) | 0.0354 (3) | |
H21 | 0.2590 | 0.1132 | 0.4635 | 0.053* | |
H22 | 0.3103 | 0.1791 | 0.4079 | 0.053* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Mn1 | 0.01548 (18) | 0.02138 (19) | 0.02089 (19) | 0.00086 (12) | 0.000 | 0.000 |
O1 | 0.0199 (6) | 0.0302 (6) | 0.0287 (6) | −0.0007 (5) | −0.0003 (5) | 0.0108 (5) |
O1W | 0.0325 (7) | 0.0280 (6) | 0.0277 (6) | 0.0091 (5) | −0.0033 (5) | −0.0048 (5) |
O2 | 0.0297 (6) | 0.0260 (6) | 0.0362 (7) | −0.0035 (5) | −0.0053 (6) | 0.0141 (5) |
N1 | 0.0222 (7) | 0.0181 (6) | 0.0295 (7) | −0.0005 (5) | −0.0016 (5) | 0.0066 (5) |
N2 | 0.0295 (7) | 0.0215 (7) | 0.0326 (8) | −0.0017 (6) | 0.0003 (6) | 0.0083 (6) |
N3 | 0.0312 (8) | 0.0219 (7) | 0.0324 (8) | −0.0038 (6) | 0.0002 (6) | 0.0079 (6) |
N4 | 0.0215 (7) | 0.0194 (6) | 0.0226 (7) | −0.0044 (5) | 0.0011 (5) | 0.0018 (5) |
C1 | 0.0230 (8) | 0.0190 (7) | 0.0185 (7) | −0.0021 (6) | −0.0002 (6) | 0.0016 (6) |
C2 | 0.0224 (8) | 0.0175 (7) | 0.0183 (7) | −0.0011 (6) | 0.0004 (6) | 0.0007 (6) |
C3 | 0.0248 (8) | 0.0245 (8) | 0.0239 (8) | 0.0018 (6) | −0.0025 (6) | 0.0016 (6) |
C4 | 0.0171 (7) | 0.0369 (9) | 0.0289 (9) | 0.0015 (7) | −0.0009 (7) | −0.0018 (7) |
C5 | 0.0178 (8) | 0.0326 (9) | 0.0279 (8) | −0.0068 (7) | 0.0027 (7) | −0.0021 (7) |
C6 | 0.0177 (7) | 0.0187 (7) | 0.0190 (7) | −0.0023 (6) | 0.0001 (6) | −0.0003 (6) |
O2W | 0.0383 (8) | 0.0386 (7) | 0.0293 (7) | −0.0081 (6) | 0.0032 (5) | −0.0043 (5) |
Mn1—O1 | 2.1422 (12) | N3—N4 | 1.3588 (19) |
Mn1—O1i | 2.1422 (12) | N4—C6 | 1.3546 (19) |
Mn1—O1W | 2.1642 (12) | N4—C5 | 1.372 (2) |
Mn1—O1Wi | 2.1642 (12) | C1—C2 | 1.511 (2) |
Mn1—N1 | 2.2317 (14) | C2—C3 | 1.364 (2) |
Mn1—N1i | 2.2317 (14) | C2—C6 | 1.416 (2) |
O1—C1 | 1.262 (2) | C3—C4 | 1.418 (2) |
O1W—H11 | 0.8477 | C3—H3 | 0.9300 |
O1W—H12 | 0.8471 | C4—C5 | 1.346 (2) |
O2—C1 | 1.2362 (19) | C4—H4 | 0.9300 |
N1—C6 | 1.332 (2) | C5—H5 | 0.9300 |
N1—N2 | 1.3438 (19) | O2W—H21 | 0.8853 |
N2—N3 | 1.291 (2) | O2W—H22 | 0.7585 |
O1—Mn1—O1i | 91.38 (7) | N2—N3—N4 | 105.51 (12) |
O1—Mn1—O1W | 89.53 (5) | C6—N4—N3 | 108.82 (13) |
O1i—Mn1—O1W | 171.80 (5) | C6—N4—C5 | 125.01 (14) |
O1—Mn1—O1Wi | 171.80 (5) | N3—N4—C5 | 126.13 (14) |
O1i—Mn1—O1Wi | 89.53 (5) | O2—C1—O1 | 125.44 (15) |
O1W—Mn1—O1Wi | 90.73 (7) | O2—C1—C2 | 117.64 (14) |
O1—Mn1—N1 | 80.53 (5) | O1—C1—C2 | 116.89 (13) |
O1i—Mn1—N1 | 97.49 (5) | C3—C2—C6 | 116.08 (14) |
O1W—Mn1—N1 | 90.70 (5) | C3—C2—C1 | 122.57 (14) |
O1Wi—Mn1—N1 | 91.27 (5) | C6—C2—C1 | 121.27 (14) |
O1—Mn1—N1i | 97.49 (5) | C2—C3—C4 | 122.53 (15) |
O1i—Mn1—N1i | 80.53 (5) | C2—C3—H3 | 118.7 |
O1W—Mn1—N1i | 91.27 (5) | C4—C3—H3 | 118.7 |
O1Wi—Mn1—N1i | 90.70 (5) | C5—C4—C3 | 120.56 (16) |
N1—Mn1—N1i | 177.19 (7) | C5—C4—H4 | 119.7 |
C1—O1—Mn1 | 138.78 (10) | C3—C4—H4 | 119.7 |
Mn1—O1W—H11 | 118.4 | C4—C5—N4 | 116.47 (15) |
Mn1—O1W—H12 | 118.7 | C4—C5—H5 | 121.8 |
H11—O1W—H12 | 111.4 | N4—C5—H5 | 121.8 |
C6—N1—N2 | 106.31 (13) | N1—C6—N4 | 107.18 (13) |
C6—N1—Mn1 | 121.61 (10) | N1—C6—C2 | 133.50 (14) |
N2—N1—Mn1 | 130.24 (11) | N4—C6—C2 | 119.29 (14) |
N3—N2—N1 | 112.16 (13) | H21—O2W—H22 | 105.7 |
Symmetry code: (i) −x+1/2, −y, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H11···O2ii | 0.85 | 1.93 | 2.7644 (17) | 166 |
O1W—H12···O2Wiii | 0.85 | 1.91 | 2.7538 (19) | 171 |
O2W—H21···O1 | 0.89 | 1.95 | 2.8287 (18) | 172 |
O2W—H22···N2iv | 0.76 | 2.25 | 3.003 (2) | 169 |
Symmetry codes: (ii) x, −y+1/2, −z+3/2; (iii) x, y, z+1; (iv) −x+1/2, y+1/2, −z+3/2. |
Experimental details
Crystal data | |
Chemical formula | [Mn(C6H3N4O2)2(H2O)2]·2H2O |
Mr | 453.25 |
Crystal system, space group | Orthorhombic, Pnna |
Temperature (K) | 293 |
a, b, c (Å) | 19.041 (4), 11.694 (2), 7.5371 (15) |
V (Å3) | 1678.3 (6) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.85 |
Crystal size (mm) | 0.5 × 0.5 × 0.5 |
Data collection | |
Diffractometer | Rigaku SCXmini diffractometer |
Absorption correction | Multi-scan (ABSCOR; Higashi, 1995) |
Tmin, Tmax | 0.60, 0.662 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 16422, 1925, 1755 |
Rint | 0.029 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.032, 0.081, 1.20 |
No. of reflections | 1925 |
No. of parameters | 132 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.26, −0.34 |
Computer programs: SCXmini (Rigaku, 2006), PROCESS-AUTO (Rigaku, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H11···O2i | 0.85 | 1.93 | 2.7644 (17) | 166.2 |
O1W—H12···O2Wii | 0.85 | 1.91 | 2.7538 (19) | 170.6 |
O2W—H21···O1 | 0.89 | 1.95 | 2.8287 (18) | 172.2 |
O2W—H22···N2iii | 0.76 | 2.25 | 3.003 (2) | 169.2 |
Symmetry codes: (i) x, −y+1/2, −z+3/2; (ii) x, y, z+1; (iii) −x+1/2, y+1/2, −z+3/2. |
References
Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan. Google Scholar
Kulynych, A. K. & Shimizu, G. K. H. (2002). CrystEngComm, 4, 102–105. Web of Science CSD CrossRef CAS Google Scholar
Liu, C.-M., Gao, S., Hu, H.-M. & Wang, Z.-M. (2001). Chem Commun. pp. 1636–1637. Web of Science CSD CrossRef Google Scholar
Rigaku (1998). PROCESS-AUTO. Rigaku Americas Corporation, The Woodlands, Texas, USA. Google Scholar
Rigaku (2006). SCXmini Benchtop Crystallography System Software. Rigaku Americas Corporation, The Woodlands, Texas, USA. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Xue, M. & Liu, F.-C. (2009). Acta Cryst. E65, m684. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Coordination complexes have attracted great attention in recent years. (Kulynych & Shimizu, 2002). Polydentate ligand have some heteroatom can coordinated to metal in different ways, and can form Hydrogen bonds between to give supermolecule net(Liu et al., 2001). The tetrazolo(1,5-a)pyridine-8-carboxylate have multi-coordinated position and may behavs as a polydentate ligand. The related maganese structure with two water molecules as solvent has been recently reported (Xue & Liu, 2009).
In the title compound, the manganese atom is located on a two fold axis and octahedrally coordinated by two water molecules and two bidentate N,O tetrazolo(1,5-a)pyridine-8-carboxylate,(Fig. 1).
Each tetrazolo(1,5-a) pyridine-8-carboxylate chelates to one manganese atom. One type of water coordinates to the manganese atom whereas the other acts as lattice water. A two dimensional supramolecular network parallel to the (1 0 0) plane, is formed by the hydrogen bond interactions between the water molecules and the nitrogen of the tetrazolo(1,5-a)pyridine-8-carboxylate ligands (Table 1, Fig. 2).
The structure is closely related to the dihydrate complex (Xue & Liu, 2009), the only difference being the occurence of two solvate water molecules in the previous structure.