metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­aqua­bis­{2-[5-(2-pyrid­yl)-2H-tetra­zol-2-yl]acetato-κ2N4,N5}zinc(II)

aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: fudavid88@yahoo.com.cn

(Received 18 June 2009; accepted 22 June 2009; online 27 June 2009)

The title compound, [Zn(C8H6N5O2)2(H2O)2], was synthesized by hydro­thermal reaction of ZnBr2 with 2-[5-(2-pyrid­yl)-2H-tetra­zol-2-yl]acetic acid. The ZnII atom lies on an inversion center in a distorted octa­hedral environment with two planar trans-related N,N′-chelating 2-[5-(2-pyrid­yl)-2H-tetra­zol-2-yl]acetic acid ligands in the equatorial plane and two water mol­ecules in the axial positions. In the crystal, O—H⋯O hydrogen bonds generate an infinite three-dimensional network.

Related literature

For the chemisty of tetra­zoles, see: Fu et al. (2008[Fu, D.-W., Zhang, W. & Xiong, R.-G. (2008). Cryst. Growth Des. 8, 3461-3464.]); Dai & Fu (2008[Dai, W. & Fu, D.-W. (2008). Acta Cryst. E64, o1444.]); Wang et al. (2005[Wang, X.-S., Tang, Y.-Z., Huang, X.-F., Qu, Z.-R., Che, C.-M., Chan, C. W. H. & Xiong, R.-G. (2005). Inorg. Chem. 44, 5278-5285.]); Wen (2008[Wen, X.-C. (2008). Acta Cryst. E64, m768.]); Wittenberger & Donner (1993[Wittenberger, S. J. & Donner, B. G. (1993). J. Org. Chem. 58, 4139-4141.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C8H6N5O2)2(H2O)2]

  • Mr = 509.76

  • Monoclinic, P 21 /c

  • a = 7.6407 (15) Å

  • b = 8.2583 (17) Å

  • c = 15.155 (3) Å

  • β = 97.17 (3)°

  • V = 948.8 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.36 mm−1

  • T = 298 K

  • 0.35 × 0.25 × 0.20 mm

Data collection
  • Rigaku Mercury2 diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.762, Tmax = 0.841 (expected range = 0.690–0.762)

  • 9600 measured reflections

  • 2177 independent reflections

  • 1984 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.075

  • S = 1.11

  • 2177 reflections

  • 151 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.41 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WB⋯O1i 0.85 1.85 2.6891 (19) 172
O1W—H1WA⋯O2ii 0.85 1.80 2.6365 (17) 169
Symmetry codes: (i) [x+1, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]), ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The tetrazole functional group has found a wide range of applications in coordination chemistry as ligands, in medicinal chemistry as a metabolically stable surrogate for a carboxylic acid group, and in materials science as high density energy materials(Wang et al., 2005; Fu et al., 2008; Wittenberger et al.,1993). We report here the crystal structure of the title compound, Bis[2-(5-(pyridin-2-yl)-2H-tetrazol-2-yl)acetic-K2N1,N2]Zinc(II).

In the title compound, the ZnII atom lies on an inversion center. The distorted octahedral ZnII environment contains two planar trans-related N,N-chelating 2-(5-(pyridin-2-yl)-2H-tetrazol-2-yl)acetic acid ligands in the equatorial plane and two water ligands in the axial positions. The pyridine and tetrazole rings are nearly coplanar and only twisted from each other by a dihedral angle of 7.06 ( 1 )°. The geometric parameters of the tetrazole rings are comparable to those in related molecules (Wittenberger et al., 1993; Dai & Fu 2008; Wen 2008).

The O atoms from water molecules are involved in intermolecular O—H···O hydrogen bonds building up an infinite three-dimensional network (Table 1 and Fig.2).

Related literature top

For the chemisty of tetrazoles, see: Fu et al. (2008); Dai & Fu (2008); Wang et al. (2005); Wen (2008); Wittenberger & Donner (1993).

Experimental top

A mixture of 2-(5-(pyridin-2-yl)-2H-tetrazol-2-yl)acetic acid (0.2 mmol), ZnBr2 (0.4 mmol), distilled water (1 ml) and a few drops of ethanol sealed in a glass tube was maintained at 110 °C. Colorless block crystals suitable for X-ray analysis were obtained after 3 days.

Refinement top

All H atoms attached to C atoms were fixed geometrically and treated as riding with C-H = 0.93 Å (aromatic) and 0.97 Å (methylene) with Uiso(H) = 1.2Ueq(C). H atoms of water molecule located in difference Fourier maps and freely refined using restraints (O-H= 0.85Å and H···H= 1.39Å with Uĩso~(H) = 1.5U~eq~(O). In the last stage of refinement they were treated as riding on the O atom.

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular view of the title compound with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.[Symmetry codes: (i) -x+1, -y+1, -z+1]
[Figure 2] Fig. 2. The crystal packing of the title compound viewed along the a axis showing the three dimensionnal hydrogen bondings network (dashed line). Hydrogen atoms not involved in hydrogen bonding have been omitted for clarity.
Diaquabis{2-[5-(2-pyridyl)-2H-tetrazol-2-yl]acetato- κ2N4,N5}zinc(II) top
Crystal data top
[Zn(C8H6N5O2)2(H2O)2]F(000) = 520
Mr = 509.76Dx = 1.784 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1984 reflections
a = 7.6407 (15) Åθ = 3.6–27.5°
b = 8.2583 (17) ŵ = 1.36 mm1
c = 15.155 (3) ÅT = 298 K
β = 97.17 (3)°Block, colorless
V = 948.8 (3) Å30.35 × 0.25 × 0.20 mm
Z = 2
Data collection top
Rigaku Mercury2
diffractometer
2177 independent reflections
Radiation source: fine-focus sealed tube1984 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.6°
CCD profile fitting scansh = 99
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1010
Tmin = 0.762, Tmax = 0.841l = 1919
9600 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.075H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0393P)2 + 0.3221P]
where P = (Fo2 + 2Fc2)/3
2177 reflections(Δ/σ)max < 0.001
151 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.41 e Å3
Crystal data top
[Zn(C8H6N5O2)2(H2O)2]V = 948.8 (3) Å3
Mr = 509.76Z = 2
Monoclinic, P21/cMo Kα radiation
a = 7.6407 (15) ŵ = 1.36 mm1
b = 8.2583 (17) ÅT = 298 K
c = 15.155 (3) Å0.35 × 0.25 × 0.20 mm
β = 97.17 (3)°
Data collection top
Rigaku Mercury2
diffractometer
2177 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
1984 reflections with I > 2σ(I)
Tmin = 0.762, Tmax = 0.841Rint = 0.031
9600 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0270 restraints
wR(F2) = 0.075H-atom parameters constrained
S = 1.11Δρmax = 0.25 e Å3
2177 reflectionsΔρmin = 0.41 e Å3
151 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.50000.50000.50000.02160 (10)
N10.32018 (18)0.61053 (17)0.39557 (9)0.0230 (3)
O1W0.72023 (15)0.59206 (14)0.44676 (8)0.0267 (3)
H1WA0.75640.51990.41350.040*
H1WB0.80130.62330.48650.040*
N50.45085 (17)0.73160 (16)0.55431 (9)0.0212 (3)
O10.0465 (2)0.79027 (18)0.07872 (9)0.0417 (3)
N20.22867 (19)0.57379 (18)0.31894 (9)0.0253 (3)
O20.16960 (18)0.89846 (16)0.17318 (8)0.0353 (3)
N30.11283 (18)0.68988 (17)0.30393 (9)0.0238 (3)
C50.3275 (2)0.82286 (19)0.50739 (10)0.0211 (3)
C60.2532 (2)0.74873 (19)0.42345 (10)0.0213 (3)
N40.12076 (19)0.80232 (17)0.36653 (9)0.0260 (3)
C10.5300 (2)0.7902 (2)0.63096 (11)0.0275 (4)
H10.61490.72710.66430.033*
C40.2795 (2)0.9734 (2)0.53507 (12)0.0281 (4)
H40.19251.03360.50130.034*
C20.4912 (3)0.9404 (2)0.66288 (12)0.0320 (4)
H20.55010.97870.71620.038*
C30.3640 (3)1.0324 (2)0.61438 (13)0.0330 (4)
H30.33491.13390.63480.040*
C70.0122 (2)0.6946 (2)0.22339 (11)0.0303 (4)
H7A0.12550.73070.23840.036*
H7B0.02730.58580.19960.036*
C80.0445 (2)0.8059 (2)0.15154 (11)0.0258 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.02190 (16)0.02041 (15)0.02109 (15)0.00495 (9)0.00280 (10)0.00076 (9)
N10.0233 (7)0.0239 (7)0.0206 (6)0.0030 (5)0.0022 (5)0.0012 (5)
O1W0.0250 (6)0.0283 (6)0.0263 (6)0.0004 (5)0.0008 (5)0.0052 (5)
N50.0203 (6)0.0205 (6)0.0221 (7)0.0006 (5)0.0002 (5)0.0001 (5)
O10.0499 (8)0.0481 (9)0.0238 (6)0.0109 (7)0.0081 (6)0.0047 (6)
N20.0269 (7)0.0258 (7)0.0213 (7)0.0009 (6)0.0041 (5)0.0027 (5)
O20.0390 (7)0.0371 (7)0.0304 (7)0.0054 (6)0.0071 (5)0.0062 (6)
N30.0234 (7)0.0250 (7)0.0211 (7)0.0008 (5)0.0043 (5)0.0048 (5)
C50.0198 (7)0.0216 (7)0.0217 (8)0.0003 (6)0.0018 (6)0.0029 (6)
C60.0211 (7)0.0211 (7)0.0214 (8)0.0005 (6)0.0012 (6)0.0044 (6)
N40.0254 (7)0.0257 (7)0.0253 (7)0.0031 (6)0.0031 (5)0.0032 (6)
C10.0249 (8)0.0301 (9)0.0258 (8)0.0007 (7)0.0034 (7)0.0010 (7)
C40.0293 (9)0.0231 (8)0.0317 (9)0.0049 (7)0.0035 (7)0.0030 (7)
C20.0362 (10)0.0319 (9)0.0270 (9)0.0047 (8)0.0002 (7)0.0069 (7)
C30.0430 (11)0.0229 (8)0.0342 (10)0.0004 (7)0.0089 (8)0.0060 (7)
C70.0284 (9)0.0334 (9)0.0254 (8)0.0047 (7)0.0109 (7)0.0067 (7)
C80.0292 (8)0.0260 (8)0.0217 (8)0.0103 (7)0.0012 (6)0.0034 (6)
Geometric parameters (Å, º) top
Zn1—O1W2.0974 (13)N3—N41.324 (2)
Zn1—O1Wi2.0974 (13)N3—C71.453 (2)
Zn1—N52.1340 (14)C5—C41.377 (2)
Zn1—N5i2.1340 (14)C5—C61.461 (2)
Zn1—N1i2.1640 (14)C6—N41.321 (2)
Zn1—N12.1640 (14)C1—C21.377 (3)
N1—N21.3142 (19)C1—H10.9300
N1—C61.341 (2)C4—C31.380 (3)
O1W—H1WA0.8486C4—H40.9300
O1W—H1WB0.8480C2—C31.373 (3)
N5—C11.332 (2)C2—H20.9300
N5—C51.339 (2)C3—H30.9300
O1—C81.235 (2)C7—C81.529 (2)
N2—N31.305 (2)C7—H7A0.9700
O2—C81.236 (2)C7—H7B0.9700
O1W—Zn1—O1Wi180.0N5—C5—C4122.90 (15)
O1W—Zn1—N590.67 (5)N5—C5—C6113.44 (14)
O1Wi—Zn1—N589.33 (5)C4—C5—C6123.65 (15)
O1W—Zn1—N5i89.33 (5)N4—C6—N1111.77 (14)
O1Wi—Zn1—N5i90.67 (5)N4—C6—C5127.65 (15)
N5—Zn1—N5i180.000 (1)N1—C6—C5120.58 (14)
O1W—Zn1—N1i88.14 (5)C6—N4—N3101.29 (13)
O1Wi—Zn1—N1i91.86 (5)N5—C1—C2122.66 (16)
N5—Zn1—N1i102.84 (5)N5—C1—H1118.7
N5i—Zn1—N1i77.16 (5)C2—C1—H1118.7
O1W—Zn1—N191.86 (5)C5—C4—C3118.07 (17)
O1Wi—Zn1—N188.14 (5)C5—C4—H4121.0
N5—Zn1—N177.16 (5)C3—C4—H4121.0
N5i—Zn1—N1102.84 (5)C3—C2—C1118.66 (17)
N1i—Zn1—N1180.0C3—C2—H2120.7
N2—N1—C6107.04 (13)C1—C2—H2120.7
N2—N1—Zn1140.18 (11)C2—C3—C4119.59 (17)
C6—N1—Zn1111.18 (10)C2—C3—H3120.2
Zn1—O1W—H1WA108.1C4—C3—H3120.2
Zn1—O1W—H1WB112.8N3—C7—C8113.54 (14)
H1WA—O1W—H1WB111.8N3—C7—H7A108.9
C1—N5—C5118.12 (14)C8—C7—H7A108.9
C1—N5—Zn1125.41 (11)N3—C7—H7B108.9
C5—N5—Zn1116.46 (11)C8—C7—H7B108.9
N3—N2—N1105.00 (13)H7A—C7—H7B107.7
N2—N3—N4114.90 (13)O1—C8—O2129.21 (17)
N2—N3—C7121.74 (15)O1—C8—C7113.30 (16)
N4—N3—C7123.35 (14)O2—C8—C7117.48 (15)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WB···O1ii0.851.852.6891 (19)172
O1W—H1WA···O2iii0.851.802.6365 (17)169
Symmetry codes: (ii) x+1, y+3/2, z+1/2; (iii) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Zn(C8H6N5O2)2(H2O)2]
Mr509.76
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)7.6407 (15), 8.2583 (17), 15.155 (3)
β (°) 97.17 (3)
V3)948.8 (3)
Z2
Radiation typeMo Kα
µ (mm1)1.36
Crystal size (mm)0.35 × 0.25 × 0.20
Data collection
DiffractometerRigaku Mercury2
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.762, 0.841
No. of measured, independent and
observed [I > 2σ(I)] reflections
9600, 2177, 1984
Rint0.031
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.075, 1.11
No. of reflections2177
No. of parameters151
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.41

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and XP in SHELXTL (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WB···O1i0.851.852.6891 (19)171.8
O1W—H1WA···O2ii0.851.802.6365 (17)168.6
Symmetry codes: (i) x+1, y+3/2, z+1/2; (ii) x+1, y1/2, z+1/2.
 

Acknowledgements

This work was supported by a start-up grant from Southeast University to Professor Ren-Gen Xiong.

References

First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationDai, W. & Fu, D.-W. (2008). Acta Cryst. E64, o1444.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFu, D.-W., Zhang, W. & Xiong, R.-G. (2008). Cryst. Growth Des. 8, 3461–3464.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, X.-S., Tang, Y.-Z., Huang, X.-F., Qu, Z.-R., Che, C.-M., Chan, C. W. H. & Xiong, R.-G. (2005). Inorg. Chem. 44, 5278–5285.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationWen, X.-C. (2008). Acta Cryst. E64, m768.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWittenberger, S. J. & Donner, B. G. (1993). J. Org. Chem. 58, 4139–4141.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds