metal-organic compounds
Diaquabis{2-[5-(2-pyridyl)-2H-tetrazol-2-yl]acetato-κ2N4,N5}zinc(II)
aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: fudavid88@yahoo.com.cn
The title compound, [Zn(C8H6N5O2)2(H2O)2], was synthesized by hydrothermal reaction of ZnBr2 with 2-[5-(2-pyridyl)-2H-tetrazol-2-yl]acetic acid. The ZnII atom lies on an inversion center in a distorted octahedral environment with two planar trans-related N,N′-chelating 2-[5-(2-pyridyl)-2H-tetrazol-2-yl]acetic acid ligands in the equatorial plane and two water molecules in the axial positions. In the crystal, O—H⋯O hydrogen bonds generate an infinite three-dimensional network.
Related literature
For the chemisty of tetrazoles, see: Fu et al. (2008); Dai & Fu (2008); Wang et al. (2005); Wen (2008); Wittenberger & Donner (1993).
Experimental
Crystal data
|
Refinement
|
Data collection: CrystalClear (Rigaku, 2005); cell CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536809023940/dn2467sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809023940/dn2467Isup2.hkl
A mixture of 2-(5-(pyridin-2-yl)-2H-tetrazol-2-yl)acetic acid (0.2 mmol), ZnBr2 (0.4 mmol), distilled water (1 ml) and a few drops of ethanol sealed in a glass tube was maintained at 110 °C. Colorless block crystals suitable for X-ray analysis were obtained after 3 days.
All H atoms attached to C atoms were fixed geometrically and treated as riding with C-H = 0.93 Å (aromatic) and 0.97 Å (methylene) with Uiso(H) = 1.2Ueq(C). H atoms of water molecule located in difference Fourier maps and freely refined using restraints (O-H= 0.85Å and H···H= 1.39Å with Uĩso~(H) = 1.5U~eq~(O). In the last stage of
they were treated as riding on the O atom.Data collection: CrystalClear (Rigaku, 2005); cell
CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).[Zn(C8H6N5O2)2(H2O)2] | F(000) = 520 |
Mr = 509.76 | Dx = 1.784 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 1984 reflections |
a = 7.6407 (15) Å | θ = 3.6–27.5° |
b = 8.2583 (17) Å | µ = 1.36 mm−1 |
c = 15.155 (3) Å | T = 298 K |
β = 97.17 (3)° | Block, colorless |
V = 948.8 (3) Å3 | 0.35 × 0.25 × 0.20 mm |
Z = 2 |
Rigaku Mercury2 diffractometer | 2177 independent reflections |
Radiation source: fine-focus sealed tube | 1984 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.031 |
Detector resolution: 13.6612 pixels mm-1 | θmax = 27.5°, θmin = 3.6° |
CCD profile fitting scans | h = −9→9 |
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) | k = −10→10 |
Tmin = 0.762, Tmax = 0.841 | l = −19→19 |
9600 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.027 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.075 | H-atom parameters constrained |
S = 1.11 | w = 1/[σ2(Fo2) + (0.0393P)2 + 0.3221P] where P = (Fo2 + 2Fc2)/3 |
2177 reflections | (Δ/σ)max < 0.001 |
151 parameters | Δρmax = 0.25 e Å−3 |
0 restraints | Δρmin = −0.41 e Å−3 |
[Zn(C8H6N5O2)2(H2O)2] | V = 948.8 (3) Å3 |
Mr = 509.76 | Z = 2 |
Monoclinic, P21/c | Mo Kα radiation |
a = 7.6407 (15) Å | µ = 1.36 mm−1 |
b = 8.2583 (17) Å | T = 298 K |
c = 15.155 (3) Å | 0.35 × 0.25 × 0.20 mm |
β = 97.17 (3)° |
Rigaku Mercury2 diffractometer | 2177 independent reflections |
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) | 1984 reflections with I > 2σ(I) |
Tmin = 0.762, Tmax = 0.841 | Rint = 0.031 |
9600 measured reflections |
R[F2 > 2σ(F2)] = 0.027 | 0 restraints |
wR(F2) = 0.075 | H-atom parameters constrained |
S = 1.11 | Δρmax = 0.25 e Å−3 |
2177 reflections | Δρmin = −0.41 e Å−3 |
151 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Zn1 | 0.5000 | 0.5000 | 0.5000 | 0.02160 (10) | |
N1 | 0.32018 (18) | 0.61053 (17) | 0.39557 (9) | 0.0230 (3) | |
O1W | 0.72023 (15) | 0.59206 (14) | 0.44676 (8) | 0.0267 (3) | |
H1WA | 0.7564 | 0.5199 | 0.4135 | 0.040* | |
H1WB | 0.8013 | 0.6233 | 0.4865 | 0.040* | |
N5 | 0.45085 (17) | 0.73160 (16) | 0.55431 (9) | 0.0212 (3) | |
O1 | −0.0465 (2) | 0.79027 (18) | 0.07872 (9) | 0.0417 (3) | |
N2 | 0.22867 (19) | 0.57379 (18) | 0.31894 (9) | 0.0253 (3) | |
O2 | 0.16960 (18) | 0.89846 (16) | 0.17318 (8) | 0.0353 (3) | |
N3 | 0.11283 (18) | 0.68988 (17) | 0.30393 (9) | 0.0238 (3) | |
C5 | 0.3275 (2) | 0.82286 (19) | 0.50739 (10) | 0.0211 (3) | |
C6 | 0.2532 (2) | 0.74873 (19) | 0.42345 (10) | 0.0213 (3) | |
N4 | 0.12076 (19) | 0.80232 (17) | 0.36653 (9) | 0.0260 (3) | |
C1 | 0.5300 (2) | 0.7902 (2) | 0.63096 (11) | 0.0275 (4) | |
H1 | 0.6149 | 0.7271 | 0.6643 | 0.033* | |
C4 | 0.2795 (2) | 0.9734 (2) | 0.53507 (12) | 0.0281 (4) | |
H4 | 0.1925 | 1.0336 | 0.5013 | 0.034* | |
C2 | 0.4912 (3) | 0.9404 (2) | 0.66288 (12) | 0.0320 (4) | |
H2 | 0.5501 | 0.9787 | 0.7162 | 0.038* | |
C3 | 0.3640 (3) | 1.0324 (2) | 0.61438 (13) | 0.0330 (4) | |
H3 | 0.3349 | 1.1339 | 0.6348 | 0.040* | |
C7 | −0.0122 (2) | 0.6946 (2) | 0.22339 (11) | 0.0303 (4) | |
H7A | −0.1255 | 0.7307 | 0.2384 | 0.036* | |
H7B | −0.0273 | 0.5858 | 0.1996 | 0.036* | |
C8 | 0.0445 (2) | 0.8059 (2) | 0.15154 (11) | 0.0258 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Zn1 | 0.02190 (16) | 0.02041 (15) | 0.02109 (15) | 0.00495 (9) | −0.00280 (10) | −0.00076 (9) |
N1 | 0.0233 (7) | 0.0239 (7) | 0.0206 (6) | 0.0030 (5) | −0.0022 (5) | 0.0012 (5) |
O1W | 0.0250 (6) | 0.0283 (6) | 0.0263 (6) | 0.0004 (5) | 0.0008 (5) | −0.0052 (5) |
N5 | 0.0203 (6) | 0.0205 (6) | 0.0221 (7) | 0.0006 (5) | −0.0002 (5) | 0.0001 (5) |
O1 | 0.0499 (8) | 0.0481 (9) | 0.0238 (6) | 0.0109 (7) | −0.0081 (6) | 0.0047 (6) |
N2 | 0.0269 (7) | 0.0258 (7) | 0.0213 (7) | 0.0009 (6) | −0.0041 (5) | 0.0027 (5) |
O2 | 0.0390 (7) | 0.0371 (7) | 0.0304 (7) | −0.0054 (6) | 0.0071 (5) | 0.0062 (6) |
N3 | 0.0234 (7) | 0.0250 (7) | 0.0211 (7) | −0.0008 (5) | −0.0043 (5) | 0.0048 (5) |
C5 | 0.0198 (7) | 0.0216 (7) | 0.0217 (8) | −0.0003 (6) | 0.0018 (6) | 0.0029 (6) |
C6 | 0.0211 (7) | 0.0211 (7) | 0.0214 (8) | 0.0005 (6) | 0.0012 (6) | 0.0044 (6) |
N4 | 0.0254 (7) | 0.0257 (7) | 0.0253 (7) | 0.0031 (6) | −0.0031 (5) | 0.0032 (6) |
C1 | 0.0249 (8) | 0.0301 (9) | 0.0258 (8) | −0.0007 (7) | −0.0034 (7) | −0.0010 (7) |
C4 | 0.0293 (9) | 0.0231 (8) | 0.0317 (9) | 0.0049 (7) | 0.0035 (7) | 0.0030 (7) |
C2 | 0.0362 (10) | 0.0319 (9) | 0.0270 (9) | −0.0047 (8) | 0.0002 (7) | −0.0069 (7) |
C3 | 0.0430 (11) | 0.0229 (8) | 0.0342 (10) | 0.0004 (7) | 0.0089 (8) | −0.0060 (7) |
C7 | 0.0284 (9) | 0.0334 (9) | 0.0254 (8) | −0.0047 (7) | −0.0109 (7) | 0.0067 (7) |
C8 | 0.0292 (8) | 0.0260 (8) | 0.0217 (8) | 0.0103 (7) | 0.0012 (6) | 0.0034 (6) |
Zn1—O1W | 2.0974 (13) | N3—N4 | 1.324 (2) |
Zn1—O1Wi | 2.0974 (13) | N3—C7 | 1.453 (2) |
Zn1—N5 | 2.1340 (14) | C5—C4 | 1.377 (2) |
Zn1—N5i | 2.1340 (14) | C5—C6 | 1.461 (2) |
Zn1—N1i | 2.1640 (14) | C6—N4 | 1.321 (2) |
Zn1—N1 | 2.1640 (14) | C1—C2 | 1.377 (3) |
N1—N2 | 1.3142 (19) | C1—H1 | 0.9300 |
N1—C6 | 1.341 (2) | C4—C3 | 1.380 (3) |
O1W—H1WA | 0.8486 | C4—H4 | 0.9300 |
O1W—H1WB | 0.8480 | C2—C3 | 1.373 (3) |
N5—C1 | 1.332 (2) | C2—H2 | 0.9300 |
N5—C5 | 1.339 (2) | C3—H3 | 0.9300 |
O1—C8 | 1.235 (2) | C7—C8 | 1.529 (2) |
N2—N3 | 1.305 (2) | C7—H7A | 0.9700 |
O2—C8 | 1.236 (2) | C7—H7B | 0.9700 |
O1W—Zn1—O1Wi | 180.0 | N5—C5—C4 | 122.90 (15) |
O1W—Zn1—N5 | 90.67 (5) | N5—C5—C6 | 113.44 (14) |
O1Wi—Zn1—N5 | 89.33 (5) | C4—C5—C6 | 123.65 (15) |
O1W—Zn1—N5i | 89.33 (5) | N4—C6—N1 | 111.77 (14) |
O1Wi—Zn1—N5i | 90.67 (5) | N4—C6—C5 | 127.65 (15) |
N5—Zn1—N5i | 180.000 (1) | N1—C6—C5 | 120.58 (14) |
O1W—Zn1—N1i | 88.14 (5) | C6—N4—N3 | 101.29 (13) |
O1Wi—Zn1—N1i | 91.86 (5) | N5—C1—C2 | 122.66 (16) |
N5—Zn1—N1i | 102.84 (5) | N5—C1—H1 | 118.7 |
N5i—Zn1—N1i | 77.16 (5) | C2—C1—H1 | 118.7 |
O1W—Zn1—N1 | 91.86 (5) | C5—C4—C3 | 118.07 (17) |
O1Wi—Zn1—N1 | 88.14 (5) | C5—C4—H4 | 121.0 |
N5—Zn1—N1 | 77.16 (5) | C3—C4—H4 | 121.0 |
N5i—Zn1—N1 | 102.84 (5) | C3—C2—C1 | 118.66 (17) |
N1i—Zn1—N1 | 180.0 | C3—C2—H2 | 120.7 |
N2—N1—C6 | 107.04 (13) | C1—C2—H2 | 120.7 |
N2—N1—Zn1 | 140.18 (11) | C2—C3—C4 | 119.59 (17) |
C6—N1—Zn1 | 111.18 (10) | C2—C3—H3 | 120.2 |
Zn1—O1W—H1WA | 108.1 | C4—C3—H3 | 120.2 |
Zn1—O1W—H1WB | 112.8 | N3—C7—C8 | 113.54 (14) |
H1WA—O1W—H1WB | 111.8 | N3—C7—H7A | 108.9 |
C1—N5—C5 | 118.12 (14) | C8—C7—H7A | 108.9 |
C1—N5—Zn1 | 125.41 (11) | N3—C7—H7B | 108.9 |
C5—N5—Zn1 | 116.46 (11) | C8—C7—H7B | 108.9 |
N3—N2—N1 | 105.00 (13) | H7A—C7—H7B | 107.7 |
N2—N3—N4 | 114.90 (13) | O1—C8—O2 | 129.21 (17) |
N2—N3—C7 | 121.74 (15) | O1—C8—C7 | 113.30 (16) |
N4—N3—C7 | 123.35 (14) | O2—C8—C7 | 117.48 (15) |
Symmetry code: (i) −x+1, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1WB···O1ii | 0.85 | 1.85 | 2.6891 (19) | 172 |
O1W—H1WA···O2iii | 0.85 | 1.80 | 2.6365 (17) | 169 |
Symmetry codes: (ii) x+1, −y+3/2, z+1/2; (iii) −x+1, y−1/2, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | [Zn(C8H6N5O2)2(H2O)2] |
Mr | 509.76 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 298 |
a, b, c (Å) | 7.6407 (15), 8.2583 (17), 15.155 (3) |
β (°) | 97.17 (3) |
V (Å3) | 948.8 (3) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 1.36 |
Crystal size (mm) | 0.35 × 0.25 × 0.20 |
Data collection | |
Diffractometer | Rigaku Mercury2 diffractometer |
Absorption correction | Multi-scan (CrystalClear; Rigaku, 2005) |
Tmin, Tmax | 0.762, 0.841 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 9600, 2177, 1984 |
Rint | 0.031 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.027, 0.075, 1.11 |
No. of reflections | 2177 |
No. of parameters | 151 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.25, −0.41 |
Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996), ORTEP-3 for Windows (Farrugia, 1997) and XP in SHELXTL (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1WB···O1i | 0.85 | 1.85 | 2.6891 (19) | 171.8 |
O1W—H1WA···O2ii | 0.85 | 1.80 | 2.6365 (17) | 168.6 |
Symmetry codes: (i) x+1, −y+3/2, z+1/2; (ii) −x+1, y−1/2, −z+1/2. |
Acknowledgements
This work was supported by a start-up grant from Southeast University to Professor Ren-Gen Xiong.
References
Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA. Google Scholar
Dai, W. & Fu, D.-W. (2008). Acta Cryst. E64, o1444. Web of Science CSD CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Fu, D.-W., Zhang, W. & Xiong, R.-G. (2008). Cryst. Growth Des. 8, 3461–3464. Web of Science CSD CrossRef CAS Google Scholar
Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wang, X.-S., Tang, Y.-Z., Huang, X.-F., Qu, Z.-R., Che, C.-M., Chan, C. W. H. & Xiong, R.-G. (2005). Inorg. Chem. 44, 5278–5285. Web of Science CSD CrossRef PubMed CAS Google Scholar
Wen, X.-C. (2008). Acta Cryst. E64, m768. Web of Science CSD CrossRef IUCr Journals Google Scholar
Wittenberger, S. J. & Donner, B. G. (1993). J. Org. Chem. 58, 4139–4141. CrossRef CAS Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The tetrazole functional group has found a wide range of applications in coordination chemistry as ligands, in medicinal chemistry as a metabolically stable surrogate for a carboxylic acid group, and in materials science as high density energy materials(Wang et al., 2005; Fu et al., 2008; Wittenberger et al.,1993). We report here the crystal structure of the title compound, Bis[2-(5-(pyridin-2-yl)-2H-tetrazol-2-yl)acetic-K2N1,N2]Zinc(II).
In the title compound, the ZnII atom lies on an inversion center. The distorted octahedral ZnII environment contains two planar trans-related N,N-chelating 2-(5-(pyridin-2-yl)-2H-tetrazol-2-yl)acetic acid ligands in the equatorial plane and two water ligands in the axial positions. The pyridine and tetrazole rings are nearly coplanar and only twisted from each other by a dihedral angle of 7.06 ( 1 )°. The geometric parameters of the tetrazole rings are comparable to those in related molecules (Wittenberger et al., 1993; Dai & Fu 2008; Wen 2008).
The O atoms from water molecules are involved in intermolecular O—H···O hydrogen bonds building up an infinite three-dimensional network (Table 1 and Fig.2).