metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[aqua­(3-methyl­benzoato-κ2O,O′)lead(II)]-μ-3-methyl­benzoato-κ4O:O,O′:O′]

aInstitute of Safety Science and Engineering, Henan Polytechnic University, Jiaozuo 454003, People's Republic of China, and bDepartment of Physical Chemistry, Henan Polytechnic University, Jiaozuo 454003, People's Republic of China
*Correspondence e-mail: yangjuan0302@yahoo.cn

(Received 10 May 2009; accepted 25 May 2009; online 6 June 2009)

The reaction of lead(II) acetate and 3-methyl­benzoic acid (MBA) in aqueous solution yielded the title polymer, [Pb(C8H7O2)2(H2O)]n. The asymmetric unit contains two PbII atoms, four MBA ligands and two water mol­ecules. Each PbII cation is hepta­coordinated and chelated by four carboxyl­ate O atoms from two MBA ligands. The Pb atoms are bridged through the carboxyl­ate O atoms from another two MBA ligands, leading to a central Pb2O2 core. The Pb—O bond lengths are in the range 2.325 (3)–2.757 (4) Å. The intra- and inter­dimer Pb⋯Pb distances are 4.2942 (3) and 4.2283 (3) Å, respectively, indicating little direct metal–metal inter­action. The coordinating water mol­ecules and carboxyl­ate O atoms are involved in extensive O—H⋯O hydrogen-bonding inter­actions. The complex has an extended ladder-like chain structure and the chains are assembled by hydrogen bonds and ππ inter­actions [centroid–centroid distance = 3.6246 (3) Å] into a three-dimensional supra­molecular structure.

Related literature

For general background to metal-organic frameworks and their applications, see: Hamilton et al. (2004[Hamilton, B. H., Kelly, K. A., Wagler, T. A., Espe, M. P. & Ziegler, C. J. (2004). Inorg. Chem. 43, 50-56.]); Meng et al. (2003[Meng, X. R., Song, Y. L., Hou, H. W., Fan, Y. T., Li, G. & Zhu, Y. (2003). Inorg. Chem. 42, 1306-1315.]); Fan & Zhu (2006[Fan, S. R. & Zhu, L. G. (2006). Inorg. Chem. 45, 7935-7942.]); Wang et al. (2006[Wang, X. L., Qin, C. & Wang, E. B. (2006). Cryst. Growth. Des. 6, 439-443.]); Masaoka et al. (2001[Masaoka, S., Furukawa, S., Chang, H. C., Mizutani, T. & Kitagawa, S. (2001). Angew. Chem. Int. Ed. 40, 3817-3819.]). For related structures, see: Shi et al. (2007[Shi, J., Xu, J.-N., Zhang, P., Fan, Y., Wang, L., Bi, M.-H., Ma, K.-R. & Song, T.-Y. (2007). Chem. J. Chin. Univ. 28, 1617-1621.]).

[Scheme 1]

Experimental

Crystal data
  • [Pb(C8H7O2)2(H2O)]

  • Mr = 495.48

  • Monoclinic, P 21 /n

  • a = 7.1745 (3) Å

  • b = 42.745 (2) Å

  • c = 10.7126 (5) Å

  • β = 90.765 (1)°

  • V = 3285.0 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 10.29 mm−1

  • T = 296 K

  • 0.36 × 0.17 × 0.12 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.144, Tmax = 0.300

  • 40611 measured reflections

  • 8096 independent reflections

  • 6265 reflections with I > 2σ(I)

  • Rint = 0.056

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.061

  • S = 1.03

  • 8096 reflections

  • 397 parameters

  • H-atom parameters constrained

  • Δρmax = 0.87 e Å−3

  • Δρmin = −1.00 e Å−3

Table 1
Selected bond lengths (Å)

Pb1—O4 2.386 (3)
Pb1—O1 2.424 (3)
Pb1—O3 2.594 (3)
Pb1—O5 2.603 (3)
Pb1—O2 2.622 (4)
Pb1—O9 2.724 (4)
Pb1—O6i 2.751 (3)
Pb2—O6 2.325 (3)
Pb2—O8 2.494 (4)
Pb2—O3ii 2.538 (3)
Pb2—O7 2.565 (4)
Pb2—O10 2.665 (3)
Pb2—O4 2.712 (3)
Pb2—O5 2.757 (4)
Symmetry codes: (i) x-1, y, z; (ii) x+1, y, z.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O9—H9A⋯O8 0.82 2.03 2.805 (5) 158
O9—H9B⋯O7i 0.82 2.25 3.017 (5) 156
O10—H10B⋯O2 0.82 2.12 2.881 (5) 153
O10—H10A⋯O1ii 0.82 1.97 2.774 (5) 166
Symmetry codes: (i) x-1, y, z; (ii) x+1, y, z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Interest in porous metal-organic frameworks (MOFs) has been driven by the prospect of generating a wide range of materials with useful properties for applications such as ion-exchange, nonlinear optics and catalysis (Hamilton et al., 2004; Meng et al., 2003; Fan et al. 2006). On the other hand, lead(II) compounds have been increasingly studied (Shi et al. 2007) owing to their possible applications in different fields, especially in environmental protection due to the toxicity of lead and in biological systems for its diverse interactions with biological molecules. As an important family of multidentate O-donor ligands, aromatic carboxylate ligands have been extensively employed in the preparation of metal-organic complexes because of their potential properties and intriguing structural topologies (Wang et al., 2006; Masaoka et al. 2001). Herein, we report the structure of the title complex.

The asymmetric unit of the title complex, [Pb2(C8H7O2)4(H2O)2]n, contains two PbII cation, four MBA ligands and two coordinating water molecule, as illustrated in Fig. 1. The two Pb atoms are connected via two bridging O atoms belonging to two MBA ligands, resulting the central Pb2O2 core tetratomic ring. The Pb—O bond lengths are in the range of 2.325 (3) to 2.757 (4) Å (Table 1). The average distance of two Pb atoms is 4.2942 Å, which leads to the weak metal-metal interactions. This coordination polymer structure presents extended ladder-like chain along the a axis direction. The coordinating water molecules and carboxylate O atoms are involved in extensive O—H···O hydrogen-bonding interactions (Table 2). These chains are assembled by H-bonds and π-π interactions to three-dimensional supramolecular structure.

Related literature top

For general background to metal-organic frameworks and their applications, see: Hamilton et al. (2004); Meng et al. (2003); Fan et al. (2006); Wang et al. (2006); Masaoka et al. (2001). For related structures, see: Shi et al. (2007).

Experimental top

A mixture of Pb(CH3COO)2 3H2O (0.1992 g, 0.52 mmol), MBA (0.1139 g, 0.84 mmol), melamine (0.0255 g, 0.20 mmol) and distilled water (10 ml) was sealed in a 25 ml Teflon-lined stainless autoclave (Shi et al. 2007). The mixture was heated at 373 K for 5 days to give colorless crystals suitable for X-ray diffraction analysis.

Refinement top

All H atoms bounded to C atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H distances in the range of 0.93–0.96 Å. The positions of the water H atoms were found from a difference Fourier map and refined with distance restraints O—H = 0.82 Å, Uiso(H) = 1.2Ueq(O).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The coordination environment around Pb(II) in the title complex with the atom-labeling scheme. Displacement ellipsoids for non-hydrogen atoms are drawn at the 30% probability level.
[Figure 2] Fig. 2. The extended ladder-like chain structure of the title compound.
[Figure 3] Fig. 3. The two-dimensional layer structure of the title compound.
[Figure 4] Fig. 4. The three-dimensional structure of the title compound.
catena-Poly[[aqua(3-methylbenzoato-κ2O,O')lead(II)]- µ-3-methylbenzoato-κ4O:O,O':O'] top
Crystal data top
[Pb(C8H7O2)2(H2O)]F(000) = 1872
Mr = 495.48Dx = 2.004 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 7418 reflections
a = 7.1745 (3) Åθ = 2.4–25.2°
b = 42.745 (2) ŵ = 10.29 mm1
c = 10.7126 (5) ÅT = 296 K
β = 90.765 (1)°Block, colourless
V = 3285.0 (3) Å30.36 × 0.17 × 0.12 mm
Z = 8
Data collection top
Bruker APEXII CCD area-detector
diffractometer
8096 independent reflections
Radiation source: fine-focus sealed tube6265 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.056
ϕ and ω scansθmax = 28.2°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 99
Tmin = 0.144, Tmax = 0.300k = 5656
40611 measured reflectionsl = 1414
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.061 w = 1/[σ2(Fo2) + (0.0182P)2 + 3.7836P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
8096 reflectionsΔρmax = 0.87 e Å3
397 parametersΔρmin = 1.00 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.082
Crystal data top
[Pb(C8H7O2)2(H2O)]V = 3285.0 (3) Å3
Mr = 495.48Z = 8
Monoclinic, P21/nMo Kα radiation
a = 7.1745 (3) ŵ = 10.29 mm1
b = 42.745 (2) ÅT = 296 K
c = 10.7126 (5) Å0.36 × 0.17 × 0.12 mm
β = 90.765 (1)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
8096 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
6265 reflections with I > 2σ(I)
Tmin = 0.144, Tmax = 0.300Rint = 0.056
40611 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.061H-atom parameters constrained
S = 1.03Δρmax = 0.87 e Å3
8096 reflectionsΔρmin = 1.00 e Å3
397 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pb10.12243 (2)0.097018 (5)0.352944 (18)0.03251 (6)
Pb20.63079 (2)0.136517 (5)0.498730 (18)0.03285 (6)
O10.0014 (5)0.06035 (8)0.5043 (3)0.0425 (9)
O20.2904 (5)0.04888 (8)0.4562 (3)0.0422 (9)
O30.0208 (5)0.12954 (8)0.5322 (3)0.0417 (9)
O40.2740 (4)0.11793 (8)0.5341 (3)0.0382 (8)
O50.4697 (5)0.10648 (9)0.2967 (3)0.0431 (9)
O60.7648 (4)0.11863 (8)0.3157 (3)0.0361 (8)
O70.7820 (5)0.18516 (8)0.4032 (4)0.0456 (9)
O80.4875 (5)0.17631 (9)0.3567 (4)0.0532 (11)
O90.1259 (5)0.15838 (9)0.2844 (4)0.0536 (11)
H9A0.23360.16480.28560.064*
H9B0.04800.16350.33590.064*
O100.6329 (5)0.07555 (8)0.5507 (3)0.0435 (9)
H10B0.55870.06650.50430.052*
H10A0.73510.07040.52430.052*
C10.1464 (7)0.04397 (11)0.5191 (5)0.0350 (12)
C20.1449 (7)0.01859 (11)0.6140 (5)0.0327 (11)
C30.0085 (7)0.01413 (12)0.6892 (5)0.0419 (13)
H3A0.11260.02680.67750.050*
C40.0118 (8)0.00864 (13)0.7814 (5)0.0449 (14)
C50.1437 (9)0.02741 (13)0.7950 (6)0.0501 (15)
H5A0.14500.04280.85630.060*
C60.2948 (8)0.02395 (13)0.7213 (6)0.0483 (15)
H6A0.39660.03720.73190.058*
C70.2988 (8)0.00088 (12)0.6303 (5)0.0416 (13)
H7A0.40320.00160.58070.050*
C80.1813 (10)0.01275 (18)0.8623 (7)0.080 (2)
H8A0.15910.02940.92100.121*
H8B0.28740.01780.81070.121*
H8C0.20500.00630.90660.121*
C90.1354 (7)0.13040 (11)0.5855 (4)0.0297 (11)
C100.1578 (7)0.14561 (12)0.7091 (5)0.0367 (12)
C110.0214 (9)0.16600 (13)0.7525 (6)0.0514 (15)
H11A0.08210.17050.70240.062*
C120.0388 (12)0.17949 (16)0.8690 (7)0.072 (2)
C130.1933 (15)0.1719 (2)0.9412 (7)0.093 (3)
H13A0.20580.18051.02050.111*
C140.3266 (12)0.1524 (2)0.8998 (7)0.081 (2)
H14A0.42970.14810.95050.097*
C150.3122 (9)0.13865 (15)0.7832 (5)0.0563 (17)
H15A0.40400.12510.75510.068*
C160.1079 (14)0.2018 (2)0.9145 (9)0.131 (4)
H16A0.07420.20910.99650.197*
H16B0.22580.19120.91750.197*
H16C0.11710.21930.85860.197*
C170.6265 (6)0.10896 (11)0.2509 (5)0.0296 (11)
C180.6596 (7)0.10073 (11)0.1176 (5)0.0308 (11)
C190.5301 (8)0.08355 (12)0.0511 (5)0.0425 (13)
H19A0.42040.07760.08960.051*
C200.5586 (10)0.07500 (14)0.0711 (6)0.0558 (17)
C210.7238 (11)0.08378 (15)0.1256 (6)0.0634 (19)
H21A0.74760.07770.20720.076*
C220.8544 (10)0.10140 (15)0.0611 (6)0.0612 (18)
H22A0.96360.10760.09990.073*
C230.8229 (8)0.10979 (13)0.0606 (5)0.0420 (13)
H23A0.91100.12150.10450.050*
C240.4110 (11)0.05680 (17)0.1440 (7)0.090 (3)
H24A0.45430.05280.22690.135*
H24B0.29800.06880.14830.135*
H24C0.38750.03730.10270.135*
C250.6358 (8)0.19171 (13)0.3421 (5)0.0413 (13)
C260.6358 (8)0.21833 (13)0.2526 (5)0.0437 (14)
C270.7935 (9)0.23678 (13)0.2416 (5)0.0500 (15)
H27A0.89800.23240.29080.060*
C280.7986 (11)0.26149 (15)0.1590 (6)0.0643 (19)
C290.6435 (15)0.26682 (19)0.0853 (7)0.091 (3)
H29A0.64460.28320.02830.109*
C300.4891 (14)0.2487 (2)0.0936 (8)0.095 (3)
H30A0.38680.25260.04170.114*
C310.4833 (10)0.22464 (17)0.1785 (7)0.069 (2)
H31A0.37580.21260.18570.083*
C320.9668 (12)0.28192 (18)0.1483 (8)0.107 (3)
H32A0.94380.29780.08650.161*
H32B1.07170.26950.12420.161*
H32C0.99280.29160.22740.161*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pb10.02451 (10)0.04213 (12)0.03088 (11)0.00082 (8)0.00003 (7)0.00184 (9)
Pb20.02385 (9)0.04156 (12)0.03319 (11)0.00000 (8)0.00229 (8)0.00581 (9)
O10.034 (2)0.042 (2)0.052 (2)0.0036 (17)0.0058 (18)0.0068 (18)
O20.0285 (19)0.049 (2)0.050 (2)0.0036 (16)0.0087 (17)0.0043 (18)
O30.034 (2)0.053 (2)0.038 (2)0.0047 (17)0.0067 (17)0.0090 (18)
O40.0249 (18)0.049 (2)0.041 (2)0.0005 (16)0.0056 (16)0.0044 (18)
O50.0280 (19)0.059 (2)0.042 (2)0.0028 (17)0.0080 (17)0.0055 (19)
O60.0273 (18)0.050 (2)0.031 (2)0.0020 (16)0.0003 (15)0.0068 (17)
O70.037 (2)0.042 (2)0.058 (3)0.0016 (17)0.0059 (19)0.0046 (19)
O80.039 (2)0.052 (2)0.068 (3)0.0060 (19)0.012 (2)0.005 (2)
O90.035 (2)0.069 (3)0.057 (3)0.007 (2)0.0047 (19)0.001 (2)
O100.033 (2)0.053 (2)0.045 (2)0.0014 (17)0.0021 (17)0.0025 (18)
C10.032 (3)0.034 (3)0.039 (3)0.005 (2)0.000 (2)0.004 (2)
C20.036 (3)0.030 (3)0.033 (3)0.005 (2)0.001 (2)0.004 (2)
C30.034 (3)0.041 (3)0.051 (4)0.003 (2)0.002 (3)0.006 (3)
C40.047 (3)0.044 (3)0.044 (4)0.010 (3)0.003 (3)0.001 (3)
C50.069 (4)0.034 (3)0.047 (4)0.003 (3)0.007 (3)0.005 (3)
C60.052 (4)0.038 (3)0.055 (4)0.008 (3)0.002 (3)0.005 (3)
C70.041 (3)0.037 (3)0.047 (4)0.008 (2)0.004 (3)0.005 (3)
C80.069 (5)0.098 (6)0.074 (5)0.007 (4)0.018 (4)0.030 (4)
C90.028 (3)0.035 (3)0.026 (3)0.002 (2)0.002 (2)0.002 (2)
C100.041 (3)0.039 (3)0.031 (3)0.007 (2)0.004 (2)0.004 (2)
C110.064 (4)0.046 (3)0.044 (4)0.005 (3)0.003 (3)0.008 (3)
C120.111 (6)0.056 (4)0.049 (4)0.004 (4)0.008 (4)0.013 (4)
C130.151 (9)0.081 (6)0.045 (5)0.023 (6)0.015 (5)0.022 (4)
C140.105 (7)0.093 (6)0.044 (4)0.022 (5)0.029 (4)0.003 (4)
C150.058 (4)0.073 (4)0.038 (4)0.003 (3)0.016 (3)0.004 (3)
C160.178 (10)0.098 (7)0.119 (8)0.041 (7)0.035 (7)0.058 (6)
C170.025 (2)0.034 (3)0.030 (3)0.002 (2)0.002 (2)0.001 (2)
C180.031 (3)0.027 (3)0.034 (3)0.004 (2)0.005 (2)0.002 (2)
C190.056 (4)0.041 (3)0.030 (3)0.006 (3)0.001 (3)0.001 (2)
C200.086 (5)0.044 (4)0.037 (4)0.009 (3)0.008 (3)0.008 (3)
C210.106 (6)0.052 (4)0.033 (4)0.005 (4)0.020 (4)0.005 (3)
C220.073 (5)0.066 (4)0.046 (4)0.005 (4)0.026 (3)0.005 (3)
C230.043 (3)0.045 (3)0.038 (3)0.002 (3)0.003 (3)0.004 (3)
C240.139 (8)0.079 (5)0.052 (5)0.039 (5)0.021 (5)0.021 (4)
C250.039 (3)0.040 (3)0.046 (4)0.000 (3)0.002 (3)0.005 (3)
C260.053 (4)0.038 (3)0.040 (3)0.007 (3)0.004 (3)0.007 (3)
C270.065 (4)0.043 (3)0.042 (4)0.007 (3)0.005 (3)0.000 (3)
C280.101 (6)0.045 (4)0.047 (4)0.013 (4)0.018 (4)0.002 (3)
C290.148 (9)0.069 (5)0.057 (5)0.025 (6)0.020 (6)0.025 (4)
C300.107 (7)0.104 (7)0.074 (6)0.021 (6)0.022 (5)0.034 (5)
C310.064 (5)0.077 (5)0.065 (5)0.000 (4)0.014 (4)0.011 (4)
C320.132 (8)0.070 (5)0.120 (8)0.018 (5)0.045 (6)0.028 (5)
Geometric parameters (Å, º) top
Pb1—O42.386 (3)C10—C151.387 (7)
Pb1—O12.424 (3)C10—C111.395 (7)
Pb1—O32.594 (3)C11—C121.380 (8)
Pb1—O52.603 (3)C11—H11A0.9300
Pb1—O22.622 (4)C12—C131.381 (11)
Pb1—O92.724 (4)C12—C161.505 (10)
Pb1—O6i2.751 (3)C13—C141.348 (11)
Pb2—O62.325 (3)C13—H13A0.9300
Pb2—O82.494 (4)C14—C151.384 (9)
Pb2—O3ii2.538 (3)C14—H14A0.9300
Pb2—O72.565 (4)C15—H15A0.9300
Pb2—O102.665 (3)C16—H16A0.9600
Pb2—O42.712 (3)C16—H16B0.9600
Pb2—O52.757 (4)C16—H16C0.9600
O1—C11.263 (6)C17—C181.493 (7)
O2—C11.258 (6)C18—C191.376 (7)
O3—C91.251 (5)C18—C231.384 (7)
O3—Pb2i2.538 (3)C19—C201.377 (8)
O4—C91.261 (5)C19—H19A0.9300
O5—C171.238 (5)C20—C211.380 (9)
O6—C171.273 (5)C20—C241.521 (8)
O6—Pb1ii2.751 (3)C21—C221.381 (9)
O7—C251.261 (6)C21—H21A0.9300
O8—C251.263 (6)C22—C231.373 (8)
O9—H9A0.8200C22—H22A0.9300
O9—H9B0.8200C23—H23A0.9300
O10—H10B0.8200C24—H24A0.9600
O10—H10A0.8200C24—H24B0.9600
C1—C21.487 (7)C24—H24C0.9600
C2—C31.386 (7)C25—C261.488 (8)
C2—C71.392 (7)C26—C311.370 (8)
C3—C41.387 (7)C26—C271.386 (8)
C3—H3A0.9300C27—C281.378 (8)
C4—C51.380 (8)C27—H27A0.9300
C4—C81.513 (8)C28—C291.375 (11)
C5—C61.358 (8)C28—C321.495 (10)
C5—H5A0.9300C29—C301.355 (11)
C6—C71.388 (7)C29—H29A0.9300
C6—H6A0.9300C30—C311.375 (10)
C7—H7A0.9300C30—H30A0.9300
C8—H8A0.9600C31—H31A0.9300
C8—H8B0.9600C32—H32A0.9600
C8—H8C0.9600C32—H32B0.9600
C9—C101.482 (7)C32—H32C0.9600
O4—Pb1—O182.05 (12)C4—C8—H8B109.5
O4—Pb1—O351.51 (11)H8A—C8—H8B109.5
O1—Pb1—O372.68 (12)C4—C8—H8C109.5
O4—Pb1—O572.72 (11)H8A—C8—H8C109.5
O1—Pb1—O5127.44 (12)H8B—C8—H8C109.5
O3—Pb1—O5118.56 (11)O3—C9—O4119.7 (5)
O4—Pb1—O275.46 (12)O3—C9—C10120.4 (4)
O1—Pb1—O251.48 (11)O4—C9—C10119.9 (4)
O3—Pb1—O2107.02 (11)C15—C10—C11120.2 (5)
O5—Pb1—O277.50 (11)C15—C10—C9119.5 (5)
O4—Pb1—O981.54 (12)C11—C10—C9120.2 (5)
O1—Pb1—O9143.85 (12)C12—C11—C10120.5 (6)
O3—Pb1—O971.86 (12)C12—C11—H11A119.8
O5—Pb1—O977.05 (11)C10—C11—H11A119.8
O2—Pb1—O9149.74 (11)C11—C12—C13118.1 (7)
O4—Pb1—O6i113.97 (10)C11—C12—C16120.2 (8)
O1—Pb1—O6i88.41 (11)C13—C12—C16121.8 (7)
O3—Pb1—O6i63.23 (10)C14—C13—C12121.9 (7)
O5—Pb1—O6i143.91 (11)C14—C13—H13A119.0
O2—Pb1—O6i138.35 (10)C12—C13—H13A119.0
O9—Pb1—O6i69.48 (10)C13—C14—C15121.0 (7)
O6—Pb2—O883.21 (13)C13—C14—H14A119.5
O6—Pb2—O3ii70.29 (11)C15—C14—H14A119.5
O8—Pb2—O3ii124.28 (12)C14—C15—C10118.4 (7)
O6—Pb2—O775.42 (12)C14—C15—H15A120.8
O8—Pb2—O751.46 (12)C10—C15—H15A120.8
O3ii—Pb2—O774.37 (12)C12—C16—H16A109.5
O6—Pb2—O1081.57 (11)C12—C16—H16B109.5
O8—Pb2—O10142.70 (12)H16A—C16—H16B109.5
O3ii—Pb2—O1081.54 (11)C12—C16—H16C109.5
O7—Pb2—O10151.05 (11)H16A—C16—H16C109.5
O6—Pb2—O4115.06 (11)H16B—C16—H16C109.5
O8—Pb2—O484.44 (12)O5—C17—O6121.2 (5)
O3ii—Pb2—O4151.11 (11)O5—C17—C18121.1 (4)
O7—Pb2—O4134.31 (11)O6—C17—C18117.7 (4)
O10—Pb2—O471.75 (10)C19—C18—C23119.4 (5)
O6—Pb2—O550.10 (10)C19—C18—C17120.4 (5)
O8—Pb2—O570.96 (12)C23—C18—C17120.2 (5)
O3ii—Pb2—O5117.25 (10)C18—C19—C20121.8 (6)
O7—Pb2—O5103.86 (11)C18—C19—H19A119.1
O10—Pb2—O573.13 (11)C20—C19—H19A119.1
O4—Pb2—O565.60 (10)C19—C20—C21118.0 (6)
C1—O1—Pb198.1 (3)C19—C20—C24120.8 (6)
C1—O2—Pb188.9 (3)C21—C20—C24121.2 (6)
C9—O3—Pb2i159.3 (3)C20—C21—C22121.2 (6)
C9—O3—Pb189.5 (3)C20—C21—H21A119.4
Pb2i—O3—Pb1110.94 (12)C22—C21—H21A119.4
C9—O4—Pb199.2 (3)C23—C22—C21119.9 (6)
C9—O4—Pb2133.5 (3)C23—C22—H22A120.1
Pb1—O4—Pb2114.63 (13)C21—C22—H22A120.1
C17—O5—Pb1169.4 (3)C22—C23—C18119.8 (6)
C17—O5—Pb284.1 (3)C22—C23—H23A120.1
Pb1—O5—Pb2106.44 (12)C18—C23—H23A120.1
C17—O6—Pb2103.8 (3)C20—C24—H24A109.5
C17—O6—Pb1ii133.6 (3)C20—C24—H24B109.5
Pb2—O6—Pb1ii112.57 (13)H24A—C24—H24B109.5
C25—O7—Pb291.9 (3)C20—C24—H24C109.5
C25—O8—Pb295.2 (3)H24A—C24—H24C109.5
Pb1—O9—H9A109.2H24B—C24—H24C109.5
Pb1—O9—H9B93.9O7—C25—O8121.1 (5)
H9A—O9—H9B123.4O7—C25—C26119.8 (5)
Pb2—O10—H10B109.3O8—C25—C26119.1 (5)
Pb2—O10—H10A101.0C31—C26—C27119.0 (6)
H10B—O10—H10A103.9C31—C26—C25121.1 (6)
O2—C1—O1121.4 (5)C27—C26—C25119.8 (5)
O2—C1—C2120.1 (5)C28—C27—C26121.3 (6)
O1—C1—C2118.5 (5)C28—C27—H27A119.4
C3—C2—C7118.7 (5)C26—C27—H27A119.4
C3—C2—C1120.7 (5)C29—C28—C27117.9 (7)
C7—C2—C1120.6 (5)C29—C28—C32120.4 (7)
C2—C3—C4122.1 (5)C27—C28—C32121.7 (7)
C2—C3—H3A118.9C30—C29—C28121.5 (7)
C4—C3—H3A118.9C30—C29—H29A119.2
C5—C4—C3117.5 (5)C28—C29—H29A119.2
C5—C4—C8121.8 (6)C29—C30—C31120.2 (8)
C3—C4—C8120.7 (5)C29—C30—H30A119.9
C6—C5—C4121.7 (6)C31—C30—H30A119.9
C6—C5—H5A119.1C26—C31—C30120.0 (7)
C4—C5—H5A119.1C26—C31—H31A120.0
C5—C6—C7120.7 (5)C30—C31—H31A120.0
C5—C6—H6A119.6C28—C32—H32A109.5
C7—C6—H6A119.6C28—C32—H32B109.5
C6—C7—C2119.3 (5)H32A—C32—H32B109.5
C6—C7—H7A120.4C28—C32—H32C109.5
C2—C7—H7A120.4H32A—C32—H32C109.5
C4—C8—H8A109.5H32B—C32—H32C109.5
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O9—H9A···O80.822.032.805 (5)158
O9—H9B···O7i0.822.253.017 (5)156
O10—H10B···O20.822.122.881 (5)153
O10—H10A···O1ii0.821.972.774 (5)166
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Pb(C8H7O2)2(H2O)]
Mr495.48
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)7.1745 (3), 42.745 (2), 10.7126 (5)
β (°) 90.765 (1)
V3)3285.0 (3)
Z8
Radiation typeMo Kα
µ (mm1)10.29
Crystal size (mm)0.36 × 0.17 × 0.12
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.144, 0.300
No. of measured, independent and
observed [I > 2σ(I)] reflections
40611, 8096, 6265
Rint0.056
(sin θ/λ)max1)0.665
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.061, 1.03
No. of reflections8096
No. of parameters397
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.87, 1.00

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Pb1—O42.386 (3)Pb2—O62.325 (3)
Pb1—O12.424 (3)Pb2—O82.494 (4)
Pb1—O32.594 (3)Pb2—O3ii2.538 (3)
Pb1—O52.603 (3)Pb2—O72.565 (4)
Pb1—O22.622 (4)Pb2—O102.665 (3)
Pb1—O92.724 (4)Pb2—O42.712 (3)
Pb1—O6i2.751 (3)Pb2—O52.757 (4)
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O9—H9A···O80.822.032.805 (5)158
O9—H9B···O7i0.822.253.017 (5)156
O10—H10B···O20.822.122.881 (5)153
O10—H10A···O1ii0.821.972.774 (5)166
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z.
 

Acknowledgements

The authors acknowledge the Doctoral Foundation of Henan Polytechnic University (B2008–58 648265).

References

First citationBruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFan, S. R. & Zhu, L. G. (2006). Inorg. Chem. 45, 7935–7942.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationHamilton, B. H., Kelly, K. A., Wagler, T. A., Espe, M. P. & Ziegler, C. J. (2004). Inorg. Chem. 43, 50–56.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMasaoka, S., Furukawa, S., Chang, H. C., Mizutani, T. & Kitagawa, S. (2001). Angew. Chem. Int. Ed. 40, 3817–3819.  CrossRef CAS Google Scholar
First citationMeng, X. R., Song, Y. L., Hou, H. W., Fan, Y. T., Li, G. & Zhu, Y. (2003). Inorg. Chem. 42, 1306–1315.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, J., Xu, J.-N., Zhang, P., Fan, Y., Wang, L., Bi, M.-H., Ma, K.-R. & Song, T.-Y. (2007). Chem. J. Chin. Univ. 28, 1617–1621.  CAS Google Scholar
First citationWang, X. L., Qin, C. & Wang, E. B. (2006). Cryst. Growth. Des. 6, 439-443.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds