organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 7| July 2009| Pages o1665-o1666

4-Bromo­seleno­anisole

aCenter for Fundamental Research: Metal Structures in Four Dimensions, Risø National Laboratory for Sustainable Energy, Technical University of Denmark, Frederiksborgvej 399, P.O. 49, DK-4000 Roskilde, Denmark, and bDepartment of Medicinal Chemistry, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
*Correspondence e-mail: osho@risoe.dtu.dk

(Received 10 June 2009; accepted 15 June 2009; online 24 June 2009)

The title compound, 1-bromo-4-methyl­seleno­benzene, C7H7BrSe, was prepared by methyl­ation of 4-bromo­seleno­phenolate with methyl iodide, and crystals suitable for structure determination were obtained by sublimation. The mol­ecule is essentially planar; the Se—Me bond is rotated by only 2.59 (19)° out of the least-squares plane of the benzene ring. The most pronounced intermolecular interactions are two hydrogen bonds of the type C—H⋯π, which determine a herring-bone pattern in the crystal packing.

Related literature

For related selenobenzene structures, see: Oddershede et al. (2003[Oddershede, J., Henriksen, L. & Larsen, S. (2003). Org. Biomol. Chem. 1, 1053-1060.]); Sørensen & Stuhr-Hansen (2009[Sørensen, H. O. & Stuhr-Hansen, N. (2009). Acta Cryst. E65, o13.]); Stuhr-Hansen et al. (2009[Stuhr-Hansen, N., Götze, T. F., Henriksen, L., Sølling, T. I., Langkilde, A. & Sørensen, H. O. (2009). Heteroat. Chem. 20, 101-108.]). For the 77Se-NMR spctrum, see: Eggert et al. (1986[Eggert, H., Nielsen, O. & Henriksen, L. (1986). J. Am. Chem. Soc. 108, 1725-1730.]). For the melting point, see: Gilow et al. (1968[Gilow, H. M., Camp, R. B. & Clifton, E. C. (1968). J. Org. Chem. 33, 230-233.]).

[Scheme 1]

Experimental

Crystal data
  • C7H7BrSe

  • Mr = 250.00

  • Orthorhombic, P n a 21

  • a = 5.8298 (8) Å

  • b = 7.0671 (11) Å

  • c = 18.776 (6) Å

  • V = 773.6 (3) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 11.86 mm−1

  • T = 122 K

  • 0.36 × 0.09 × 0.09 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: numerical (DeTitta, 1985[DeTitta, G. T. (1985). J. Appl. Cryst. 18, 75-79.]) Tmin = 0.145, Tmax = 0.454

  • 5823 measured reflections

  • 1590 independent reflections

  • 1590 reflections with I > 2σ(I)

  • Rint = 0.031

  • 5 standard reflections frequency: 166.7 min intensity decay: 8.7%

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.075

  • S = 1.15

  • 1590 reflections

  • 83 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.62 e Å−3

  • Δρmin = −1.30 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.])

  • Flack parameter: −0.01 (4)

Table 1
Selected bond lengths (Å)

Se1—C1 1.916 (4)
Se1—C7 1.930 (5)
Br1—C4 1.906 (4)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯C2i 0.95 2.84 3.747 (4) 159
C5—H5⋯C5ii 0.95 2.83 3.740 (5) 160
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z]; (ii) [x+{\script{1\over 2}}, -y-{\script{1\over 2}}, z].

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: DREAR (Blessing, 1987[Blessing, R. H. (1987). Crystallogr. Rev. 1. 3-58.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Related literature top

For related seleno-benzene structures, see: Oddershede et al. (2003); Sørensen & Stuhr-Hansen (2009); Stuhr-Hansen et al. (2009). For the 77Se-NMR spctrum, see: Eggert et al. (1986). For the melting point, see: Gilow et al. (1968).

Experimental top

The title compound was synthesized as described below. To a stirred solution containing di(4-bromophenyl) diselenide (2.35 g, 5 mmol) and hydrazine hydrate (2.75 mmol) in DMSO (8 ml) was added 25% methanolic sodium methanolate (approximately 2 g, the last 0.2 g added dropwise with intervals of 5 s until the yellow color of di(4-bromophenyl) diselenide disappeared). 4-Methyliodide (1.70 g, 12 mmol) was added and the reaction mixture was further stirred for 10 minutes. The clear colourless reaction mixture was diluted with water (100 ml) and extracted with ether (3 x 25 ml). The combined organic phases were washed with water (15 ml), filtered through alumina (neutral, 6 g) by means of pentane and the solvent was evaporated in vacuo. Sublimation (200 °C, 5 m mH g) gave the title compound 4-bromoselenoanisol (2.24 g, 90%) as long white needles in a quality suitable for structure determination by single-crystal x-ray diffraction; mp 47–48 °C (lit. (Gilow et al., 1968) mp 46–47 °C). C7H7BrSe: found C 33.69% H 2.57%; calc. C 33.63% H 2.82%. Mass spectrum (EI; m/z, relative intensity): 250 (M+, 100), 235 (67), 171 (7), 156 (56). 1H-NMR (CDCl3) δ: 2.33 (3H, s), 7.26 (2H, d, J = 8.6 Hz), 7.36 (2H, d, J = 8.6 Hz). 77Se-NMR (Eggert et al., 1986) (CDCl3) δ: 211 p.p.m..

Refinement top

Hydrogen atoms were found in the difference Fourier map. All hydrogen atoms were treated as riding atoms with C—H distances of 0.95 for Car and 0.98 for the CMe. Isotropic displacement parameters for all H atoms were constrained to 1.2Ueq of the connected non-hydrogen atom (1.5Ueq for Me groups).

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: DREAR (Blessing, 1987); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Ortep drawing (Johnson, 1976) of the title compound including labelling of the atoms. The displacement ellipsoids are drawn at the 50% probability level. H atoms are shown as spheres with an arbitrary radii.
1-bromo-4-methylselenobenzene top
Crystal data top
C7H7BrSeF(000) = 472
Mr = 250.00Dx = 2.147 Mg m3
Orthorhombic, Pna21Cu Kα radiation, λ = 1.54184 Å
Hall symbol: P 2c -2nCell parameters from 20 reflections
a = 5.8298 (8) Åθ = 39.2–40.3°
b = 7.0671 (11) ŵ = 11.86 mm1
c = 18.776 (6) ÅT = 122 K
V = 773.6 (3) Å3Needle, white
Z = 40.36 × 0.09 × 0.09 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
1590 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.031
Graphite monochromatorθmax = 74.8°, θmin = 4.7°
ω–2θ scansh = 77
Absorption correction: numerical
(DeTitta, 1985)
k = 88
Tmin = 0.145, Tmax = 0.454l = 2323
5823 measured reflections5 standard reflections every 166.7 min
1590 independent reflections intensity decay: 8.7%
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.027 w = 1/[σ2(Fo2) + (0.0537P)2 + 0.4964P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.075(Δ/σ)max < 0.001
S = 1.15Δρmax = 0.62 e Å3
1590 reflectionsΔρmin = 1.30 e Å3
83 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.0128 (5)
Primary atom site location: heavy-atom methodAbsolute structure: Flack (1983)
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.01 (4)
Crystal data top
C7H7BrSeV = 773.6 (3) Å3
Mr = 250.00Z = 4
Orthorhombic, Pna21Cu Kα radiation
a = 5.8298 (8) ŵ = 11.86 mm1
b = 7.0671 (11) ÅT = 122 K
c = 18.776 (6) Å0.36 × 0.09 × 0.09 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
1590 reflections with I > 2σ(I)
Absorption correction: numerical
(DeTitta, 1985)
Rint = 0.031
Tmin = 0.145, Tmax = 0.4545 standard reflections every 166.7 min
5823 measured reflections intensity decay: 8.7%
1590 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.027H-atom parameters constrained
wR(F2) = 0.075Δρmax = 0.62 e Å3
S = 1.15Δρmin = 1.30 e Å3
1590 reflectionsAbsolute structure: Flack (1983)
83 parametersAbsolute structure parameter: 0.01 (4)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Se10.08215 (7)0.05711 (4)0.00008 (2)0.02110 (15)
Br10.38155 (8)0.04502 (5)0.317143 (19)0.02756 (16)
C10.0636 (7)0.0211 (5)0.0905 (2)0.0176 (7)
C20.0585 (6)0.0834 (5)0.1507 (2)0.0185 (7)
H20.20550.13950.14500.022*
C30.0336 (8)0.0636 (4)0.2178 (2)0.0219 (8)
H30.04780.10660.25860.026*
C40.2483 (6)0.0207 (5)0.22490 (18)0.0184 (7)
C50.3691 (6)0.0843 (5)0.1666 (2)0.0184 (7)
H50.51490.14200.17270.022*
C60.2759 (7)0.0633 (4)0.0982 (2)0.0193 (8)
H60.35790.10670.05770.023*
C70.1556 (9)0.0397 (6)0.0615 (3)0.0300 (9)
H7A0.29970.02680.05170.045*
H7B0.11170.01950.11130.045*
H7C0.17590.17530.05280.045*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Se10.0191 (2)0.0252 (2)0.0190 (2)0.00090 (10)0.00294 (17)0.00115 (15)
Br10.0276 (2)0.0363 (3)0.0188 (2)0.00065 (13)0.00506 (19)0.00065 (16)
C10.0174 (18)0.0161 (14)0.0193 (18)0.0014 (12)0.0005 (13)0.0019 (13)
C20.0120 (15)0.0178 (15)0.026 (2)0.0030 (12)0.0026 (13)0.0003 (13)
C30.022 (2)0.0201 (16)0.024 (2)0.0001 (11)0.0034 (17)0.0019 (12)
C40.0186 (19)0.0202 (16)0.0166 (17)0.0032 (12)0.0007 (15)0.0015 (12)
C50.0168 (15)0.0206 (14)0.0177 (18)0.0018 (12)0.0009 (13)0.0014 (13)
C60.0170 (19)0.0178 (16)0.0230 (19)0.0009 (10)0.0012 (16)0.0022 (11)
C70.032 (2)0.039 (2)0.019 (2)0.0061 (15)0.0035 (18)0.0038 (14)
Geometric parameters (Å, º) top
Se1—C11.916 (4)C3—H30.9500
Se1—C71.930 (5)C4—C51.377 (5)
Br1—C41.906 (4)C5—C61.401 (6)
C1—C61.382 (5)C5—H50.9500
C1—C21.406 (5)C6—H60.9500
C2—C31.377 (6)C7—H7A0.9800
C2—H20.9500C7—H7B0.9800
C3—C41.392 (6)C7—H7C0.9800
C1—Se1—C799.5 (2)C4—C5—C6119.7 (3)
C6—C1—C2120.3 (4)C4—C5—H5120.2
C6—C1—Se1123.2 (3)C6—C5—H5120.2
C2—C1—Se1116.5 (3)C1—C6—C5119.3 (4)
C3—C2—C1120.4 (4)C1—C6—H6120.4
C3—C2—H2119.8C5—C6—H6120.4
C1—C2—H2119.8Se1—C7—H7A109.5
C2—C3—C4118.8 (4)Se1—C7—H7B109.5
C2—C3—H3120.6H7A—C7—H7B109.5
C4—C3—H3120.6Se1—C7—H7C109.5
C5—C4—C3121.6 (3)H7A—C7—H7C109.5
C5—C4—Br1119.0 (3)H7B—C7—H7C109.5
C3—C4—Br1119.5 (3)
C7—Se1—C1—C63.0 (3)C2—C3—C4—Br1178.8 (3)
C7—Se1—C1—C2177.8 (3)C3—C4—C5—C60.4 (6)
C6—C1—C2—C31.0 (5)Br1—C4—C5—C6178.5 (3)
Se1—C1—C2—C3179.8 (3)C2—C1—C6—C50.7 (5)
C1—C2—C3—C40.6 (5)Se1—C1—C6—C5179.8 (3)
C2—C3—C4—C50.1 (5)C4—C5—C6—C10.0 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···C2i0.952.843.747 (4)159
C5—H5···C5ii0.952.833.740 (5)160
Symmetry codes: (i) x1/2, y+1/2, z; (ii) x+1/2, y1/2, z.

Experimental details

Crystal data
Chemical formulaC7H7BrSe
Mr250.00
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)122
a, b, c (Å)5.8298 (8), 7.0671 (11), 18.776 (6)
V3)773.6 (3)
Z4
Radiation typeCu Kα
µ (mm1)11.86
Crystal size (mm)0.36 × 0.09 × 0.09
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionNumerical
(DeTitta, 1985)
Tmin, Tmax0.145, 0.454
No. of measured, independent and
observed [I > 2σ(I)] reflections
5823, 1590, 1590
Rint0.031
(sin θ/λ)max1)0.626
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.075, 1.15
No. of reflections1590
No. of parameters83
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.62, 1.30
Absolute structureFlack (1983)
Absolute structure parameter0.01 (4)

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), DREAR (Blessing, 1987), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPII (Johnson, 1976) and PLATON (Spek, 2009).

Selected bond lengths (Å) top
Se1—C11.916 (4)Br1—C41.906 (4)
Se1—C71.930 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···C2i0.952.843.747 (4)159.4
C5—H5···C5ii0.952.833.740 (5)160.3
Symmetry codes: (i) x1/2, y+1/2, z; (ii) x+1/2, y1/2, z.
 

Acknowledgements

The authors wish to thank Flemming Hansen, Centre for Crystallographic Studies, University of Copenhagen for obtaining the crystallographic data. HOS acknowledge support from the EU Sixth Framework Programme TotalCryst and the Danish National Research Foundation.

References

First citationBlessing, R. H. (1987). Crystallogr. Rev. 1. 3–58.  Google Scholar
First citationDeTitta, G. T. (1985). J. Appl. Cryst. 18, 75–79.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationEggert, H., Nielsen, O. & Henriksen, L. (1986). J. Am. Chem. Soc. 108, 1725–1730.  CrossRef CAS Web of Science Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGilow, H. M., Camp, R. B. & Clifton, E. C. (1968). J. Org. Chem. 33, 230–233.  CrossRef CAS Web of Science Google Scholar
First citationOddershede, J., Henriksen, L. & Larsen, S. (2003). Org. Biomol. Chem. 1, 1053–1060.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSørensen, H. O. & Stuhr-Hansen, N. (2009). Acta Cryst. E65, o13.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStuhr-Hansen, N., Götze, T. F., Henriksen, L., Sølling, T. I., Langkilde, A. & Sørensen, H. O. (2009). Heteroat. Chem. 20, 101–108.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 7| July 2009| Pages o1665-o1666
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds