organic compounds
4-Bromoselenoanisole
aCenter for Fundamental Research: Metal Structures in Four Dimensions, Risø National Laboratory for Sustainable Energy, Technical University of Denmark, Frederiksborgvej 399, P.O. 49, DK-4000 Roskilde, Denmark, and bDepartment of Medicinal Chemistry, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
*Correspondence e-mail: osho@risoe.dtu.dk
The title compound, 1-bromo-4-methylselenobenzene, C7H7BrSe, was prepared by methylation of 4-bromoselenophenolate with methyl iodide, and crystals suitable for were obtained by The molecule is essentially planar; the Se—Me bond is rotated by only 2.59 (19)° out of the least-squares plane of the benzene ring. The most pronounced intermolecular interactions are two hydrogen bonds of the type C—H⋯π, which determine a herring-bone pattern in the crystal packing.
Related literature
For related selenobenzene structures, see: Oddershede et al. (2003); Sørensen & Stuhr-Hansen (2009); Stuhr-Hansen et al. (2009). For the 77Se-NMR spctrum, see: Eggert et al. (1986). For the melting point, see: Gilow et al. (1968).
Experimental
Crystal data
|
|
Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell CAD-4 EXPRESS; data reduction: DREAR (Blessing, 1987); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S160053680902296X/fj2225sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S160053680902296X/fj2225Isup2.hkl
The title compound was synthesized as described below. To a stirred solution containing di(4-bromophenyl) diselenide (2.35 g, 5 mmol) and hydrazine hydrate (2.75 mmol) in DMSO (8 ml) was added 25% methanolic sodium methanolate (approximately 2 g, the last 0.2 g added dropwise with intervals of 5 s until the yellow color of di(4-bromophenyl) diselenide disappeared). 4-Methyliodide (1.70 g, 12 mmol) was added and the reaction mixture was further stirred for 10 minutes. The clear colourless reaction mixture was diluted with water (100 ml) and extracted with ether (3 x 25 ml). The combined organic phases were washed with water (15 ml), filtered through alumina (neutral, 6 g) by means of pentane and the solvent was evaporated in vacuo. δ: 2.33 (3H, s), 7.26 (2H, d, J = 8.6 Hz), 7.36 (2H, d, J = 8.6 Hz). 77Se-NMR (Eggert et al., 1986) (CDCl3) δ: 211 p.p.m..
(200 °C, 5 m mH g) gave the title compound 4-bromoselenoanisol (2.24 g, 90%) as long white needles in a quality suitable for by single-crystal x-ray diffraction; mp 47–48 °C (lit. (Gilow et al., 1968) mp 46–47 °C). C7H7BrSe: found C 33.69% H 2.57%; calc. C 33.63% H 2.82%. (EI; m/z, relative intensity): 250 (M+, 100), 235 (67), 171 (7), 156 (56). 1H-NMR (CDCl3)Hydrogen atoms were found in the difference Fourier map. All hydrogen atoms were treated as riding atoms with C—H distances of 0.95 for Car and 0.98 for the CMe. Isotropic displacement parameters for all H atoms were constrained to 1.2Ueq of the connected non-hydrogen atom (1.5Ueq for Me groups).
Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell
CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: DREAR (Blessing, 1987); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).C7H7BrSe | F(000) = 472 |
Mr = 250.00 | Dx = 2.147 Mg m−3 |
Orthorhombic, Pna21 | Cu Kα radiation, λ = 1.54184 Å |
Hall symbol: P 2c -2n | Cell parameters from 20 reflections |
a = 5.8298 (8) Å | θ = 39.2–40.3° |
b = 7.0671 (11) Å | µ = 11.86 mm−1 |
c = 18.776 (6) Å | T = 122 K |
V = 773.6 (3) Å3 | Needle, white |
Z = 4 | 0.36 × 0.09 × 0.09 mm |
Enraf–Nonius CAD-4 diffractometer | 1590 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.031 |
Graphite monochromator | θmax = 74.8°, θmin = 4.7° |
ω–2θ scans | h = −7→7 |
Absorption correction: numerical (DeTitta, 1985) | k = −8→8 |
Tmin = 0.145, Tmax = 0.454 | l = −23→23 |
5823 measured reflections | 5 standard reflections every 166.7 min |
1590 independent reflections | intensity decay: 8.7% |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.027 | w = 1/[σ2(Fo2) + (0.0537P)2 + 0.4964P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.075 | (Δ/σ)max < 0.001 |
S = 1.15 | Δρmax = 0.62 e Å−3 |
1590 reflections | Δρmin = −1.30 e Å−3 |
83 parameters | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
1 restraint | Extinction coefficient: 0.0128 (5) |
Primary atom site location: heavy-atom method | Absolute structure: Flack (1983) |
Secondary atom site location: difference Fourier map | Absolute structure parameter: −0.01 (4) |
C7H7BrSe | V = 773.6 (3) Å3 |
Mr = 250.00 | Z = 4 |
Orthorhombic, Pna21 | Cu Kα radiation |
a = 5.8298 (8) Å | µ = 11.86 mm−1 |
b = 7.0671 (11) Å | T = 122 K |
c = 18.776 (6) Å | 0.36 × 0.09 × 0.09 mm |
Enraf–Nonius CAD-4 diffractometer | 1590 reflections with I > 2σ(I) |
Absorption correction: numerical (DeTitta, 1985) | Rint = 0.031 |
Tmin = 0.145, Tmax = 0.454 | 5 standard reflections every 166.7 min |
5823 measured reflections | intensity decay: 8.7% |
1590 independent reflections |
R[F2 > 2σ(F2)] = 0.027 | H-atom parameters constrained |
wR(F2) = 0.075 | Δρmax = 0.62 e Å−3 |
S = 1.15 | Δρmin = −1.30 e Å−3 |
1590 reflections | Absolute structure: Flack (1983) |
83 parameters | Absolute structure parameter: −0.01 (4) |
1 restraint |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Se1 | −0.08215 (7) | 0.05711 (4) | 0.00008 (2) | 0.02110 (15) | |
Br1 | 0.38155 (8) | −0.04502 (5) | 0.317143 (19) | 0.02756 (16) | |
C1 | 0.0636 (7) | 0.0211 (5) | 0.0905 (2) | 0.0176 (7) | |
C2 | −0.0585 (6) | 0.0834 (5) | 0.1507 (2) | 0.0185 (7) | |
H2 | −0.2055 | 0.1395 | 0.1450 | 0.022* | |
C3 | 0.0336 (8) | 0.0636 (4) | 0.2178 (2) | 0.0219 (8) | |
H3 | −0.0478 | 0.1066 | 0.2586 | 0.026* | |
C4 | 0.2483 (6) | −0.0207 (5) | 0.22490 (18) | 0.0184 (7) | |
C5 | 0.3691 (6) | −0.0843 (5) | 0.1666 (2) | 0.0184 (7) | |
H5 | 0.5149 | −0.1420 | 0.1727 | 0.022* | |
C6 | 0.2759 (7) | −0.0633 (4) | 0.0982 (2) | 0.0193 (8) | |
H6 | 0.3579 | −0.1067 | 0.0577 | 0.023* | |
C7 | 0.1556 (9) | −0.0397 (6) | −0.0615 (3) | 0.0300 (9) | |
H7A | 0.2997 | 0.0268 | −0.0517 | 0.045* | |
H7B | 0.1117 | −0.0195 | −0.1113 | 0.045* | |
H7C | 0.1759 | −0.1753 | −0.0528 | 0.045* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Se1 | 0.0191 (2) | 0.0252 (2) | 0.0190 (2) | 0.00090 (10) | −0.00294 (17) | 0.00115 (15) |
Br1 | 0.0276 (2) | 0.0363 (3) | 0.0188 (2) | 0.00065 (13) | −0.00506 (19) | 0.00065 (16) |
C1 | 0.0174 (18) | 0.0161 (14) | 0.0193 (18) | −0.0014 (12) | −0.0005 (13) | 0.0019 (13) |
C2 | 0.0120 (15) | 0.0178 (15) | 0.026 (2) | 0.0030 (12) | 0.0026 (13) | −0.0003 (13) |
C3 | 0.022 (2) | 0.0201 (16) | 0.024 (2) | 0.0001 (11) | 0.0034 (17) | −0.0019 (12) |
C4 | 0.0186 (19) | 0.0202 (16) | 0.0166 (17) | −0.0032 (12) | −0.0007 (15) | 0.0015 (12) |
C5 | 0.0168 (15) | 0.0206 (14) | 0.0177 (18) | −0.0018 (12) | 0.0009 (13) | −0.0014 (13) |
C6 | 0.0170 (19) | 0.0178 (16) | 0.0230 (19) | 0.0009 (10) | 0.0012 (16) | −0.0022 (11) |
C7 | 0.032 (2) | 0.039 (2) | 0.019 (2) | 0.0061 (15) | 0.0035 (18) | −0.0038 (14) |
Se1—C1 | 1.916 (4) | C3—H3 | 0.9500 |
Se1—C7 | 1.930 (5) | C4—C5 | 1.377 (5) |
Br1—C4 | 1.906 (4) | C5—C6 | 1.401 (6) |
C1—C6 | 1.382 (5) | C5—H5 | 0.9500 |
C1—C2 | 1.406 (5) | C6—H6 | 0.9500 |
C2—C3 | 1.377 (6) | C7—H7A | 0.9800 |
C2—H2 | 0.9500 | C7—H7B | 0.9800 |
C3—C4 | 1.392 (6) | C7—H7C | 0.9800 |
C1—Se1—C7 | 99.5 (2) | C4—C5—C6 | 119.7 (3) |
C6—C1—C2 | 120.3 (4) | C4—C5—H5 | 120.2 |
C6—C1—Se1 | 123.2 (3) | C6—C5—H5 | 120.2 |
C2—C1—Se1 | 116.5 (3) | C1—C6—C5 | 119.3 (4) |
C3—C2—C1 | 120.4 (4) | C1—C6—H6 | 120.4 |
C3—C2—H2 | 119.8 | C5—C6—H6 | 120.4 |
C1—C2—H2 | 119.8 | Se1—C7—H7A | 109.5 |
C2—C3—C4 | 118.8 (4) | Se1—C7—H7B | 109.5 |
C2—C3—H3 | 120.6 | H7A—C7—H7B | 109.5 |
C4—C3—H3 | 120.6 | Se1—C7—H7C | 109.5 |
C5—C4—C3 | 121.6 (3) | H7A—C7—H7C | 109.5 |
C5—C4—Br1 | 119.0 (3) | H7B—C7—H7C | 109.5 |
C3—C4—Br1 | 119.5 (3) | ||
C7—Se1—C1—C6 | −3.0 (3) | C2—C3—C4—Br1 | 178.8 (3) |
C7—Se1—C1—C2 | 177.8 (3) | C3—C4—C5—C6 | 0.4 (6) |
C6—C1—C2—C3 | 1.0 (5) | Br1—C4—C5—C6 | −178.5 (3) |
Se1—C1—C2—C3 | −179.8 (3) | C2—C1—C6—C5 | −0.7 (5) |
C1—C2—C3—C4 | −0.6 (5) | Se1—C1—C6—C5 | −179.8 (3) |
C2—C3—C4—C5 | −0.1 (5) | C4—C5—C6—C1 | 0.0 (5) |
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2···C2i | 0.95 | 2.84 | 3.747 (4) | 159 |
C5—H5···C5ii | 0.95 | 2.83 | 3.740 (5) | 160 |
Symmetry codes: (i) x−1/2, −y+1/2, z; (ii) x+1/2, −y−1/2, z. |
Experimental details
Crystal data | |
Chemical formula | C7H7BrSe |
Mr | 250.00 |
Crystal system, space group | Orthorhombic, Pna21 |
Temperature (K) | 122 |
a, b, c (Å) | 5.8298 (8), 7.0671 (11), 18.776 (6) |
V (Å3) | 773.6 (3) |
Z | 4 |
Radiation type | Cu Kα |
µ (mm−1) | 11.86 |
Crystal size (mm) | 0.36 × 0.09 × 0.09 |
Data collection | |
Diffractometer | Enraf–Nonius CAD-4 diffractometer |
Absorption correction | Numerical (DeTitta, 1985) |
Tmin, Tmax | 0.145, 0.454 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 5823, 1590, 1590 |
Rint | 0.031 |
(sin θ/λ)max (Å−1) | 0.626 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.027, 0.075, 1.15 |
No. of reflections | 1590 |
No. of parameters | 83 |
No. of restraints | 1 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.62, −1.30 |
Absolute structure | Flack (1983) |
Absolute structure parameter | −0.01 (4) |
Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), DREAR (Blessing, 1987), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPII (Johnson, 1976) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
C2—H2···C2i | 0.95 | 2.84 | 3.747 (4) | 159.4 |
C5—H5···C5ii | 0.95 | 2.83 | 3.740 (5) | 160.3 |
Symmetry codes: (i) x−1/2, −y+1/2, z; (ii) x+1/2, −y−1/2, z. |
Acknowledgements
The authors wish to thank Flemming Hansen, Centre for Crystallographic Studies, University of Copenhagen for obtaining the crystallographic data. HOS acknowledge support from the EU Sixth Framework Programme TotalCryst and the Danish National Research Foundation.
References
Blessing, R. H. (1987). Crystallogr. Rev. 1. 3–58. Google Scholar
DeTitta, G. T. (1985). J. Appl. Cryst. 18, 75–79. CrossRef CAS Web of Science IUCr Journals Google Scholar
Eggert, H., Nielsen, O. & Henriksen, L. (1986). J. Am. Chem. Soc. 108, 1725–1730. CrossRef CAS Web of Science Google Scholar
Enraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands. Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Gilow, H. M., Camp, R. B. & Clifton, E. C. (1968). J. Org. Chem. 33, 230–233. CrossRef CAS Web of Science Google Scholar
Oddershede, J., Henriksen, L. & Larsen, S. (2003). Org. Biomol. Chem. 1, 1053–1060. Web of Science CSD CrossRef PubMed CAS Google Scholar
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sørensen, H. O. & Stuhr-Hansen, N. (2009). Acta Cryst. E65, o13. Web of Science CSD CrossRef IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stuhr-Hansen, N., Götze, T. F., Henriksen, L., Sølling, T. I., Langkilde, A. & Sørensen, H. O. (2009). Heteroat. Chem. 20, 101–108. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.