organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 7| July 2009| Pages o1671-o1672

N-[3-(2,6-Di­methylanilino)-1-methylbut-2-enyl­idene]-2,6-di­methylanilinium chloride

aFacultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, Av. Pedro de Alba s/n, 66451 San Nicolás de los Garza, N. L., Mexico, and bCINVESTAV-Monterrey, Vía del conocimiento 201, PIIT. Autopista al Aeropuerto Km. 9.5, Apodaca, N. L. Mexico
*Correspondence e-mail: vjimenez@fcq.uanl.mx

(Received 18 March 2009; accepted 29 May 2009; online 24 June 2009)

The title salt, C21H27N2+·Cl resulted from the condensation between 2,6-dimethyl­aniline and acetyl­acetone in acidified ethanol. The bulky cation is stabilized in a β-imino­enamine tautomeric form, and presents a W-shaped conformation. The benzene rings are arranged almost parallel, with a dihedral angle of 6.58 (4)° between the mean planes. Both N—H groups in the cation form strong hydrogen bonds with two symmetry-related chloride anions. The resulting supra­molecular structure is a one dimensional polymer running along [001], alternating cations and anions. The ππ inter­action observed in the mol­ecule, characterized by a centroid–centroid separation of 4.298 (4) Å, is thus extended to the chains, with separations of 5.222 (4) Å between benzene rings of neighbouring cations in the crystal.

Related literature

For the synthesis, properties, and uses of β-diketimines and β-diketiminates, see: Dorman (1966[Dorman, L. C. (1966). Tetrahedron Lett. 7, 459-464.]); Park (2007[Park, K.-H. (2007). US Patent Appl. US 2007 191 638.]); Bourget-Merle et al. (2002[Bourget-Merle, L., Lappert, M. F. & Severn, J. R. (2002). Chem. Rev. 102, 3031-3066.]); Nagendran & Roesky (2008[Nagendran, S. & Roesky, W. H. (2008). Organometallics, 27, 457-492.]); Holland & Tolman (2000[Holland, P. L. & Tolman, W. B. (2000). J. Am. Chem. Soc. 122, 6331-6332.]); Stender et al. (2001[Stender, M., Wright, R. J., Eichler, B. E., Prust, J., Olmstead, M. M., Roesky, H. W. & Power, P. P. (2001). Dalton Trans. pp. 3465-3469.]); Carey et al., 2003[Carey, D. T., Cope-Eatough, E. K., Vilaplana-Mafé, E., Mair, F. S., Pritchard, R. G., Warren, J. E. & Woods, R. J. (2003). Dalton Trans. pp. 1083-1093.]. For W-shaped cations related to the title compound, see: Brownstein et al. (1983[Brownstein, S., Gabe, E. J. & Prasad, L. (1983). Can. J. Chem. 61, 1410-1413.]); Kuhn et al. (2000[Kuhn, N., Fahl, J., Fuchs, S. & Henkel, G. (2000). Z. Naturforsch. Teil B, 55, 345-346.]); Lesikar & Richards (2006[Lesikar, L. A. & Richards, A. F. (2006). J. Organomet. Chem. 691, 4250-4256.]).

[Scheme 1]

Experimental

Crystal data
  • C21H27N2+·Cl

  • Mr = 342.90

  • Tetragonal, I 41 /a

  • a = 28.639 (5) Å

  • c = 10.150 (3) Å

  • V = 8325 (3) Å3

  • Z = 16

  • Mo Kα radiation

  • μ = 0.19 mm−1

  • T = 298 K

  • 0.50 × 0.36 × 0.22 mm

Data collection
  • Bruker P4 diffractometer

  • Absorption correction: ψ scan XSCANS (Siemens, 1996[Siemens (1996). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]) Tmin = 0.854, Tmax = 0.959

  • 7193 measured reflections

  • 3671 independent reflections

  • 1541 reflections with I > 2σ(I)

  • Rint = 0.049

  • 3 standard reflections every 97 reflections intensity decay: 1.5%

Refinement
  • R[F2 > 2σ(F2)] = 0.062

  • wR(F2) = 0.171

  • S = 1.12

  • 3671 reflections

  • 229 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N11—H11⋯Cl1 1.01 (3) 2.12 (3) 3.115 (3) 170 (3)
N7—H7⋯Cl1i 1.00 (3) 2.12 (3) 3.110 (4) 170 (3)
Symmetry code: (i) x, y, z-1.

Data collection: XSCANS (Siemens, 1996[Siemens (1996). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Many synthetic routes are currently available to synthesize symmetric and unsymmetric β-diketimines, including the co-condensation reaction of a ketone and a primary amine (Dorman, 1966; Park, 2007). These ligands proved to be very versatile and diverse, considering the possible variation of both coordination modes and of groups bonded to the N atoms and to the α- and β- C atoms. Indeed, β-diketiminates are the most used ligands in coordination chemistry for the stabilization of low coordinate and low oxidation states of main group or transition elements (Bourget-Merle et al., 2002; Nagendran & Roesky, 2008). β-Diketiminates complexes have been used as catalysts and even as structural models of protein active sites (Holland & Tolman, 2000).

Neutral β-diketimines invariably show a U-shaped conformation, favoured over other possible conformers by the formation of an intramolecular hydrogen bond involving the amine and imine N atoms (Dorman, 1966; Stender et al., 2001; Carey et al., 2003). However, if the β-diketimine is protonated, the backbone molecule adopts a new W-conformation, since the protonated N atom is able to form a strong intra-ionic N—H···Cl bond. Such behaviour has been observed in three salts closely related to the title compound where phenyl (Brownstein et al., 1983), methyl (Kuhn et al., 2000), and mesityl (Lesikar & Richards, 2006) have replaced the 2,6-dimethylphenyl. The supramolecular one-dimensional structure generated by this hydrogen bond is expected to be a strong stabilizing factor, as anions and cations alternate in a chain structure, which has a theoretical Madelung constant of 1.38.

In the title salt, the cation adopts the W-shaped conformation, and thus presents a non-crystallographic twofold axis passing through the central atom C9 (Fig. 1). Both N atoms are protonated, indicating that the β-iminoenamine tautomeric form is stabilized in the solid state. A parallel arrangement is observed for benzene rings, which are separated by 4.298 (4) Å. A similar arrangement was found with the mesityl-including cation, although the benzene separations are larger, probably because of the hindering character of mesityl (centroid-to-centroid distances: 4.348, 4.823, or 4.881 Å, depending of the nature of the counterion; Lesikar & Richards, 2006). Unexpectedly, the phenyl-containing salt has little intramolecular ππ interaction, with non-parallel phenyl rings separated by 5.480 Å (Brownstein et al., 1983). In the title cation, benzene rings are close to be parallel, the dihedral angle between mean planes being 6.58 (4)°.

Regarding the crystal structure, both amine and imine NH functionalities, N7 and N11, are involved in strong N—H···Cl hydrogen bonds with symmetry-related Cl- ions. The network of hydrogen bonds forms a one-dimensional supramolecular structure along the short cell axis c (Fig. 2). Cations and anions alternate in a chain, with all benzene rings oriented in the same direction. This arrangement allows to extend the ππ interactions to the whole polymeric structure, with a separation of 5.222 (4) Å between benzene rings of neighbouring cations. No significant contacts are observed between chains in the crystal.

Related literature top

For the synthesis, properties, and uses of β-diketimines and β-diketiminates, see: Dorman (1966); Park (2007); Bourget-Merle et al. (2002); Nagendran & Roesky (2008); Holland & Tolman (2000); Stender et al. (2001); Carey et al., 2003. For W-shaped cations related to the title compound, see: Brownstein et al. (1983); Kuhn et al. (2000); Lesikar & Richards (2006).

Experimental top

The title salt was prepared by mixing acetylacetone (25.03 g, 0.25 mol) and 2,6-dimethylaniline (60.5 g, 0.5 mol) in 12 N hydrochloric acid (20.8 ml, 0.25 mol HCl). The mixture was heated to 393 K for 4 h., allowing the water to distil. The reaction was then further heated to 413 K overnight. The resulting solid was recrystallized from hot ethanol, yielding 87.6 g of the title salt (94%). NMR data are in agreement with the X-ray structure (see archived CIF).

Refinement top

All C-bonded H atoms were placed in calculated positions and refined as riding to their carrier atoms, with bond lengths fixed to 0.93 (aromatic CH) or 0.96 Å (methyl CH3). N-bonded H atoms (H7 and H11) were found in a difference map and refined freely. Isotropic displacement parameters for H atoms were calculated as Uiso(H) = 1.5Ueq(carrier atom) for methyl groups and Uiso(H) = 1.2Ueq(carrier atom) otherwise.

Computing details top

Data collection: XSCANS (Siemens, 1996); cell refinement: XSCANS (Siemens, 1996); data reduction: XSCANS (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The title compound (asymmetric unit) with displacement ellipsoids at the 25% probability level. The dashed bond corresponds to the N—H···Cl hydrogen bond.
[Figure 2] Fig. 2. A part of the crystal structure of the title compound, with hydrogen bonds displayed as dashed lines. Two neighbouring chains are shown, with Cl- ions represented as green spheres, and omitting all C-bonded H atoms.
N-[3-(2,6-Dimethylanilino)-1-methylbut-2-enylidene]-2,6-dimethylanilinium chloride top
Crystal data top
C21H27N2+·ClDx = 1.094 Mg m3
Mr = 342.90Mo Kα radiation, λ = 0.71073 Å
Tetragonal, I41/aCell parameters from 77 reflections
Hall symbol: -I 4adθ = 4.6–12.3°
a = 28.639 (5) ŵ = 0.19 mm1
c = 10.150 (3) ÅT = 298 K
V = 8325 (3) Å3Prism, colorless
Z = 160.50 × 0.36 × 0.22 mm
F(000) = 2944
Data collection top
Bruker P4
diffractometer
1541 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.049
Graphite monochromatorθmax = 25.1°, θmin = 2.0°
ω scansh = 3413
Absorption correction: ψ scan
XSCANS (Siemens, 1996)
k = 341
Tmin = 0.854, Tmax = 0.959l = 1212
7193 measured reflections3 standard reflections every 97 reflections
3671 independent reflections intensity decay: 1.5%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.062Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.171H atoms treated by a mixture of independent and constrained refinement
S = 1.12 w = 1/[σ2(Fo2) + (0.06P)2]
where P = (Fo2 + 2Fc2)/3
3671 reflections(Δ/σ)max < 0.001
229 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = 0.32 e Å3
0 constraints
Crystal data top
C21H27N2+·ClZ = 16
Mr = 342.90Mo Kα radiation
Tetragonal, I41/aµ = 0.19 mm1
a = 28.639 (5) ÅT = 298 K
c = 10.150 (3) Å0.50 × 0.36 × 0.22 mm
V = 8325 (3) Å3
Data collection top
Bruker P4
diffractometer
1541 reflections with I > 2σ(I)
Absorption correction: ψ scan
XSCANS (Siemens, 1996)
Rint = 0.049
Tmin = 0.854, Tmax = 0.9593 standard reflections every 97 reflections
7193 measured reflections intensity decay: 1.5%
3671 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0620 restraints
wR(F2) = 0.171H atoms treated by a mixture of independent and constrained refinement
S = 1.12Δρmax = 0.43 e Å3
3671 reflectionsΔρmin = 0.32 e Å3
229 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.89962 (3)0.22980 (3)0.87464 (9)0.0839 (4)
C10.84317 (12)0.14527 (11)0.1392 (5)0.0623 (9)
C20.79611 (13)0.15570 (13)0.1335 (6)0.0824 (11)
C30.76486 (14)0.11910 (17)0.1272 (7)0.1044 (14)
H3A0.73300.12510.12230.125*
C40.78047 (16)0.07434 (16)0.1282 (8)0.1031 (13)
H4A0.75910.04990.12510.124*
C50.82605 (17)0.06477 (14)0.1334 (7)0.1001 (13)
H5A0.83600.03390.13220.120*
C60.85857 (13)0.10015 (13)0.1404 (6)0.0800 (12)
N70.87572 (10)0.18264 (10)0.1423 (4)0.0623 (8)
H70.8870 (13)0.1961 (13)0.057 (3)0.075*
C80.89275 (12)0.20174 (12)0.2519 (3)0.0528 (9)
C90.87894 (9)0.18619 (10)0.3745 (3)0.0565 (8)
H9A0.85710.16220.37530.068*
C100.89372 (12)0.20212 (12)0.4965 (3)0.0527 (9)
N110.87729 (10)0.18288 (10)0.6051 (3)0.0592 (8)
H110.8875 (13)0.1952 (12)0.693 (3)0.071*
C120.84451 (12)0.14556 (11)0.6106 (5)0.0589 (9)
C130.79765 (13)0.15614 (12)0.6194 (7)0.0801 (10)
C140.76658 (13)0.11931 (15)0.6254 (7)0.1053 (13)
H14A0.73470.12530.62840.126*
C150.78209 (15)0.07445 (14)0.6271 (7)0.0982 (12)
H15A0.76070.05010.63350.118*
C160.82809 (16)0.06482 (12)0.6197 (6)0.0886 (11)
H16A0.83800.03390.61920.106*
C170.86083 (12)0.10022 (12)0.6127 (6)0.0725 (10)
C180.78029 (14)0.20557 (14)0.1303 (8)0.144 (2)
H18A0.79290.22190.20490.217*
H18B0.74680.20670.13360.217*
H18C0.79100.22010.05060.217*
C190.90988 (14)0.08956 (14)0.1468 (7)0.130 (2)
H19A0.91440.05640.14960.195*
H19B0.92300.10350.22450.195*
H19C0.92510.10210.07020.195*
C200.92742 (11)0.23930 (11)0.2268 (3)0.0681 (10)
H20A0.93030.24430.13360.102*
H20B0.95720.23030.26220.102*
H20C0.91720.26760.26830.102*
C210.92784 (11)0.23993 (11)0.5203 (3)0.0685 (10)
H21A0.93060.24540.61340.103*
H21B0.91740.26800.47770.103*
H21C0.95770.23100.48540.103*
C220.78164 (14)0.20619 (14)0.6190 (8)0.1295 (17)
H22A0.79740.22300.68760.194*
H22B0.74860.20730.63380.194*
H22C0.78870.22010.53540.194*
C230.91199 (13)0.08983 (13)0.6062 (7)0.1174 (17)
H23A0.91680.05670.61270.176*
H23B0.92770.10520.67780.176*
H23C0.92440.10090.52410.176*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.1080 (7)0.1037 (7)0.0400 (4)0.0103 (5)0.0002 (6)0.0004 (6)
C10.077 (2)0.063 (2)0.047 (2)0.0056 (19)0.003 (2)0.007 (2)
C20.084 (3)0.076 (2)0.087 (3)0.002 (2)0.023 (4)0.011 (4)
C30.081 (3)0.119 (3)0.113 (3)0.013 (3)0.034 (5)0.002 (7)
C40.106 (3)0.098 (3)0.105 (3)0.028 (3)0.000 (6)0.001 (6)
C50.121 (3)0.075 (3)0.105 (3)0.007 (3)0.000 (5)0.023 (4)
C60.089 (3)0.068 (2)0.083 (3)0.009 (2)0.006 (3)0.003 (3)
N70.0791 (19)0.0624 (17)0.045 (2)0.0064 (15)0.0018 (18)0.0033 (18)
C80.062 (2)0.054 (2)0.0422 (19)0.0017 (18)0.0027 (17)0.0015 (17)
C90.0653 (18)0.0616 (18)0.0426 (15)0.0103 (14)0.0007 (19)0.0040 (19)
C100.060 (2)0.052 (2)0.045 (2)0.0028 (17)0.0009 (17)0.0006 (17)
N110.0787 (18)0.0613 (17)0.038 (2)0.0112 (14)0.0008 (17)0.0027 (16)
C120.073 (2)0.064 (2)0.040 (2)0.0079 (19)0.006 (2)0.004 (2)
C130.085 (3)0.072 (2)0.082 (3)0.009 (2)0.011 (4)0.001 (4)
C140.078 (3)0.106 (3)0.132 (4)0.013 (3)0.007 (5)0.015 (7)
C150.105 (3)0.082 (3)0.107 (3)0.021 (2)0.025 (5)0.011 (5)
C160.118 (3)0.068 (2)0.079 (3)0.007 (2)0.009 (5)0.005 (4)
C170.084 (2)0.066 (2)0.067 (3)0.007 (2)0.006 (3)0.011 (3)
C180.108 (3)0.104 (3)0.221 (6)0.025 (3)0.046 (7)0.006 (7)
C190.103 (3)0.092 (3)0.194 (6)0.016 (2)0.004 (5)0.012 (5)
C200.087 (2)0.070 (2)0.0476 (18)0.017 (2)0.010 (2)0.0013 (17)
C210.083 (2)0.072 (2)0.0499 (19)0.013 (2)0.006 (2)0.0015 (18)
C220.103 (3)0.095 (3)0.190 (5)0.017 (2)0.028 (7)0.001 (6)
C230.096 (3)0.092 (3)0.164 (5)0.013 (2)0.022 (4)0.006 (4)
Geometric parameters (Å, º) top
C1—C61.366 (4)C14—C151.360 (5)
C1—C21.382 (5)C14—H14A0.9300
C1—N71.419 (4)C15—C161.348 (5)
C2—C31.380 (5)C15—H15A0.9300
C2—C181.499 (5)C16—C171.383 (4)
C3—C41.358 (5)C16—H16A0.9300
C3—H3A0.9300C17—C231.497 (4)
C4—C51.335 (5)C18—H18A0.9600
C4—H4A0.9300C18—H18B0.9600
C5—C61.378 (5)C18—H18C0.9600
C5—H5A0.9300C19—H19A0.9600
C6—C191.502 (5)C19—H19B0.9600
N7—C81.332 (4)C19—H19C0.9600
N7—H71.00 (3)C20—H20A0.9600
C8—C91.379 (4)C20—H20B0.9600
C8—C201.486 (4)C20—H20C0.9600
C9—C101.386 (4)C21—H21A0.9600
C9—H9A0.9300C21—H21B0.9600
C10—N111.319 (4)C21—H21C0.9600
C10—C211.479 (4)C22—H22A0.9600
N11—C121.424 (4)C22—H22B0.9600
N11—H111.01 (3)C22—H22C0.9600
C12—C131.379 (4)C23—H23A0.9600
C12—C171.380 (4)C23—H23B0.9600
C13—C141.381 (5)C23—H23C0.9600
C13—C221.505 (5)
C6—C1—C2121.3 (3)C14—C15—H15A119.6
C6—C1—N7120.1 (3)C15—C16—C17121.0 (4)
C2—C1—N7118.6 (3)C15—C16—H16A119.5
C3—C2—C1118.1 (3)C17—C16—H16A119.5
C3—C2—C18121.8 (4)C12—C17—C16117.4 (3)
C1—C2—C18120.1 (3)C12—C17—C23121.2 (3)
C4—C3—C2120.2 (4)C16—C17—C23121.4 (3)
C4—C3—H3A119.9C2—C18—H18A109.5
C2—C3—H3A119.9C2—C18—H18B109.5
C5—C4—C3121.1 (4)H18A—C18—H18B109.5
C5—C4—H4A119.5C2—C18—H18C109.5
C3—C4—H4A119.5H18A—C18—H18C109.5
C4—C5—C6120.8 (4)H18B—C18—H18C109.5
C4—C5—H5A119.6C6—C19—H19A109.5
C6—C5—H5A119.6C6—C19—H19B109.5
C1—C6—C5118.5 (4)H19A—C19—H19B109.5
C1—C6—C19120.5 (3)C6—C19—H19C109.5
C5—C6—C19121.0 (4)H19A—C19—H19C109.5
C8—N7—C1124.6 (4)H19B—C19—H19C109.5
C8—N7—H7117 (2)C8—C20—H20A109.5
C1—N7—H7119 (2)C8—C20—H20B109.5
N7—C8—C9121.0 (3)H20A—C20—H20B109.5
N7—C8—C20113.5 (3)C8—C20—H20C109.5
C9—C8—C20125.5 (3)H20A—C20—H20C109.5
C8—C9—C10127.7 (3)H20B—C20—H20C109.5
C8—C9—H9A116.1C10—C21—H21A109.5
C10—C9—H9A116.1C10—C21—H21B109.5
N11—C10—C9120.0 (3)H21A—C21—H21B109.5
N11—C10—C21113.9 (3)C10—C21—H21C109.5
C9—C10—C21126.1 (3)H21A—C21—H21C109.5
C10—N11—C12125.6 (4)H21B—C21—H21C109.5
C10—N11—H11120 (2)C13—C22—H22A109.5
C12—N11—H11115 (2)C13—C22—H22B109.5
C13—C12—C17122.4 (3)H22A—C22—H22B109.5
C13—C12—N11118.6 (3)C13—C22—H22C109.5
C17—C12—N11118.9 (3)H22A—C22—H22C109.5
C12—C13—C14117.5 (3)H22B—C22—H22C109.5
C12—C13—C22120.4 (3)C17—C23—H23A109.5
C14—C13—C22122.1 (4)C17—C23—H23B109.5
C15—C14—C13120.8 (4)H23A—C23—H23B109.5
C15—C14—H14A119.6C17—C23—H23C109.5
C13—C14—H14A119.6H23A—C23—H23C109.5
C16—C15—C14120.8 (4)H23B—C23—H23C109.5
C16—C15—H15A119.6
C6—C1—C2—C30.9 (11)C8—C9—C10—N11179.2 (3)
N7—C1—C2—C3178.4 (6)C8—C9—C10—C210.3 (5)
C6—C1—C2—C18179.1 (6)C9—C10—N11—C120.3 (5)
N7—C1—C2—C180.2 (11)C21—C10—N11—C12179.3 (3)
C1—C2—C3—C40.7 (12)C10—N11—C12—C1392.5 (6)
C18—C2—C3—C4178.9 (8)C10—N11—C12—C1790.3 (6)
C2—C3—C4—C50.9 (14)C17—C12—C13—C142.5 (11)
C3—C4—C5—C61.2 (15)N11—C12—C13—C14179.6 (6)
C2—C1—C6—C51.2 (10)C17—C12—C13—C22178.9 (6)
N7—C1—C6—C5178.1 (6)N11—C12—C13—C221.8 (10)
C2—C1—C6—C19179.9 (6)C12—C13—C14—C152.2 (12)
N7—C1—C6—C190.8 (10)C22—C13—C14—C15179.3 (8)
C4—C5—C6—C11.4 (12)C13—C14—C15—C161.6 (14)
C4—C5—C6—C19179.8 (8)C14—C15—C16—C171.2 (14)
C6—C1—N7—C888.2 (6)C13—C12—C17—C162.1 (10)
C2—C1—N7—C892.5 (6)N11—C12—C17—C16179.2 (6)
C1—N7—C8—C90.8 (5)C13—C12—C17—C23178.5 (6)
C1—N7—C8—C20178.1 (3)N11—C12—C17—C231.4 (9)
N7—C8—C9—C10179.4 (3)C15—C16—C17—C121.4 (11)
C20—C8—C9—C100.6 (5)C15—C16—C17—C23179.2 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—H11···Cl11.01 (3)2.12 (3)3.115 (3)170 (3)
N7—H7···Cl1i1.00 (3)2.12 (3)3.110 (4)170 (3)
Symmetry code: (i) x, y, z1.

Experimental details

Crystal data
Chemical formulaC21H27N2+·Cl
Mr342.90
Crystal system, space groupTetragonal, I41/a
Temperature (K)298
a, c (Å)28.639 (5), 10.150 (3)
V3)8325 (3)
Z16
Radiation typeMo Kα
µ (mm1)0.19
Crystal size (mm)0.50 × 0.36 × 0.22
Data collection
DiffractometerBruker P4
diffractometer
Absorption correctionψ scan
XSCANS (Siemens, 1996)
Tmin, Tmax0.854, 0.959
No. of measured, independent and
observed [I > 2σ(I)] reflections
7193, 3671, 1541
Rint0.049
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.062, 0.171, 1.12
No. of reflections3671
No. of parameters229
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.43, 0.32

Computer programs: XSCANS (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2006).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—H11···Cl11.01 (3)2.12 (3)3.115 (3)170 (3)
N7—H7···Cl1i1.00 (3)2.12 (3)3.110 (4)170 (3)
Symmetry code: (i) x, y, z1.
 

Footnotes

This paper is dedicated to Professor Dr Dr mult. h.c. Herbert W. Roesky.

Acknowledgements

This work was supported by PROMEP (Programa de Mejoramiento del Profesorado), grant No. 103.5/08/3125.

References

First citationBourget-Merle, L., Lappert, M. F. & Severn, J. R. (2002). Chem. Rev. 102, 3031–3066.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBrownstein, S., Gabe, E. J. & Prasad, L. (1983). Can. J. Chem. 61, 1410–1413.  CrossRef CAS Web of Science Google Scholar
First citationCarey, D. T., Cope-Eatough, E. K., Vilaplana-Mafé, E., Mair, F. S., Pritchard, R. G., Warren, J. E. & Woods, R. J. (2003). Dalton Trans. pp. 1083–1093.  Web of Science CSD CrossRef Google Scholar
First citationDorman, L. C. (1966). Tetrahedron Lett. 7, 459–464.  CrossRef Google Scholar
First citationHolland, P. L. & Tolman, W. B. (2000). J. Am. Chem. Soc. 122, 6331–6332.  Web of Science CSD CrossRef CAS Google Scholar
First citationKuhn, N., Fahl, J., Fuchs, S. & Henkel, G. (2000). Z. Naturforsch. Teil B, 55, 345–346.  CAS Google Scholar
First citationLesikar, L. A. & Richards, A. F. (2006). J. Organomet. Chem. 691, 4250–4256.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNagendran, S. & Roesky, W. H. (2008). Organometallics, 27, 457–492.  Web of Science CrossRef CAS Google Scholar
First citationPark, K.-H. (2007). US Patent Appl. US 2007 191 638.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationStender, M., Wright, R. J., Eichler, B. E., Prust, J., Olmstead, M. M., Roesky, H. W. & Power, P. P. (2001). Dalton Trans. pp. 3465–3469.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 7| July 2009| Pages o1671-o1672
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds