organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-(1H-Tetra­zol-5-yl)pyridinium 3-(2H-tetra­zol-5-yl)pyridinium dinitrate

aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: fudavid88@yahoo.com.cn

(Received 7 April 2009; accepted 15 May 2009; online 27 June 2009)

In the title compound, C6H6N5+·NO3, there are two different isomers of the cation within the asymmetric unit. The dihedral angles between the the pyridinium and tetra­zole rings are 2.54 (15) and 13.36 (18)° in the two cations. In the crystal, the packing of ions is stabilized by N—H⋯O and N—H⋯(O,O) hydrogen bonds, forming clusters composed of four ion pairs.

Related literature

For background to tetra­zole derivatives, see: Dai & Fu (2008[Dai, W. & Fu, D.-W. (2008). Acta Cryst. E64, o1444.]); Wang et al. (2005[Wang, X.-S., Tang, Y.-Z., Huang, X.-F., Qu, Z.-R., Che, C.-M., Chan, C. W. H. & Xiong, R.-G. (2005). Inorg. Chem. 44, 5278-5285.]); Wen (2008[Wen, X.-C. (2008). Acta Cryst. E64, m768.]); Xiong et al. (2002[Xiong, R.-G., Xue, X., Zhao, H., You, X.-Z., Abrahams, B. F. & Xue, Z.-L. (2002). Angew. Chem. Int. Ed. 41, 3800-3803.]).

[Scheme 1]

Experimental

Crystal data
  • C6H6N5+·NO3

  • Mr = 210.17

  • Triclinic, [P \overline 1]

  • a = 6.9157 (14) Å

  • b = 10.575 (2) Å

  • c = 13.346 (3) Å

  • α = 110.10 (3)°

  • β = 100.65 (3)°

  • γ = 95.87 (3)°

  • V = 886.2 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 298 K

  • 0.35 × 0.30 × 0.15 mm

Data collection
  • Rigaku Mercury2 diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.956, Tmax = 0.981

  • 9175 measured reflections

  • 4035 independent reflections

  • 2272 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.150

  • S = 1.03

  • 4035 reflections

  • 279 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N9—H9A⋯O2i 0.93 (2) 1.80 (3) 2.700 (3) 164 (2)
N2—H2A⋯O1ii 0.88 (3) 2.16 (3) 2.998 (3) 161 (2)
N2—H2A⋯O2ii 0.88 (3) 2.16 (3) 2.890 (3) 140 (2)
N5—H5A⋯O4 0.86 1.94 2.791 (3) 168
N10—H10A⋯O4 0.86 2.06 2.891 (3) 163
N10—H10A⋯O6 0.86 2.19 2.873 (3) 137
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x-1, y, z.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Tetrazole derivatives have found wide range of applications in coordination chemistry because of their multiple coordination modes as ligands to metal ions and for the construction of novel metal-organic frameworks (Wang, et al. 2005; Xiong, et al. 2002; Wen 2008). We report here the crystal structure of the title compound, 3-(1H-tetrazol-5-yl)pyridinium 3-(2H-tetrazol-5-yl)pyridinium nitrate (Fig. 1).

The title compound contains two different isomers of the cation, one with the H atom attached to the N2 and the other with the H atom attached to N9. Each isomer is built up by two different rings. The pyridinium and the tetrazole rings are nearly coplanar and only twisted from each other by a dihedral angle of 2.54 (15)° [13.36 (18)° for the second molecule]. The geometric parameters of the tetrazole rings are comparable to those in related molecules (Wang et al. 2005; Dai & Fu, 2008).

The packing of ions is stabilized by N—H···O hydrogen bonds, to form a zero-dimentional sheets parallel to the (1 0 0) plane that is composed of four pairs of ions (Table 1, Fig. 2).

Related literature top

For background to tetrazole derivatives, see: Dai & Fu (2008); Wang et al. (2005); Wen (2008); Xiong et al. (2002).

Experimental top

Picolinonitrile (30 mmol), NaN 3 (45 mmol), NH4Cl (33 mmol) and DMF (50 ml) were added in a flask under nitrogen atmosphere and the mixture stirred at 383 K for 20 h. The resulting solution was then poured into ice-water (100 ml), and a white solid was obtained after adding HCl (6 M) till pH = 6. The precipitate was filtered and washed with distilled water. Colourless blocks of (I) were obtained from the crude product by slow evaporation of an ethanol/HNO3 (50:1 v/v) solution.

Refinement top

The tetrazole-ring H atoms were located in a difference map and freely refined. The other H atoms were fixed geometrically (C–H = 0.93 Å and N–H = 0.86 Å) and refined as riding with Uiso(H) = 1.2Ueq(C or N).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of (I) with displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. The crystal packing of (I) viewed along the a axis showing the two-dimensional hydrogen bonding network. H atoms not involved in hydrogen bonding (dashed lines) have been omitted for clarity.
3-(1H-Tetrazol-5-yl)pyridinium 3-(2H-tetrazol-5-yl)pyridinium dinitrate top
Crystal data top
C6H6N5+·NO3Z = 4
Mr = 210.17F(000) = 432
Triclinic, P1Dx = 1.575 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.9157 (14) ÅCell parameters from 4035 reflections
b = 10.575 (2) Åθ = 3.1–27.5°
c = 13.346 (3) ŵ = 0.13 mm1
α = 110.10 (3)°T = 298 K
β = 100.65 (3)°Block, colourless
γ = 95.87 (3)°0.35 × 0.30 × 0.15 mm
V = 886.2 (3) Å3
Data collection top
Rigaku Mercury2
diffractometer
4035 independent reflections
Radiation source: fine-focus sealed tube2272 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.1°
CCD profile fitting scansh = 88
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1313
Tmin = 0.956, Tmax = 0.981l = 1717
9175 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.150H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0621P)2 + 0.11P]
where P = (Fo2 + 2Fc2)/3
4035 reflections(Δ/σ)max < 0.001
279 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C6H6N5+·NO3γ = 95.87 (3)°
Mr = 210.17V = 886.2 (3) Å3
Triclinic, P1Z = 4
a = 6.9157 (14) ÅMo Kα radiation
b = 10.575 (2) ŵ = 0.13 mm1
c = 13.346 (3) ÅT = 298 K
α = 110.10 (3)°0.35 × 0.30 × 0.15 mm
β = 100.65 (3)°
Data collection top
Rigaku Mercury2
diffractometer
4035 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
2272 reflections with I > 2σ(I)
Tmin = 0.956, Tmax = 0.981Rint = 0.045
9175 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.150H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.18 e Å3
4035 reflectionsΔρmin = 0.22 e Å3
279 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O40.6923 (3)0.42367 (18)0.16340 (15)0.0676 (5)
N120.7836 (3)0.3552 (2)0.09506 (16)0.0538 (5)
O50.8211 (3)0.24401 (18)0.09476 (15)0.0736 (5)
N50.6669 (3)0.30395 (19)0.31822 (16)0.0562 (5)
H5A0.66910.35100.27700.067*
O60.8282 (3)0.40305 (19)0.02794 (15)0.0719 (5)
N60.3306 (3)1.0327 (2)0.16715 (18)0.0631 (6)
C30.6604 (3)0.1553 (2)0.44515 (18)0.0521 (6)
H30.65770.10280.48850.063*
N10.2697 (3)0.3533 (2)0.53331 (16)0.0581 (5)
C50.5298 (3)0.3174 (2)0.37811 (18)0.0499 (6)
H50.43870.37550.37450.060*
C120.3716 (3)0.9175 (2)0.17583 (18)0.0478 (5)
C60.3778 (3)0.2557 (2)0.51234 (17)0.0466 (5)
N90.2512 (3)0.8800 (2)0.23196 (17)0.0578 (5)
C40.5260 (3)0.2439 (2)0.44512 (17)0.0446 (5)
C100.5230 (3)0.8456 (2)0.13170 (17)0.0438 (5)
N20.1669 (3)0.3194 (3)0.59678 (17)0.0641 (6)
N40.3414 (3)0.1670 (2)0.56134 (18)0.0687 (6)
N70.1816 (3)1.0644 (2)0.2193 (2)0.0723 (6)
C110.5523 (3)0.7245 (2)0.14313 (19)0.0524 (6)
H110.47820.68920.18210.063*
C10.8009 (4)0.2213 (3)0.3189 (2)0.0607 (7)
H10.89510.21660.27680.073*
N30.2040 (4)0.2098 (3)0.61492 (19)0.0750 (7)
C20.7973 (4)0.1445 (2)0.3817 (2)0.0577 (6)
H20.88720.08490.38180.069*
C90.6383 (4)0.8947 (3)0.0739 (2)0.0609 (7)
H90.62470.97780.06640.073*
N100.6860 (3)0.6578 (2)0.09869 (18)0.0673 (6)
H10A0.70340.58280.10790.081*
N80.1327 (3)0.9736 (2)0.25866 (19)0.0722 (6)
C70.7937 (4)0.7011 (3)0.0409 (2)0.0765 (8)
H70.88350.64960.00960.092*
C80.7731 (4)0.8206 (3)0.0275 (2)0.0752 (8)
H80.84900.85220.01260.090*
N110.7936 (3)0.4430 (2)0.71227 (17)0.0552 (5)
O30.6532 (3)0.4772 (2)0.75145 (17)0.0817 (6)
O20.8610 (3)0.3403 (2)0.71981 (19)0.0878 (6)
O10.8712 (3)0.5025 (2)0.66120 (17)0.0809 (6)
H9A0.236 (4)0.802 (3)0.248 (2)0.069 (8)*
H2A0.075 (4)0.361 (3)0.625 (2)0.073 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O40.0790 (12)0.0713 (11)0.0790 (12)0.0375 (10)0.0464 (10)0.0393 (10)
N120.0476 (11)0.0620 (13)0.0548 (12)0.0134 (10)0.0152 (10)0.0229 (11)
O50.0974 (14)0.0641 (12)0.0720 (12)0.0379 (11)0.0306 (11)0.0287 (10)
N50.0711 (14)0.0495 (11)0.0544 (12)0.0048 (10)0.0232 (11)0.0245 (10)
O60.0786 (13)0.0856 (13)0.0746 (12)0.0245 (10)0.0400 (11)0.0441 (11)
N60.0656 (14)0.0485 (12)0.0753 (15)0.0186 (10)0.0165 (12)0.0207 (11)
C30.0610 (15)0.0476 (13)0.0510 (14)0.0125 (11)0.0136 (12)0.0212 (11)
N10.0603 (13)0.0582 (12)0.0607 (13)0.0165 (10)0.0265 (11)0.0201 (10)
C50.0607 (15)0.0390 (12)0.0513 (13)0.0091 (10)0.0178 (12)0.0158 (10)
C120.0515 (14)0.0453 (13)0.0438 (12)0.0070 (10)0.0082 (11)0.0150 (10)
C60.0520 (14)0.0427 (12)0.0435 (12)0.0067 (10)0.0136 (11)0.0134 (10)
N90.0576 (13)0.0595 (13)0.0640 (13)0.0192 (11)0.0237 (11)0.0252 (11)
C40.0514 (13)0.0368 (11)0.0438 (12)0.0064 (10)0.0124 (11)0.0126 (10)
C100.0459 (12)0.0440 (12)0.0420 (12)0.0096 (10)0.0087 (10)0.0168 (10)
N20.0613 (14)0.0750 (16)0.0570 (13)0.0155 (12)0.0265 (12)0.0182 (12)
N40.0868 (16)0.0672 (14)0.0757 (15)0.0224 (12)0.0410 (13)0.0417 (12)
N70.0666 (15)0.0580 (14)0.0874 (17)0.0235 (11)0.0184 (13)0.0173 (13)
C110.0530 (14)0.0531 (14)0.0543 (14)0.0168 (11)0.0129 (12)0.0217 (11)
C10.0588 (16)0.0592 (15)0.0626 (16)0.0078 (12)0.0244 (13)0.0165 (13)
N30.0845 (17)0.0857 (17)0.0724 (15)0.0164 (13)0.0395 (14)0.0397 (13)
C20.0575 (15)0.0568 (14)0.0624 (15)0.0190 (12)0.0210 (13)0.0206 (13)
C90.0582 (15)0.0695 (16)0.0628 (16)0.0135 (13)0.0128 (13)0.0342 (14)
N100.0663 (14)0.0599 (13)0.0762 (15)0.0272 (11)0.0133 (13)0.0234 (12)
N80.0632 (14)0.0714 (15)0.0802 (16)0.0264 (12)0.0262 (12)0.0170 (13)
C70.0626 (18)0.092 (2)0.0760 (19)0.0310 (16)0.0234 (16)0.0235 (17)
C80.0604 (17)0.111 (2)0.0685 (18)0.0207 (16)0.0271 (15)0.0427 (18)
N110.0512 (12)0.0589 (13)0.0604 (13)0.0121 (10)0.0160 (11)0.0260 (11)
O30.0753 (13)0.0926 (14)0.1060 (15)0.0389 (11)0.0537 (12)0.0489 (12)
O20.0878 (14)0.0793 (13)0.1334 (18)0.0386 (11)0.0536 (13)0.0643 (13)
O10.0872 (14)0.0878 (13)0.0980 (15)0.0216 (11)0.0476 (12)0.0565 (12)
Geometric parameters (Å, º) top
O4—N121.268 (2)C10—C111.372 (3)
N12—O51.229 (2)C10—C91.385 (3)
N12—O61.239 (2)N2—N31.304 (3)
N5—C51.337 (3)N2—H2A0.88 (3)
N5—C11.338 (3)N4—N31.318 (3)
N5—H5A0.8600N7—N81.288 (3)
N6—C121.317 (3)C11—N101.324 (3)
N6—N71.354 (3)C11—H110.9300
C3—C21.370 (3)C1—C21.354 (3)
C3—C41.386 (3)C1—H10.9300
C3—H30.9300C2—H20.9300
N1—N21.315 (3)C9—C81.377 (4)
N1—C61.319 (3)C9—H90.9300
C5—C41.374 (3)N10—C71.321 (3)
C5—H50.9300N10—H10A0.8600
C12—N91.334 (3)C7—C81.354 (4)
C12—C101.450 (3)C7—H70.9300
C6—N41.343 (3)C8—H80.9300
C6—C41.469 (3)N11—O31.215 (2)
N9—N81.345 (3)N11—O11.228 (2)
N9—H9A0.93 (2)N11—O21.253 (2)
O5—N12—O6122.0 (2)N3—N2—H2A118.7 (17)
O5—N12—O4120.4 (2)N1—N2—H2A126.4 (17)
O6—N12—O4117.6 (2)N3—N4—C6105.8 (2)
C5—N5—C1123.6 (2)N8—N7—N6110.6 (2)
C5—N5—H5A118.2N10—C11—C10120.0 (2)
C1—N5—H5A118.2N10—C11—H11120.0
C12—N6—N7106.2 (2)C10—C11—H11120.0
C2—C3—C4120.4 (2)N5—C1—C2119.0 (2)
C2—C3—H3119.8N5—C1—H1120.5
C4—C3—H3119.8C2—C1—H1120.5
N2—N1—C6101.2 (2)N2—N3—N4105.6 (2)
N5—C5—C4118.8 (2)C1—C2—C3119.6 (2)
N5—C5—H5120.6C1—C2—H2120.2
C4—C5—H5120.6C3—C2—H2120.2
N6—C12—N9108.2 (2)C8—C9—C10120.1 (2)
N6—C12—C10125.2 (2)C8—C9—H9120.0
N9—C12—C10126.7 (2)C10—C9—H9120.0
N1—C6—N4112.5 (2)C7—N10—C11123.0 (2)
N1—C6—C4125.0 (2)C7—N10—H10A118.5
N4—C6—C4122.4 (2)C11—N10—H10A118.5
C12—N9—N8108.6 (2)N7—N8—N9106.5 (2)
C12—N9—H9A129.7 (16)N10—C7—C8119.8 (3)
N8—N9—H9A121.5 (16)N10—C7—H7120.1
C5—C4—C3118.6 (2)C8—C7—H7120.1
C5—C4—C6120.5 (2)C7—C8—C9119.2 (3)
C3—C4—C6120.9 (2)C7—C8—H8120.4
C11—C10—C9117.9 (2)C9—C8—H8120.4
C11—C10—C12120.9 (2)O3—N11—O1122.8 (2)
C9—C10—C12121.2 (2)O3—N11—O2120.1 (2)
N3—N2—N1114.9 (2)O1—N11—O2117.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N9—H9A···O2i0.93 (2)1.80 (3)2.700 (3)164 (2)
N2—H2A···O1ii0.88 (3)2.16 (3)2.998 (3)161 (2)
N2—H2A···O2ii0.88 (3)2.16 (3)2.890 (3)140 (2)
N5—H5A···O40.861.942.791 (3)168
N10—H10A···O40.862.062.891 (3)163
N10—H10A···O60.862.192.873 (3)137
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC6H6N5+·NO3
Mr210.17
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)6.9157 (14), 10.575 (2), 13.346 (3)
α, β, γ (°)110.10 (3), 100.65 (3), 95.87 (3)
V3)886.2 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.13
Crystal size (mm)0.35 × 0.30 × 0.15
Data collection
DiffractometerRigaku Mercury2
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.956, 0.981
No. of measured, independent and
observed [I > 2σ(I)] reflections
9175, 4035, 2272
Rint0.045
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.150, 1.03
No. of reflections4035
No. of parameters279
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.18, 0.22

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N9—H9A···O2i0.93 (2)1.80 (3)2.700 (3)164 (2)
N2—H2A···O1ii0.88 (3)2.16 (3)2.998 (3)161 (2)
N2—H2A···O2ii0.88 (3)2.16 (3)2.890 (3)140 (2)
N5—H5A···O40.861.942.791 (3)168
N10—H10A···O40.862.062.891 (3)163
N10—H10A···O60.862.192.873 (3)137
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1, y, z.
 

Acknowledgements

This work was supported by a start-up grant from Southeast University to Professor Ren-Gen Xiong.

References

First citationDai, W. & Fu, D.-W. (2008). Acta Cryst. E64, o1444.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, X.-S., Tang, Y.-Z., Huang, X.-F., Qu, Z.-R., Che, C.-M., Chan, C. W. H. & Xiong, R.-G. (2005). Inorg. Chem. 44, 5278–5285.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationWen, X.-C. (2008). Acta Cryst. E64, m768.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationXiong, R.-G., Xue, X., Zhao, H., You, X.-Z., Abrahams, B. F. & Xue, Z.-L. (2002). Angew. Chem. Int. Ed. 41, 3800–3803.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds