metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

{2,2-Bis[(4S)-4-tert-butyl-4,5-di­hydro-1,3-oxazol-2-yl]propane}bis­­(N,N-di­methyl­formamide)copper(II) bis­­(hexa­fluorido­antimonate)

aFakultät Chemie, Technische Universität Dortmund, Otto-Hahn-Strasse 6, 44221 Dortmund, Germany
*Correspondence e-mail: hans.preut@udo.edu

(Received 13 May 2009; accepted 28 May 2009; online 6 June 2009)

In the title compound, [Cu(C17H30N2O2)(C3H7NO)2][SbF6]2, which is a potential catalyst in the asymmetric Gosteli–Claisen rearrangement, the Cu atom adopts a distorted cis-CuN2O2 square-planar geometry arising from N,N′-bidentate coordin­ation by the chiral ligand and two O-bonded dimethyl­formamide mol­ecules. Two short C—H⋯O contacts occur within the ligand and two weak inter­molecular C—H⋯F bonds may help to establish the packing.

Related literature

For further synthetic details, see: Evans et al. (1981[Evans, D. A., Bartroli, J. & Shih, T. L. (1981). J. Am. Chem. Soc. 103, 2127-2129.], 1999[Evans, D. A., Miller, S. J., Lectka, T. & von Matt, P. (1999). J. Am. Chem. Soc. 121, 7559-7573.]); Meyers & McKennon (1993[Meyers, A. I. & McKennon, M. J. (1993). J. Org. Chem. 58, 3568-3571.]). For information on the catalytic properties of the title compound, see: Abraham et al. (2001[Abraham, L., Czerwonka, R. & Hiersemann, M. (2001). Angew. Chem. Int. Ed. 40, 4700-4703.], 2004[Abraham, L., Körner, M. & Hiersemann, M. (2004). Adv. Synth. Catal. 346, 1281-1294.]); Abraham & Hiersemann (2001[Abraham, L. & Hiersemann, M. (2001). Org. Lett. 3, 48-52.]); Hiersemann & Abraham (2002[Hiersemann, M. & Abraham, L. (2002). Eur. J. Org. Chem. pp. 1461-1471.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C17H30N2O2)(C3H7NO)2][SbF6]2

  • Mr = 975.66

  • Monoclinic, P 21

  • a = 9.1550 (5) Å

  • b = 13.6852 (8) Å

  • c = 14.5359 (8) Å

  • β = 92.570 (5)°

  • V = 1819.34 (18) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.15 mm−1

  • T = 173 K

  • 0.18 × 0.12 × 0.04 mm

Data collection
  • Oxford Diffraction Xcalibur-S CCD diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.808, Tmax = 1.000 (expected range = 0.741–0.918)

  • 10322 measured reflections

  • 6226 independent reflections

  • 4042 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.048

  • S = 0.85

  • 6226 reflections

  • 407 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.96 e Å−3

  • Δρmin = −0.67 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2689 Friedel pairs

  • Flack parameter: 0.015 (15)

Table 1
Selected geometric parameters (Å, °)

Cu—N1 1.929 (5)
Cu—N2 1.919 (5)
Cu—O11 1.926 (4)
Cu—O12 1.951 (4)
N2—Cu—O11 153.82 (19)
N2—Cu—N1 92.92 (17)
O11—Cu—N1 91.37 (19)
N2—Cu—O12 95.00 (19)
O11—Cu—O12 91.51 (17)
N1—Cu—O12 155.84 (18)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12A⋯O11 0.98 2.58 3.204 (8) 122
C17—H17C⋯O12 0.98 2.58 3.189 (7) 120
C25—H25C⋯F13i 0.98 2.55 3.418 (8) 148
C26—H26B⋯F11i 0.98 2.53 3.427 (8) 152
Symmetry code: (i) [-x+2, y+{\script{1\over 2}}, -z+1].

Data collection: CrysAlis CCD (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL-Plus (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The title compound, (I), was tested as a catalyst in the catalytic asymmetric Gosteli-Claisen rearrangement (Abraham et al., 2001; Abraham & Hiersemann, 2001; Hiersemann & Abraham, 2002; Abraham et al., 2004). The synthesis of the title compound, (I), was accomplished according to a modified procedure of Evans et al. (1999). A sequence of Meyer's amino acid reduction of (S)-tert-Leucine (Meyers & McKennon, 1993), subsequent condensation with dimethyl malonic acid dichloride and p-TsCl catalyzed cyclization provided the (S,S)-t-Bu-box ligand. Treatment of the box ligand with CuCl2 (Evans et al., 1981) and subsequent anion metathesis with AgSbF6 provided [Cu(S,S)-t-Bu-box](SbF6)2. Addition of 2 eq of DMF to a solution of [Cu(S,S)-t-Bu-box](SbF6)2 in 1,2-dichloroethane afforded the bis(N,N-dimethylformamide) complex. Crystallization was achieved by vapor diffusion recrystalization at 243 K.

Related literature top

For further synthetic details, see: Evans et al. (1981, 1999); Meyers & McKennon (1993). For information on the catalytic properties of the title compound, see: Abraham et al. (2001, 2004); Abraham & Hiersemann (2001); Hiersemann & Abraham (2002).

Experimental top

To a solution of [Cu(S,S)-t-Bu-box](SbF6)2 (15.4 mg, 17.3 mmol, 1 eq) in dry 1,2-dichloroethane (1 ml) under argon atmosphere, DMF (27 µL, 34.6 mmol, 2eq) was added by a microliter syringe and the resulting deep blue solution was stirred for 30 min at room temperature. Subsequent cooling to 243 K for 24 h provided (I) as deep blue crystals. IR (from a 0.05 M 1,2-dichloroethane solution, cm-1): 1750 (w), 1680 (s); UV/vis (from a 0.05 M in 1,2-dichloroethane solution, nm): 255, 733.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis CCD (Oxford Diffraction, 2008); data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL-Plus (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with displacement ellipsoids shown at the 30% probability level.
{2,2-Bis[(4S)-4-tert-butyl-4,5-dihydro-1,3-oxazol-2- yl]propane}bis(N,N-dimethylformamide)copper(II) bis(hexafluoridoantimonate) top
Crystal data top
[Cu(C17H30N2O2)(C3H7NO)2][SbF6]2F(000) = 962
Mr = 975.66Dx = 1.781 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 3964 reflections
a = 9.1550 (5) Åθ = 2.1–29.0°
b = 13.6852 (8) ŵ = 2.15 mm1
c = 14.5359 (8) ÅT = 173 K
β = 92.570 (5)°Plate, blue
V = 1819.34 (18) Å30.18 × 0.12 × 0.04 mm
Z = 2
Data collection top
Oxford Diffraction Xcalibur-S CCD
diffractometer
6226 independent reflections
Radiation source: fine-focus sealed tube4042 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
Detector resolution: 16.0560 pixels mm-1θmax = 25.5°, θmin = 2.0°
ω scansh = 1110
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2008)
k = 1616
Tmin = 0.808, Tmax = 1.000l = 1717
10322 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.048 w = 1/[σ2(Fo2) + (0.0061P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.85(Δ/σ)max = 0.001
6226 reflectionsΔρmax = 0.96 e Å3
407 parametersΔρmin = 0.67 e Å3
1 restraintAbsolute structure: Flack (1983), 2689 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.015 (15)
Crystal data top
[Cu(C17H30N2O2)(C3H7NO)2][SbF6]2V = 1819.34 (18) Å3
Mr = 975.66Z = 2
Monoclinic, P21Mo Kα radiation
a = 9.1550 (5) ŵ = 2.15 mm1
b = 13.6852 (8) ÅT = 173 K
c = 14.5359 (8) Å0.18 × 0.12 × 0.04 mm
β = 92.570 (5)°
Data collection top
Oxford Diffraction Xcalibur-S CCD
diffractometer
6226 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2008)
4042 reflections with I > 2σ(I)
Tmin = 0.808, Tmax = 1.000Rint = 0.037
10322 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.048Δρmax = 0.96 e Å3
S = 0.85Δρmin = 0.67 e Å3
6226 reflectionsAbsolute structure: Flack (1983), 2689 Friedel pairs
407 parametersAbsolute structure parameter: 0.015 (15)
1 restraint
Special details top

Experimental. Absorption correction: CrysAlis RED (Oxford Diffraction 2008) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sb10.24602 (5)0.00096 (4)0.84532 (3)0.02849 (13)
Sb20.82483 (6)0.04083 (3)0.35372 (3)0.04390 (17)
Cu0.73163 (7)0.00310 (7)0.75133 (4)0.01763 (19)
F10.2031 (5)0.1198 (3)0.7920 (4)0.0916 (18)
F20.2546 (4)0.0541 (4)0.7284 (3)0.0698 (15)
F30.2369 (5)0.0546 (4)0.9607 (3)0.101 (2)
F40.2858 (6)0.1211 (3)0.8965 (3)0.0863 (18)
F50.0475 (3)0.0245 (3)0.8405 (2)0.0477 (12)
F60.4443 (4)0.0246 (3)0.8467 (2)0.0509 (14)
F110.7475 (5)0.1293 (3)0.4335 (3)0.0786 (18)
F120.9927 (4)0.0336 (4)0.4310 (3)0.0952 (17)
F130.9126 (5)0.1425 (4)0.2906 (3)0.0789 (17)
F140.7367 (5)0.0599 (3)0.4194 (3)0.0686 (16)
F150.9021 (6)0.0505 (4)0.2763 (3)0.099 (2)
F160.6569 (4)0.0534 (4)0.2775 (3)0.0743 (14)
O10.6721 (5)0.1668 (3)0.9773 (3)0.0260 (12)
O20.8559 (4)0.1567 (3)0.9822 (3)0.0268 (12)
O110.6003 (4)0.0630 (3)0.6648 (3)0.0260 (12)
O120.8222 (5)0.0741 (3)0.6524 (3)0.0201 (11)
N10.7133 (5)0.1001 (3)0.8405 (3)0.0103 (13)*
N20.7798 (5)0.0988 (3)0.8442 (3)0.0119 (13)*
N110.4549 (6)0.0757 (5)0.5361 (4)0.0431 (19)
N121.0155 (6)0.1349 (4)0.5795 (4)0.0252 (14)
C10.6719 (7)0.2052 (4)0.8185 (4)0.0171 (16)
H1A0.58960.20580.77090.020*
C20.6141 (7)0.2378 (5)0.9112 (4)0.0237 (19)
H2A0.50590.23750.90910.028*
H2B0.64900.30440.92740.028*
C30.7127 (7)0.0906 (5)0.9287 (4)0.0148 (16)*
C40.7635 (6)0.0028 (5)0.9871 (3)0.0161 (13)
C50.7986 (7)0.0843 (5)0.9312 (4)0.0178 (16)*
C60.9016 (7)0.2313 (4)0.9176 (4)0.0249 (18)
H6A1.00800.22760.90860.030*
H6B0.87720.29760.93940.030*
C70.8128 (7)0.2058 (4)0.8278 (4)0.0157 (16)
H7A0.87810.21130.77470.019*
C80.6355 (7)0.0246 (4)1.0491 (4)0.030 (2)
H8A0.55390.05091.01080.045*
H8B0.66890.07401.09420.045*
H8C0.60320.03381.08150.045*
C90.8971 (6)0.0356 (5)1.0481 (3)0.0277 (17)
H9A0.97690.05401.00900.042*
H9B0.87000.09181.08550.042*
H9C0.92890.01831.08860.042*
C110.7994 (8)0.2652 (5)0.7835 (4)0.0230 (18)
C120.8609 (7)0.2170 (5)0.6982 (4)0.0296 (19)
H12A0.78150.20610.65190.044*
H12B0.93460.25990.67260.044*
H12C0.90590.15430.71560.044*
C130.7361 (8)0.3652 (5)0.7570 (5)0.045 (2)
H13A0.65030.35660.71510.067*
H13B0.70740.39950.81260.067*
H13C0.81010.40360.72640.067*
C140.9207 (7)0.2766 (5)0.8565 (4)0.0298 (19)
H14A0.99250.32390.83570.045*
H14B0.87980.30000.91370.045*
H14C0.96850.21340.86760.045*
C150.6730 (7)0.2668 (5)0.8068 (4)0.0193 (17)
C160.5724 (7)0.2661 (5)0.8884 (4)0.0265 (19)
H16A0.48570.30600.87340.040*
H16B0.62500.29300.94290.040*
H16C0.54240.19880.90090.040*
C170.5873 (6)0.2255 (4)0.7230 (4)0.0217 (17)
H17A0.50390.26810.70720.033*
H17B0.55180.15990.73720.033*
H17C0.65110.22190.67070.033*
C180.7186 (7)0.3708 (4)0.7858 (4)0.026 (2)
H18A0.63140.41050.77190.040*
H18B0.78070.37080.73260.040*
H18C0.77320.39810.83930.040*
C210.5522 (7)0.0297 (6)0.5894 (4)0.0280 (18)
H21A0.58760.03170.56970.034*
C220.3949 (9)0.1684 (6)0.5652 (6)0.084 (3)
H22A0.44540.18930.62280.126*
H22B0.40860.21770.51750.126*
H22C0.29030.16070.57510.126*
C230.4080 (7)0.0386 (7)0.4445 (4)0.057 (3)
H23A0.44250.02870.43770.086*
H23B0.30100.04000.43780.086*
H23C0.44920.07980.39700.086*
C240.9571 (8)0.0712 (5)0.6335 (4)0.0281 (19)
H24A1.01690.02080.65970.034*
C250.9337 (7)0.2131 (5)0.5394 (5)0.042 (2)
H25A0.82920.20140.54640.063*
H25B0.95320.21770.47380.063*
H25C0.96210.27440.57020.063*
C261.1697 (7)0.1266 (5)0.5580 (4)0.042 (2)
H26A1.21440.07200.59250.063*
H26B1.22070.18740.57510.063*
H26C1.17720.11510.49180.063*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sb10.0168 (3)0.0299 (3)0.0386 (3)0.0007 (3)0.0009 (2)0.0003 (3)
Sb20.0473 (4)0.0535 (4)0.0314 (3)0.0137 (3)0.0082 (3)0.0042 (3)
Cu0.0247 (5)0.0150 (4)0.0131 (4)0.0012 (5)0.0004 (3)0.0003 (5)
F10.081 (4)0.043 (3)0.149 (5)0.000 (3)0.017 (4)0.023 (3)
F20.051 (3)0.109 (4)0.050 (3)0.010 (3)0.003 (2)0.012 (3)
F30.060 (4)0.174 (6)0.071 (3)0.008 (4)0.016 (3)0.074 (4)
F40.100 (5)0.047 (3)0.110 (5)0.007 (3)0.021 (4)0.038 (3)
F50.029 (2)0.058 (4)0.055 (2)0.003 (2)0.0032 (17)0.001 (3)
F60.043 (3)0.057 (4)0.051 (3)0.007 (2)0.003 (2)0.005 (2)
F110.092 (5)0.070 (4)0.078 (4)0.020 (3)0.047 (3)0.034 (3)
F120.064 (3)0.129 (5)0.089 (4)0.004 (4)0.034 (3)0.037 (4)
F130.063 (4)0.092 (4)0.084 (4)0.004 (3)0.017 (3)0.036 (3)
F140.088 (4)0.058 (3)0.061 (3)0.008 (3)0.008 (3)0.011 (3)
F150.106 (5)0.115 (5)0.079 (4)0.056 (4)0.039 (3)0.012 (3)
F160.065 (3)0.082 (4)0.074 (3)0.013 (3)0.015 (3)0.008 (3)
O10.043 (3)0.013 (3)0.023 (3)0.011 (2)0.008 (2)0.004 (2)
O20.040 (3)0.016 (3)0.023 (3)0.009 (2)0.011 (2)0.004 (2)
O110.038 (3)0.024 (3)0.015 (3)0.006 (2)0.019 (2)0.004 (2)
O120.020 (3)0.023 (3)0.018 (3)0.001 (2)0.007 (2)0.006 (2)
N110.038 (4)0.065 (6)0.026 (4)0.007 (4)0.012 (3)0.021 (4)
N120.015 (3)0.027 (4)0.034 (4)0.004 (3)0.005 (3)0.004 (3)
C10.019 (4)0.015 (4)0.017 (4)0.004 (3)0.003 (3)0.001 (3)
C20.025 (5)0.019 (4)0.027 (5)0.006 (4)0.002 (4)0.006 (4)
C40.020 (3)0.014 (3)0.014 (3)0.000 (4)0.002 (3)0.006 (4)
C60.041 (5)0.006 (4)0.027 (4)0.007 (3)0.012 (4)0.005 (3)
C70.019 (4)0.017 (4)0.010 (4)0.004 (3)0.002 (3)0.001 (3)
C80.045 (5)0.027 (6)0.020 (4)0.002 (4)0.010 (3)0.012 (3)
C90.038 (4)0.019 (4)0.026 (4)0.002 (4)0.007 (3)0.005 (4)
C110.031 (5)0.015 (4)0.023 (5)0.009 (4)0.001 (4)0.003 (4)
C120.030 (5)0.036 (5)0.023 (4)0.005 (4)0.008 (4)0.004 (4)
C130.053 (6)0.030 (5)0.051 (6)0.001 (5)0.002 (5)0.005 (5)
C140.028 (5)0.032 (5)0.028 (5)0.004 (4)0.014 (4)0.003 (4)
C150.024 (5)0.021 (4)0.013 (4)0.003 (4)0.002 (3)0.001 (3)
C160.031 (5)0.031 (5)0.017 (4)0.012 (4)0.004 (4)0.005 (4)
C170.020 (4)0.026 (4)0.019 (4)0.007 (3)0.000 (3)0.003 (3)
C180.044 (5)0.015 (4)0.020 (4)0.002 (4)0.006 (4)0.004 (4)
C210.020 (4)0.029 (5)0.035 (4)0.005 (4)0.010 (3)0.010 (4)
C220.082 (8)0.087 (8)0.080 (8)0.037 (7)0.030 (6)0.005 (7)
C230.052 (5)0.092 (7)0.026 (4)0.016 (6)0.017 (4)0.008 (6)
C240.031 (5)0.026 (5)0.028 (4)0.006 (4)0.006 (4)0.005 (4)
C250.030 (5)0.040 (5)0.056 (6)0.001 (4)0.006 (4)0.018 (4)
C260.022 (5)0.053 (5)0.052 (5)0.004 (4)0.005 (4)0.005 (5)
Geometric parameters (Å, º) top
Sb1—F41.834 (4)C7—H7A1.0000
Sb1—F51.844 (3)C8—H8A0.9800
Sb1—F31.847 (4)C8—H8B0.9800
Sb1—F61.848 (4)C8—H8C0.9800
Sb1—F21.853 (4)C9—H9A0.9800
Sb1—F11.859 (4)C9—H9B0.9800
Sb2—F111.840 (4)C9—H9C0.9800
Sb2—F151.844 (4)C11—C141.509 (8)
Sb2—F161.862 (4)C11—C131.528 (9)
Sb2—F121.865 (4)C11—C121.534 (8)
Sb2—F131.868 (5)C12—H12A0.9800
Sb2—F141.879 (4)C12—H12B0.9800
Cu—N11.929 (5)C12—H12C0.9800
Cu—N21.919 (5)C13—H13A0.9800
Cu—O111.926 (4)C13—H13B0.9800
Cu—O121.951 (4)C13—H13C0.9800
O1—C31.322 (6)C14—H14A0.9800
O1—C21.450 (7)C14—H14B0.9800
O2—C51.331 (7)C14—H14C0.9800
O2—C61.461 (6)C15—C181.518 (8)
O11—C211.249 (7)C15—C171.528 (8)
O12—C241.277 (7)C15—C161.534 (8)
N1—C31.288 (7)C16—H16A0.9800
N1—C11.518 (7)C16—H16B0.9800
N2—C51.283 (7)C16—H16C0.9800
N2—C71.516 (7)C17—H17A0.9800
N11—C211.314 (7)C17—H17B0.9800
N11—C221.453 (9)C17—H17C0.9800
N11—C231.471 (7)C18—H18A0.9800
N12—C241.303 (7)C18—H18B0.9800
N12—C251.418 (7)C18—H18C0.9800
N12—C261.464 (7)C21—H21A0.9500
C1—C111.532 (8)C22—H22A0.9800
C1—C21.536 (8)C22—H22B0.9800
C1—H1A1.0000C22—H22C0.9800
C2—H2A0.9900C23—H23A0.9800
C2—H2B0.9900C23—H23B0.9800
C3—C41.532 (8)C23—H23C0.9800
C4—C51.486 (8)C24—H24A0.9500
C4—C91.545 (7)C25—H25A0.9800
C4—C81.556 (7)C25—H25B0.9800
C6—C71.546 (8)C25—H25C0.9800
C6—H6A0.9900C26—H26A0.9800
C6—H6B0.9900C26—H26B0.9800
C7—C151.547 (8)C26—H26C0.9800
F4—Sb1—F592.1 (2)C4—C8—H8B109.5
F4—Sb1—F391.0 (3)H8A—C8—H8B109.5
F5—Sb1—F391.25 (17)C4—C8—H8C109.5
F4—Sb1—F689.3 (2)H8A—C8—H8C109.5
F5—Sb1—F6178.25 (17)H8B—C8—H8C109.5
F3—Sb1—F689.81 (18)C4—C9—H9A109.5
F4—Sb1—F290.3 (2)C4—C9—H9B109.5
F5—Sb1—F288.80 (16)H9A—C9—H9B109.5
F3—Sb1—F2178.8 (3)C4—C9—H9C109.5
F6—Sb1—F290.10 (17)H9A—C9—H9C109.5
F4—Sb1—F1179.0 (2)H9B—C9—H9C109.5
F5—Sb1—F187.15 (19)C14—C11—C13110.1 (6)
F3—Sb1—F189.7 (3)C14—C11—C1111.7 (5)
F6—Sb1—F191.5 (2)C13—C11—C1106.1 (6)
F2—Sb1—F189.1 (2)C14—C11—C12109.1 (6)
F11—Sb2—F15178.4 (2)C13—C11—C12109.3 (5)
F11—Sb2—F1689.0 (2)C1—C11—C12110.5 (5)
F15—Sb2—F1691.6 (2)C11—C12—H12A109.5
F11—Sb2—F1289.2 (2)C11—C12—H12B109.5
F15—Sb2—F1290.2 (2)H12A—C12—H12B109.5
F16—Sb2—F12177.7 (2)C11—C12—H12C109.5
F11—Sb2—F1390.3 (2)H12A—C12—H12C109.5
F15—Sb2—F1391.1 (2)H12B—C12—H12C109.5
F16—Sb2—F1390.0 (2)C11—C13—H13A109.5
F12—Sb2—F1388.5 (2)C11—C13—H13B109.5
F11—Sb2—F1488.66 (18)H13A—C13—H13B109.5
F15—Sb2—F1489.9 (2)C11—C13—H13C109.5
F16—Sb2—F1490.5 (2)H13A—C13—H13C109.5
F12—Sb2—F1490.9 (2)H13B—C13—H13C109.5
F13—Sb2—F14178.9 (2)C11—C14—H14A109.5
N2—Cu—O11153.82 (19)C11—C14—H14B109.5
N2—Cu—N192.92 (17)H14A—C14—H14B109.5
O11—Cu—N191.37 (19)C11—C14—H14C109.5
N2—Cu—O1295.00 (19)H14A—C14—H14C109.5
O11—Cu—O1291.51 (17)H14B—C14—H14C109.5
N1—Cu—O12155.84 (18)C18—C15—C17108.8 (5)
C3—O1—C2106.1 (5)C18—C15—C16109.9 (5)
C5—O2—C6106.2 (5)C17—C15—C16108.0 (6)
C21—O11—Cu125.9 (5)C18—C15—C7108.3 (5)
C24—O12—Cu126.2 (4)C17—C15—C7110.4 (5)
C3—N1—C1107.0 (5)C16—C15—C7111.3 (5)
C3—N1—Cu126.8 (4)C15—C16—H16A109.5
C1—N1—Cu125.5 (4)C15—C16—H16B109.5
C5—N2—C7106.6 (5)H16A—C16—H16B109.5
C5—N2—Cu127.2 (4)C15—C16—H16C109.5
C7—N2—Cu126.1 (4)H16A—C16—H16C109.5
C21—N11—C22120.1 (6)H16B—C16—H16C109.5
C21—N11—C23122.1 (7)C15—C17—H17A109.5
C22—N11—C23117.8 (6)C15—C17—H17B109.5
C24—N12—C25122.0 (6)H17A—C17—H17B109.5
C24—N12—C26120.2 (6)C15—C17—H17C109.5
C25—N12—C26117.8 (5)H17A—C17—H17C109.5
N1—C1—C11113.0 (5)H17B—C17—H17C109.5
N1—C1—C2100.5 (5)C15—C18—H18A109.5
C11—C1—C2115.7 (5)C15—C18—H18B109.5
N1—C1—H1A109.1H18A—C18—H18B109.5
C11—C1—H1A109.1C15—C18—H18C109.5
C2—C1—H1A109.1H18A—C18—H18C109.5
O1—C2—C1104.9 (5)H18B—C18—H18C109.5
O1—C2—H2A110.8O11—C21—N11123.1 (7)
C1—C2—H2A110.8O11—C21—H21A118.5
O1—C2—H2B110.8N11—C21—H21A118.5
C1—C2—H2B110.8N11—C22—H22A109.5
H2A—C2—H2B108.8N11—C22—H22B109.5
N1—C3—O1117.8 (6)H22A—C22—H22B109.5
N1—C3—C4128.0 (6)N11—C22—H22C109.5
O1—C3—C4114.1 (5)H22A—C22—H22C109.5
C5—C4—C3113.2 (4)H22B—C22—H22C109.5
C5—C4—C9111.2 (5)N11—C23—H23A109.5
C3—C4—C9107.6 (5)N11—C23—H23B109.5
C5—C4—C8108.1 (5)H23A—C23—H23B109.5
C3—C4—C8107.0 (5)N11—C23—H23C109.5
C9—C4—C8109.5 (4)H23A—C23—H23C109.5
N2—C5—O2117.8 (6)H23B—C23—H23C109.5
N2—C5—C4129.8 (6)O12—C24—N12122.4 (7)
O2—C5—C4112.4 (5)O12—C24—H24A118.8
O2—C6—C7103.3 (5)N12—C24—H24A118.8
O2—C6—H6A111.1N12—C25—H25A109.5
C7—C6—H6A111.1N12—C25—H25B109.5
O2—C6—H6B111.1H25A—C25—H25B109.5
C7—C6—H6B111.1N12—C25—H25C109.5
H6A—C6—H6B109.1H25A—C25—H25C109.5
N2—C7—C6100.7 (4)H25B—C25—H25C109.5
N2—C7—C15112.5 (5)N12—C26—H26A109.5
C6—C7—C15116.3 (5)N12—C26—H26B109.5
N2—C7—H7A108.9H26A—C26—H26B109.5
C6—C7—H7A108.9N12—C26—H26C109.5
C15—C7—H7A108.9H26A—C26—H26C109.5
C4—C8—H8A109.5H26B—C26—H26C109.5
N2—Cu—O11—C2174.3 (6)C7—N2—C5—O27.8 (8)
N1—Cu—O11—C21173.7 (5)Cu—N2—C5—O2168.6 (4)
O12—Cu—O11—C2130.3 (5)C7—N2—C5—C4171.1 (6)
N2—Cu—O12—C2484.8 (5)Cu—N2—C5—C412.5 (10)
O11—Cu—O12—C24120.6 (5)C6—O2—C5—N28.0 (8)
N1—Cu—O12—C2423.9 (8)C6—O2—C5—C4172.9 (5)
N2—Cu—N1—C39.6 (6)C3—C4—C5—N27.2 (10)
O11—Cu—N1—C3144.6 (5)C9—C4—C5—N2128.5 (7)
O12—Cu—N1—C3118.7 (6)C8—C4—C5—N2111.2 (7)
N2—Cu—N1—C1178.9 (4)C3—C4—C5—O2173.9 (5)
O11—Cu—N1—C124.8 (5)C9—C4—C5—O252.5 (7)
O12—Cu—N1—C172.0 (7)C8—C4—C5—O267.8 (6)
O11—Cu—N2—C5103.2 (6)C5—O2—C6—C719.3 (6)
N1—Cu—N2—C54.1 (6)C5—N2—C7—C618.7 (6)
O12—Cu—N2—C5153.1 (5)Cu—N2—C7—C6157.7 (4)
O11—Cu—N2—C781.1 (6)C5—N2—C7—C15105.8 (6)
N1—Cu—N2—C7179.8 (4)Cu—N2—C7—C1577.7 (6)
O12—Cu—N2—C722.6 (5)O2—C6—C7—N222.4 (6)
C3—N1—C1—C11110.4 (6)O2—C6—C7—C1599.5 (6)
Cu—N1—C1—C1178.6 (6)N1—C1—C11—C1464.9 (7)
C3—N1—C1—C213.5 (6)C2—C1—C11—C1450.2 (8)
Cu—N1—C1—C2157.5 (4)N1—C1—C11—C13175.2 (5)
C3—O1—C2—C117.6 (6)C2—C1—C11—C1369.7 (7)
N1—C1—C2—O118.4 (6)N1—C1—C11—C1256.9 (7)
C11—C1—C2—O1103.7 (6)C2—C1—C11—C12172.0 (5)
C1—N1—C3—O13.2 (7)N2—C7—C15—C18176.6 (5)
Cu—N1—C3—O1167.7 (4)C6—C7—C15—C1867.9 (7)
C1—N1—C3—C4172.4 (6)N2—C7—C15—C1757.5 (6)
Cu—N1—C3—C416.7 (9)C6—C7—C15—C17173.0 (5)
C2—O1—C3—N19.6 (7)N2—C7—C15—C1662.4 (7)
C2—O1—C3—C4174.2 (5)C6—C7—C15—C1653.1 (8)
N1—C3—C4—C58.3 (9)Cu—O11—C21—N11175.2 (4)
O1—C3—C4—C5175.9 (5)C22—N11—C21—O111.8 (10)
N1—C3—C4—C9115.0 (7)C23—N11—C21—O11175.3 (5)
O1—C3—C4—C960.7 (6)Cu—O12—C24—N12165.4 (4)
N1—C3—C4—C8127.3 (6)C25—N12—C24—O121.2 (10)
O1—C3—C4—C856.9 (7)C26—N12—C24—O12178.2 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12A···O110.982.583.204 (8)122
C17—H17C···O120.982.583.189 (7)120
C25—H25C···F13i0.982.553.418 (8)148
C26—H26B···F11i0.982.533.427 (8)152
Symmetry code: (i) x+2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formula[Cu(C17H30N2O2)(C3H7NO)2][SbF6]2
Mr975.66
Crystal system, space groupMonoclinic, P21
Temperature (K)173
a, b, c (Å)9.1550 (5), 13.6852 (8), 14.5359 (8)
β (°) 92.570 (5)
V3)1819.34 (18)
Z2
Radiation typeMo Kα
µ (mm1)2.15
Crystal size (mm)0.18 × 0.12 × 0.04
Data collection
DiffractometerOxford Diffraction Xcalibur-S CCD
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2008)
Tmin, Tmax0.808, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
10322, 6226, 4042
Rint0.037
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.048, 0.85
No. of reflections6226
No. of parameters407
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.96, 0.67
Absolute structureFlack (1983), 2689 Friedel pairs
Absolute structure parameter0.015 (15)

Computer programs: CrysAlis CCD (Oxford Diffraction, 2008), CrysAlis RED (Oxford Diffraction, 2008), SHELXS97 (Sheldrick, 2008), SHELXTL-Plus (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Selected geometric parameters (Å, º) top
Cu—N11.929 (5)Cu—O111.926 (4)
Cu—N21.919 (5)Cu—O121.951 (4)
N2—Cu—O11153.82 (19)N2—Cu—O1295.00 (19)
N2—Cu—N192.92 (17)O11—Cu—O1291.51 (17)
O11—Cu—N191.37 (19)N1—Cu—O12155.84 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12A···O110.982.583.204 (8)122
C17—H17C···O120.982.583.189 (7)120
C25—H25C···F13i0.982.553.418 (8)148
C26—H26B···F11i0.982.533.427 (8)152
Symmetry code: (i) x+2, y+1/2, z+1.
 

References

First citationAbraham, L., Czerwonka, R. & Hiersemann, M. (2001). Angew. Chem. Int. Ed. 40, 4700–4703.  Web of Science CrossRef CAS Google Scholar
First citationAbraham, L. & Hiersemann, M. (2001). Org. Lett. 3, 48–52.  Google Scholar
First citationAbraham, L., Körner, M. & Hiersemann, M. (2004). Adv. Synth. Catal. 346, 1281–1294.  Web of Science CSD CrossRef CAS Google Scholar
First citationEvans, D. A., Bartroli, J. & Shih, T. L. (1981). J. Am. Chem. Soc. 103, 2127–2129.  CrossRef CAS Web of Science Google Scholar
First citationEvans, D. A., Miller, S. J., Lectka, T. & von Matt, P. (1999). J. Am. Chem. Soc. 121, 7559–7573.  Web of Science CrossRef CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHiersemann, M. & Abraham, L. (2002). Eur. J. Org. Chem. pp. 1461–1471.  CrossRef Google Scholar
First citationMeyers, A. I. & McKennon, M. J. (1993). J. Org. Chem. 58, 3568–3571.  Google Scholar
First citationOxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds