metal-organic compounds
[Tris(3,5-diphenylpyrazolyl)hydroborato]nickel(II) bromide
aMolecular Technology Research Unit, Department of Chemistry, Walailak University, Thasala, Nakhon Si Thammarat 80161, Thailand, and bDepartment of Chemistry, Faculty of Science, University of Sheffield, Brook Hill, Sheffield S3 7HF, England
*Correspondence e-mail: hdavid@wu.ac.th
In the title tris(pyrazolyl)borate (TpPh2) complex, [NiBr(C45H34BN6)], the Ni, Br and B atoms lie on a crystallographic threefold axis and a distorted NiN3Br tetrahedral geometry arises for the metal ion. In the crystal, C—H⋯(C=C) and C—H⋯π interactions help to establish the polar crystal packing.
Related literature
For other TpRNiX (X = Cl, Br) complexes, see: Desrochers et al. (2003, 2006); Kunrath et al. (2003); Uehara et al. (2002); Guo et al. (1998); Harding et al. (2007). For ionic radius data, see: Shannon (1976).
Experimental
Crystal data
|
|
Data collection: SMART (Bruker, 1997); cell SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536809021606/hb2976sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809021606/hb2976Isup2.hkl
NiBr2.2H2O (34 mg, 0.14 mmol) was dissolved in THF (5 ml) giving a green solution and then stirred for 5 min. KTpPh2 (95 mg, 0.15 mmol) was dissolved in THF (5 ml) giving a pale yellow solution. Addition of the KTpPh2 solution to the Ni solution resulted in a colour change to a red-pink solution. The solution was stirred for 16 hrs. The solution was reduced to dryness, redissolved in fresh THF (2 ml) and filtered through celite. The purple-pink solution was layered with hexanes (10 ml). After two days purple-pink blocks of (I) appeared. These were washed with EtOH (3 x 3 ml) and hexanes (2 x 5 ml) (59 mg, 54%). νmax(KBr)/cm-1 3059w, 2966w, 2854w (νCH), 2626w (νBH). δH (300 MHz; CDCl3; SiMe4), 7.63 (br m, m- and p-Ph, 18H), 8.53 (br s, o-Ph, 6H), 8.86 (br s, o-Ph, 6H). UV–Vis λmax(CH2Cl2)/nm 318 (ε/dm3mol-1cm-1 3140), 502 (600), 828 (120), 926 (160). m/z (ESI) 727 [M—Br-]+. Anal. Calc. for C45H34N6BBrNi [TpPh2NiBr]: C, 66.87; H, 4.24; N 10.40 Found: C, 66.62; H, 4.29; N, 10.17%
Data collection: SMART (Bruker, 1997); cell
SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).[NiBr(C45H34BN6)] | Dx = 1.463 Mg m−3 |
Mr = 808.21 | Mo Kα radiation, λ = 0.71073 Å |
Trigonal, R3 | Cell parameters from 2851 reflections |
Hall symbol: R 3 | θ = 2.8–30.6° |
a = 12.8227 (8) Å | µ = 1.66 mm−1 |
c = 19.327 (3) Å | T = 150 K |
V = 2752.0 (5) Å3 | Block, purple–pink |
Z = 3 | 0.24 × 0.24 × 0.21 mm |
F(000) = 1242 |
Bruker SMART CCD diffractometer | 2075 independent reflections |
Radiation source: fine-focus sealed tube | 1943 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.037 |
Detector resolution: 100 pixels mm-1 | θmax = 27.5°, θmin = 2.1° |
ϕ scans | h = −16→16 |
Absorption correction: multi-scan (SADABS; Bruker, 1997) | k = −11→16 |
Tmin = 0.691, Tmax = 0.722 | l = −21→25 |
5609 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.028 | H-atom parameters constrained |
wR(F2) = 0.063 | w = 1/[σ2(Fo2) + (0.0169P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.06 | (Δ/σ)max = 0.001 |
2075 reflections | Δρmax = 0.27 e Å−3 |
163 parameters | Δρmin = −0.29 e Å−3 |
1 restraint | Absolute structure: Flack (1983), 670 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.020 (8) |
[NiBr(C45H34BN6)] | Z = 3 |
Mr = 808.21 | Mo Kα radiation |
Trigonal, R3 | µ = 1.66 mm−1 |
a = 12.8227 (8) Å | T = 150 K |
c = 19.327 (3) Å | 0.24 × 0.24 × 0.21 mm |
V = 2752.0 (5) Å3 |
Bruker SMART CCD diffractometer | 2075 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 1997) | 1943 reflections with I > 2σ(I) |
Tmin = 0.691, Tmax = 0.722 | Rint = 0.037 |
5609 measured reflections |
R[F2 > 2σ(F2)] = 0.028 | H-atom parameters constrained |
wR(F2) = 0.063 | Δρmax = 0.27 e Å−3 |
S = 1.06 | Δρmin = −0.29 e Å−3 |
2075 reflections | Absolute structure: Flack (1983), 670 Friedel pairs |
163 parameters | Absolute structure parameter: 0.020 (8) |
1 restraint |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Br1 | 0.6667 | 0.3333 | 0.732391 (16) | 0.02249 (14) | |
Ni1 | 0.6667 | 0.3333 | 0.61068 (2) | 0.01335 (14) | |
N1 | 0.75319 (18) | 0.26622 (19) | 0.55312 (10) | 0.0127 (4) | |
N2 | 0.75175 (19) | 0.29001 (19) | 0.48407 (10) | 0.0128 (4) | |
B1 | 0.6667 | 0.3333 | 0.4567 (3) | 0.0139 (10) | |
H1B | 0.6667 | 0.3333 | 0.3983 | 0.017* | |
C1 | 0.8082 (2) | 0.2003 (2) | 0.55910 (12) | 0.0146 (5) | |
C2 | 0.8419 (3) | 0.1815 (3) | 0.49355 (13) | 0.0166 (6) | |
H2 | 0.8812 | 0.1373 | 0.4829 | 0.020* | |
C3 | 0.8064 (2) | 0.2405 (2) | 0.44716 (12) | 0.0136 (5) | |
C4 | 0.8224 (3) | 0.2532 (3) | 0.37198 (14) | 0.0135 (5) | |
C5 | 0.7922 (2) | 0.1509 (2) | 0.33065 (13) | 0.0173 (6) | |
H5 | 0.7601 | 0.0738 | 0.3515 | 0.021* | |
C6 | 0.8094 (3) | 0.1632 (3) | 0.25990 (16) | 0.0182 (7) | |
H6 | 0.7890 | 0.0942 | 0.2325 | 0.022* | |
C7 | 0.8557 (2) | 0.2743 (3) | 0.22844 (13) | 0.0201 (6) | |
H7 | 0.8668 | 0.2814 | 0.1797 | 0.024* | |
C8 | 0.8860 (3) | 0.3759 (3) | 0.26839 (13) | 0.0215 (6) | |
H8 | 0.9179 | 0.4525 | 0.2469 | 0.026* | |
C9 | 0.8698 (3) | 0.3652 (3) | 0.33951 (14) | 0.0190 (6) | |
H9 | 0.8913 | 0.4350 | 0.3665 | 0.023* | |
C10 | 0.8239 (2) | 0.1510 (3) | 0.62468 (13) | 0.0163 (6) | |
C11 | 0.8460 (2) | 0.2131 (3) | 0.68680 (14) | 0.0185 (6) | |
H11 | 0.8564 | 0.2919 | 0.6872 | 0.022* | |
C12 | 0.8530 (3) | 0.1605 (3) | 0.74866 (17) | 0.0230 (7) | |
H12 | 0.8650 | 0.2023 | 0.7912 | 0.028* | |
C13 | 0.8422 (3) | 0.0472 (3) | 0.74807 (16) | 0.0269 (7) | |
H13 | 0.8468 | 0.0113 | 0.7901 | 0.032* | |
C14 | 0.8246 (3) | −0.0137 (3) | 0.68574 (15) | 0.0234 (7) | |
H14 | 0.8191 | −0.0904 | 0.6849 | 0.028* | |
C15 | 0.8150 (3) | 0.0381 (3) | 0.62476 (16) | 0.0209 (6) | |
H15 | 0.8022 | −0.0041 | 0.5824 | 0.025* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.02665 (19) | 0.02665 (19) | 0.0142 (2) | 0.01332 (9) | 0.000 | 0.000 |
Ni1 | 0.0140 (2) | 0.0140 (2) | 0.0120 (3) | 0.00702 (10) | 0.000 | 0.000 |
N1 | 0.0107 (10) | 0.0149 (11) | 0.0121 (9) | 0.0061 (9) | −0.0007 (8) | 0.0007 (8) |
N2 | 0.0137 (11) | 0.0146 (11) | 0.0096 (8) | 0.0068 (9) | 0.0007 (8) | 0.0006 (8) |
B1 | 0.0112 (15) | 0.0112 (15) | 0.019 (2) | 0.0056 (8) | 0.000 | 0.000 |
C1 | 0.0121 (13) | 0.0105 (13) | 0.0199 (12) | 0.0047 (11) | −0.0016 (10) | 0.0005 (10) |
C2 | 0.0186 (14) | 0.0165 (15) | 0.0191 (16) | 0.0122 (13) | −0.0028 (13) | 0.0009 (12) |
C3 | 0.0097 (13) | 0.0094 (12) | 0.0189 (12) | 0.0026 (11) | −0.0001 (9) | 0.0010 (9) |
C4 | 0.0106 (13) | 0.0148 (14) | 0.0169 (12) | 0.0077 (11) | 0.0010 (10) | −0.0012 (11) |
C5 | 0.0171 (15) | 0.0124 (14) | 0.0221 (13) | 0.0071 (12) | 0.0005 (11) | 0.0031 (11) |
C6 | 0.0191 (16) | 0.0155 (15) | 0.0234 (16) | 0.0113 (13) | −0.0015 (13) | −0.0039 (13) |
C7 | 0.0180 (15) | 0.0237 (15) | 0.0153 (12) | 0.0080 (13) | 0.0044 (11) | 0.0003 (11) |
C8 | 0.0210 (15) | 0.0179 (15) | 0.0210 (12) | 0.0062 (12) | 0.0060 (11) | 0.0053 (11) |
C9 | 0.0199 (16) | 0.0172 (15) | 0.0193 (13) | 0.0087 (13) | 0.0016 (11) | −0.0029 (11) |
C10 | 0.0089 (13) | 0.0166 (14) | 0.0215 (13) | 0.0049 (11) | 0.0001 (10) | 0.0043 (11) |
C11 | 0.0136 (14) | 0.0155 (14) | 0.0233 (13) | 0.0050 (12) | −0.0050 (11) | 0.0012 (11) |
C12 | 0.0204 (17) | 0.0291 (19) | 0.0180 (15) | 0.0112 (15) | −0.0034 (13) | 0.0002 (14) |
C13 | 0.0206 (16) | 0.0304 (17) | 0.0268 (14) | 0.0105 (14) | −0.0022 (13) | 0.0126 (13) |
C14 | 0.0206 (16) | 0.0195 (16) | 0.0333 (16) | 0.0124 (13) | −0.0008 (12) | 0.0075 (13) |
C15 | 0.0185 (15) | 0.0194 (16) | 0.0257 (14) | 0.0101 (14) | −0.0019 (12) | −0.0011 (12) |
Ni1—Br1 | 2.3523 (6) | C5—H5 | 0.9500 |
Ni1—N1 | 2.041 (2) | C6—C7 | 1.380 (4) |
Ni1—N1i | 2.041 (2) | C6—H6 | 0.9500 |
Ni1—N1ii | 2.041 (2) | C7—C8 | 1.392 (4) |
N1—C1 | 1.350 (3) | C7—H7 | 0.9500 |
N1—N2 | 1.371 (3) | C8—C9 | 1.387 (4) |
N2—C3 | 1.360 (3) | C8—H8 | 0.9500 |
N2—B1 | 1.544 (3) | C9—H9 | 0.9500 |
B1—N2i | 1.544 (3) | C10—C11 | 1.389 (4) |
B1—N2ii | 1.544 (3) | C10—C15 | 1.394 (4) |
B1—H1B | 1.1278 | C11—C12 | 1.397 (4) |
C1—C2 | 1.398 (4) | C11—H11 | 0.9500 |
C1—C10 | 1.475 (3) | C12—C13 | 1.390 (5) |
C2—C3 | 1.388 (3) | C12—H12 | 0.9500 |
C2—H2 | 0.9500 | C13—C14 | 1.391 (5) |
C3—C4 | 1.465 (4) | C13—H13 | 0.9500 |
C4—C9 | 1.397 (4) | C14—C15 | 1.388 (4) |
C4—C5 | 1.415 (4) | C14—H14 | 0.9500 |
C5—C6 | 1.381 (4) | C15—H15 | 0.9500 |
N1—Ni1—N1i | 93.11 (8) | C4—C5—H5 | 120.0 |
N1—Ni1—N1ii | 93.11 (8) | C7—C6—C5 | 121.0 (3) |
N1i—Ni1—N1ii | 93.11 (8) | C7—C6—H6 | 119.5 |
N1—Ni1—Br1 | 123.04 (6) | C5—C6—H6 | 119.5 |
N1i—Ni1—Br1 | 123.04 (6) | C6—C7—C8 | 119.7 (2) |
N1ii—Ni1—Br1 | 123.04 (6) | C6—C7—H7 | 120.1 |
C1—N1—N2 | 106.99 (19) | C8—C7—H7 | 120.1 |
C1—N1—Ni1 | 141.45 (17) | C9—C8—C7 | 119.9 (3) |
N2—N1—Ni1 | 111.47 (15) | C9—C8—H8 | 120.0 |
C3—N2—N1 | 109.82 (19) | C7—C8—H8 | 120.0 |
C3—N2—B1 | 127.6 (2) | C8—C9—C4 | 120.9 (3) |
N1—N2—B1 | 120.3 (2) | C8—C9—H9 | 119.5 |
N2—B1—N2i | 108.89 (19) | C4—C9—H9 | 119.5 |
N2—B1—N2ii | 108.89 (19) | C11—C10—C15 | 118.8 (3) |
N2i—B1—N2ii | 108.89 (19) | C11—C10—C1 | 121.9 (3) |
N2—B1—H1B | 110.0 | C15—C10—C1 | 119.2 (2) |
N2i—B1—H1B | 110.0 | C10—C11—C12 | 120.4 (3) |
N2ii—B1—H1B | 110.0 | C10—C11—H11 | 119.8 |
N1—C1—C2 | 109.5 (2) | C12—C11—H11 | 119.8 |
N1—C1—C10 | 124.6 (2) | C13—C12—C11 | 120.1 (3) |
C2—C1—C10 | 125.8 (2) | C13—C12—H12 | 120.0 |
C3—C2—C1 | 106.1 (2) | C11—C12—H12 | 120.0 |
C3—C2—H2 | 127.0 | C14—C13—C12 | 119.8 (3) |
C1—C2—H2 | 127.0 | C14—C13—H13 | 120.1 |
N2—C3—C2 | 107.6 (2) | C12—C13—H13 | 120.1 |
N2—C3—C4 | 122.9 (2) | C15—C14—C13 | 119.7 (3) |
C2—C3—C4 | 129.5 (2) | C15—C14—H14 | 120.2 |
C9—C4—C5 | 118.4 (2) | C13—C14—H14 | 120.2 |
C9—C4—C3 | 121.7 (3) | C14—C15—C10 | 121.1 (3) |
C5—C4—C3 | 119.9 (2) | C14—C15—H15 | 119.4 |
C6—C5—C4 | 119.9 (3) | C10—C15—H15 | 119.4 |
C6—C5—H5 | 120.0 |
Symmetry codes: (i) −x+y+1, −x+1, z; (ii) −y+1, x−y, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
C5—H5···Cg1iii | 0.95 | 2.73 | 3.589 (3) | 151 |
Symmetry code: (iii) −x+y+5/3, −x+1/3, z−2/3. |
Experimental details
Crystal data | |
Chemical formula | [NiBr(C45H34BN6)] |
Mr | 808.21 |
Crystal system, space group | Trigonal, R3 |
Temperature (K) | 150 |
a, c (Å) | 12.8227 (8), 19.327 (3) |
V (Å3) | 2752.0 (5) |
Z | 3 |
Radiation type | Mo Kα |
µ (mm−1) | 1.66 |
Crystal size (mm) | 0.24 × 0.24 × 0.21 |
Data collection | |
Diffractometer | Bruker SMART CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 1997) |
Tmin, Tmax | 0.691, 0.722 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 5609, 2075, 1943 |
Rint | 0.037 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.028, 0.063, 1.06 |
No. of reflections | 2075 |
No. of parameters | 163 |
No. of restraints | 1 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.27, −0.29 |
Absolute structure | Flack (1983), 670 Friedel pairs |
Absolute structure parameter | 0.020 (8) |
Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
Ni1—Br1 | 2.3523 (6) | Ni1—N1 | 2.041 (2) |
N1—Ni1—N1i | 93.11 (8) | N1—Ni1—Br1 | 123.04 (6) |
Symmetry code: (i) −x+y+1, −x+1, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
C5—H5···Cg1ii | 0.95 | 2.73 | 3.589 (3) | 151 |
Symmetry code: (ii) −x+y+5/3, −x+1/3, z−2/3. |
Acknowledgements
The authors gratefully acknowledge the Thailand Research Fund (grant No. RMU5080029) and the National Research Council of Thailand (grant No. WU51106) for support of this work.
References
Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Desrochers, P. J., LeLievre, L., Johnson, R. J., Lamb, B. T., Phelps, A. L., Cordes, A. W., Gu, W. & Cramer, S. P. (2003). Inorg. Chem. 42, 7945–7950. Web of Science CSD CrossRef PubMed CAS Google Scholar
Desrochers, P. J., Telser, J., Zvyagin, S. A., Ozarowski, A., Krzystek, J. & Vicic, D. A. (2006). Inorg. Chem. 45, 8930–8941. Web of Science CSD CrossRef PubMed CAS Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Guo, S., Ding, E., Yin, Y. & Yu, K. (1998). Polyhedron, 17, 3841–3849. CSD CrossRef CAS Google Scholar
Harding, D. J., Harding, P., Adams, H. & Tuntulani, T. (2007). Inorg. Chim. Acta, 360, 3335–3340. Web of Science CSD CrossRef CAS Google Scholar
Kunrath, F. A., de Souza, R. F., Casagrande, O. L. Jr, Brooks, N. R. & Young, V. G. Jr (2003). Organometallics, 22, 4739–4743. Web of Science CSD CrossRef CAS Google Scholar
Shannon, R. D. (1976). Acta Cryst. A32, 751–767. CrossRef CAS IUCr Journals Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Uehara, K., Hikichi, S. & Akita, M. (2002). J. Chem. Soc. Dalton Trans. pp. 3529–3538. Web of Science CSD CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Tris(pyrazolyl)borates are versatile and popular ligands in coordination chemistry with many complexes now known. Despite the C3 symmetry present in many tris(pyrazolyl)borate ligands few tetrahedral complexes crystallize in space groups containing a C3 axis (Desrochers et al., 2003, 2006; Kunrath et al., 2003; Uehara et al., 2002). Rare examples which do contain a C3 axis include [TpPh2NiCl] and [TpPh2Ni(OAc)] despite the later being formally five-coordinate (Guo et al., 1998; Harding et al., 2007). In the following paper we report a further example namely, the title compound, [TpPh2NiBr], (I).
The reaction of NiBr2.2H2O with KTpPh2 readily affords the title complex as a red-purple solid in moderate yield. Crystals were grown by allowing hexanes to diffuse into a concentrated solution of the complex in CH2Cl2. The compound crystallizes in the trigonal R3 space group. The structure is shown in Figure 1 while important bond lengths and angles are given in the supporting tables. The geometry around the nickel centre is best described as distorted tetrahedral {N1—Ni—N1i = 93.11 (8), N1—Ni—Br1 = 123.04 (6)}. The Ni—N bond lengths are very slightly longer by ca. 0.01 Å than those found in [TpPh2NiCl] (Guo et al., 1998). A similar difference is observed in the structures of [Tp*NiCl] and [Tp*NiBr] (Desrochers et al., 2003, 2006). The Ni—Br distance is 2.3523 (6) Å, ca 0.15 Å longer than the corresponding Ni—Cl distance in [TpPh2NiCl], and consistent with the difference in the bromine and chlorine covalent radii (0.15 Å; Shannon, 1976). Interestingly, the Ni—Br bond length in (I) is significantly longer than that observed for [Tp*NiBr] (2.291 (2) Å). A similar increase, albeit not so marked, is also found between [TpPh2NiCl] and [Tp*NiCl] (ΔNi-Cl = 0.03 Å) suggesting that the larger TpPh2 ligand may be responsible for the longer nickel-halide bond distances.
The crystal packing in the structure of (I) contains several C—H···π interactions between the phenyl rings of neighbouring TpPh2 ligands (see Figure 2). The hydrogen atoms H6 and H11 are directed at the π bonds between C1—N1 and C4—C5, respectively {(C1—N1)π···H6 2.657 (3) Å; (C4—C5)π···H11 2.834 (5) Å} while H5 interacts with a phenyl ring (Cg1···H5 2.730 (3) Å; Cg1 is the centroid of ring C10—C15). Similar interactions occur on all three faces of the TpPh2 ligand creating a network of triangular columns such that all the [TpPh2NiBr] molecules point in the same direction and the phenyl rings adopt a propeller configuration.