metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Aqua­azido­{2,2′-[o-phenylenebis(nitrilo­methyl­­idyne)]diphenolato}manganese(III) hemihydrate

aAdvanced Material Institute of Research, Department of Chemistry and Chemical Engineering, Shandong Institute of Education, Jinan 250013, People's Republic of China, bCollege of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, People's Republic of China, and cYuncheng Normal School, Yuncheng 274700, Shandong Province, People's Republic of China
*Correspondence e-mail: xiutangzhang@yahoo.com.cn

(Received 14 May 2009; accepted 27 May 2009; online 6 June 2009)

In the title compound, [Mn(C20H14N2O2)(N3)(H2O)]·0.5H2O, the MnIII ion is chelated by the N,N′,O,O′-tetra­dentate Schiff base ligand and further coordinated by one azide ion and one water mol­ecule in trans positions, resulting in a distorted fac-MnN3O3 octa­hedral arrangement. The O atom of the uncoordinated water mol­ecule lies on a crystallographic twofold axis. In the crystal, O—H⋯O and O—H⋯N hydrogen bonds help to establish the packing.

Related literature

For background to salicylaldehyde complexes, see: Alam et al. (2003[Alam, M. A., Nethaji, M. & Ray, M. (2003). Angew. Chem. Int. Ed. 42, 1940-1942.]); Zelewsky & von Knof (1999[Zelewsky, A. & von Knof, U. (1999). Angew. Chem. Int. Ed. 38, 302-322.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn(C20H14N2O2)(N3)(H2O)]·0.5H2O

  • Mr = 438.33

  • Monoclinic, C 2/c

  • a = 25.100 (10) Å

  • b = 11.478 (5) Å

  • c = 12.599 (5) Å

  • β = 94.175 (3)°

  • V = 3620 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.77 mm−1

  • T = 293 K

  • 0.12 × 0.10 × 0.08 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.914, Tmax = 0.941

  • 11927 measured reflections

  • 3162 independent reflections

  • 2371 reflections with I > 2σ(I)

  • Rint = 0.082

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.086

  • S = 1.00

  • 3162 reflections

  • 280 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Selected bond lengths (Å)

Mn1—O1 1.8636 (18)
Mn1—O2 1.8844 (18)
Mn1—N2 1.986 (2)
Mn1—N1 1.988 (2)
Mn1—N3 2.306 (2)
Mn1—O1W 2.321 (2)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H2W⋯N3i 0.82 (2) 2.12 (2) 2.937 (3) 176 (3)
O1W—H1W⋯O2ii 0.820 (11) 2.076 (6) 2.885 (3) 169 (2)
O2W—H3W⋯N5 0.82 (3) 2.18 (3) 3.000 (3) 173 (4)
Symmetry codes: (i) [x, -y, z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+2].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2004[Bruker (2004). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The synthesis of complexes consisting of salicylaldehyde ligand has attracted continuous research interest not only because of their appealing structural and topological novelty, but also due to their unusual optical, electronic, magnetic, and catalytic properties, as well as their potential medical application (Alam et al., 2003; Zelewsky & von Knof, 1999). In the present paper, we describe the synthesis and structural characterizations of the title compound, (I),

As shown in Fig. 1, each Mn(III) atom is chelated by Schiff base ligand via two N and two O atoms and is additionally coordinated by one azide and a water molecule, forming a distorted octahedral geometry (Table 1) in which, the Schiff base lies in the equatorial plane, and the azide and aqua ligands lie in the axial coordination sites.

With O—H···O and O—H···N hydrogen bonds (Table 2), a three-dimensional network is formed as shown in Fig. 2.

Related literature top

For background to salicylaldehyde complexes, see: Alam et al. (2003); Zelewsky & von Knof (1999).

Experimental top

A mixture of manganese(III) acetylacetonate (1 mmol) and N,N'-bis(2-hydroxy-5-bromobenzyl)1,2-diaminopropane (1 mmol), and dipotassium nickel tetracyanide (1 mmol) in 20 ml methanol was refluxed for several hours. The above cooled solution was filtered and the filtrate was kept in an ice box. One week later, brown blocks of (I) were obtained with a yield of 5%. Anal. Calc. for C40H34Mn2N10O7: C 54.75, H 3.88, N 15.97%; Found: C 54.71, H 3.75, N 15.82.

Refinement top

All H atoms were placed in calculated positions with C—H = 0.93Å and refined as riding with Uiso(H) = 1.2Ueq(carrier). H atom on aqua were located from difference density maps and were refined with distance restraints of O–H = 0.82 (1) Å.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), drawn with 30% probability displacement ellipsoids for the non-hydrogen atoms.
[Figure 2] Fig. 2. Three-dimensional network formed by hydrogen bonds (dashed lines).
Aquaazido{2,2'-[o- phenylenebis(nitrilomethylidyne)]diphenolato}manganese(III) hemihydrate top
Crystal data top
[Mn(C20H14N2O2)(N3)(H2O)]·0.5H2OF(000) = 1808
Mr = 438.33Dx = 1.612 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71070 Å
Hall symbol: -C 2ycCell parameters from 3162 reflections
a = 25.10 (1) Åθ = 3.0–25.0°
b = 11.478 (5) ŵ = 0.77 mm1
c = 12.599 (5) ÅT = 293 K
β = 94.175 (3)°Block, pink
V = 3620 (3) Å30.12 × 0.10 × 0.08 mm
Z = 8
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3162 independent reflections
Radiation source: fine-focus sealed tube2371 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.082
ϕ and ω scansθmax = 25.0°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 2729
Tmin = 0.914, Tmax = 0.941k = 1313
11927 measured reflectionsl = 1413
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.086H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.03P)2]
where P = (Fo2 + 2Fc2)/3
3162 reflections(Δ/σ)max = 0.001
280 parametersΔρmax = 0.32 e Å3
4 restraintsΔρmin = 0.38 e Å3
Crystal data top
[Mn(C20H14N2O2)(N3)(H2O)]·0.5H2OV = 3620 (3) Å3
Mr = 438.33Z = 8
Monoclinic, C2/cMo Kα radiation
a = 25.10 (1) ŵ = 0.77 mm1
b = 11.478 (5) ÅT = 293 K
c = 12.599 (5) Å0.12 × 0.10 × 0.08 mm
β = 94.175 (3)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3162 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
2371 reflections with I > 2σ(I)
Tmin = 0.914, Tmax = 0.941Rint = 0.082
11927 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0374 restraints
wR(F2) = 0.086H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.32 e Å3
3162 reflectionsΔρmin = 0.38 e Å3
280 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.204685 (15)0.09791 (3)0.87813 (3)0.00903 (13)
C10.11631 (10)0.2543 (2)0.90445 (18)0.0102 (6)
C20.09780 (10)0.3688 (2)0.90882 (19)0.0124 (6)
H20.12190.43010.90610.015*
C30.04451 (10)0.3928 (2)0.91706 (19)0.0156 (6)
H30.03320.46990.91960.019*
C40.00719 (10)0.3029 (2)0.9217 (2)0.0180 (6)
H40.02880.31970.92600.022*
C50.02444 (10)0.1897 (2)0.9198 (2)0.0161 (6)
H50.00020.12970.92380.019*
C60.07880 (10)0.1623 (2)0.91183 (18)0.0110 (6)
C70.09346 (10)0.0426 (2)0.91314 (18)0.0114 (6)
H70.06620.01150.91880.014*
C80.15275 (10)0.1198 (2)0.91053 (18)0.0092 (6)
C90.11626 (10)0.2052 (2)0.93648 (19)0.0123 (6)
H90.08190.18440.95250.015*
C100.13142 (10)0.3207 (2)0.93819 (18)0.0123 (6)
H100.10710.37770.95530.015*
C110.18272 (10)0.3529 (2)0.91454 (18)0.0124 (6)
H110.19250.43110.91570.015*
C120.21902 (10)0.2690 (2)0.88938 (18)0.0109 (6)
H120.25330.29060.87360.013*
C130.20450 (10)0.1518 (2)0.88751 (18)0.0096 (5)
C140.28922 (10)0.0719 (2)0.84750 (19)0.0110 (6)
H140.30070.14800.83850.013*
C150.32741 (10)0.0188 (2)0.83746 (18)0.0111 (6)
C160.38034 (10)0.0164 (2)0.82023 (18)0.0145 (6)
H160.38780.09540.81430.017*
C170.42059 (10)0.0627 (2)0.81212 (19)0.0155 (6)
H170.45480.03770.79980.019*
C180.40976 (10)0.1809 (2)0.82255 (18)0.0142 (6)
H180.43710.23500.81810.017*
C190.35893 (10)0.2184 (2)0.83938 (19)0.0136 (6)
H190.35250.29780.84620.016*
C200.31675 (10)0.1395 (2)0.84649 (18)0.0094 (6)
N10.23943 (8)0.05699 (18)0.86829 (15)0.0098 (5)
N20.14151 (8)0.00196 (18)0.90708 (15)0.0092 (5)
N30.17896 (8)0.07150 (19)0.70029 (16)0.0131 (5)
N40.13255 (9)0.05323 (19)0.67637 (16)0.0136 (5)
N50.08768 (9)0.0341 (2)0.65186 (17)0.0234 (6)
O10.16772 (7)0.23708 (15)0.89293 (13)0.0127 (4)
O20.26797 (6)0.18073 (15)0.85790 (12)0.0113 (4)
O1W0.23229 (7)0.08568 (17)1.05761 (13)0.0138 (4)
O2W0.00000.0960 (3)0.75000.0383 (8)
H1W0.2366 (10)0.1525 (7)1.0796 (16)0.023 (9)*
H2W0.2189 (11)0.0413 (15)1.0991 (14)0.037 (10)*
H3W0.0224 (11)0.056 (3)0.723 (3)0.064 (13)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0082 (2)0.0069 (2)0.0122 (2)0.00022 (17)0.00244 (16)0.00015 (16)
C10.0133 (14)0.0136 (14)0.0037 (13)0.0011 (11)0.0004 (10)0.0013 (11)
C20.0163 (14)0.0085 (14)0.0124 (14)0.0000 (11)0.0008 (11)0.0017 (11)
C30.0190 (15)0.0117 (15)0.0162 (15)0.0046 (12)0.0017 (12)0.0029 (11)
C40.0105 (14)0.0172 (16)0.0271 (16)0.0050 (12)0.0059 (12)0.0031 (13)
C50.0130 (14)0.0117 (15)0.0239 (16)0.0027 (11)0.0035 (12)0.0033 (12)
C60.0149 (14)0.0083 (14)0.0101 (14)0.0023 (11)0.0031 (11)0.0004 (11)
C70.0121 (14)0.0118 (15)0.0105 (14)0.0045 (11)0.0024 (11)0.0004 (11)
C80.0129 (14)0.0080 (14)0.0064 (13)0.0001 (11)0.0005 (10)0.0019 (10)
C90.0119 (14)0.0114 (15)0.0138 (14)0.0013 (11)0.0035 (11)0.0016 (11)
C100.0159 (14)0.0119 (15)0.0092 (14)0.0046 (11)0.0014 (11)0.0001 (11)
C110.0205 (15)0.0067 (14)0.0093 (13)0.0021 (11)0.0028 (11)0.0002 (11)
C120.0129 (14)0.0145 (15)0.0052 (13)0.0043 (11)0.0005 (10)0.0027 (10)
C130.0124 (14)0.0120 (14)0.0042 (13)0.0028 (11)0.0007 (10)0.0015 (11)
C140.0142 (14)0.0106 (15)0.0082 (13)0.0035 (11)0.0011 (11)0.0006 (10)
C150.0128 (14)0.0144 (14)0.0062 (13)0.0007 (11)0.0016 (10)0.0010 (11)
C160.0170 (15)0.0162 (15)0.0104 (14)0.0038 (12)0.0021 (11)0.0012 (11)
C170.0069 (14)0.0278 (17)0.0119 (14)0.0028 (12)0.0011 (11)0.0015 (12)
C180.0107 (14)0.0240 (17)0.0077 (14)0.0048 (12)0.0008 (11)0.0009 (12)
C190.0193 (15)0.0119 (15)0.0095 (14)0.0023 (12)0.0006 (11)0.0023 (11)
C200.0082 (13)0.0175 (15)0.0026 (12)0.0006 (11)0.0005 (10)0.0020 (11)
N10.0135 (12)0.0086 (12)0.0073 (11)0.0005 (9)0.0014 (9)0.0004 (9)
N20.0118 (11)0.0070 (12)0.0088 (11)0.0010 (9)0.0018 (9)0.0002 (9)
N30.0097 (12)0.0190 (14)0.0108 (12)0.0020 (9)0.0013 (9)0.0014 (9)
N40.0198 (14)0.0138 (13)0.0078 (12)0.0027 (10)0.0047 (10)0.0002 (9)
N50.0122 (13)0.0395 (17)0.0183 (13)0.0007 (12)0.0002 (10)0.0000 (11)
O10.0099 (9)0.0074 (10)0.0213 (10)0.0001 (7)0.0038 (7)0.0005 (8)
O20.0114 (9)0.0097 (10)0.0133 (10)0.0007 (8)0.0037 (7)0.0011 (8)
O1W0.0192 (11)0.0090 (11)0.0133 (10)0.0039 (8)0.0027 (8)0.0004 (9)
O2W0.025 (2)0.028 (2)0.063 (2)0.0000.0130 (18)0.000
Geometric parameters (Å, º) top
Mn1—O11.8636 (18)C10—H100.9300
Mn1—O21.8844 (18)C11—C121.379 (3)
Mn1—N21.986 (2)C11—H110.9300
Mn1—N11.988 (2)C12—C131.393 (3)
Mn1—N32.306 (2)C12—H120.9300
Mn1—O1W2.321 (2)C13—N11.430 (3)
C1—O11.324 (3)C14—N11.307 (3)
C1—C21.397 (3)C14—C151.427 (3)
C1—C61.422 (3)C14—H140.9300
C2—C31.377 (3)C15—C201.418 (4)
C2—H20.9300C15—C161.420 (3)
C3—C41.398 (4)C16—C171.367 (4)
C3—H30.9300C16—H160.9300
C4—C51.371 (4)C17—C181.392 (4)
C4—H40.9300C17—H170.9300
C5—C61.411 (3)C18—C191.378 (3)
C5—H50.9300C18—H180.9300
C6—C71.422 (4)C19—C201.401 (3)
C7—N21.301 (3)C19—H190.9300
C7—H70.9300C20—O21.330 (3)
C8—C91.397 (3)N3—N41.200 (3)
C8—C131.401 (3)N4—N51.167 (3)
C8—N21.425 (3)O1W—H1W0.820 (11)
C9—C101.379 (4)O1W—H2W0.82 (2)
C9—H90.9300O2W—H3W0.82 (3)
C10—C111.393 (3)
O1—Mn1—O290.68 (8)C11—C10—H10119.7
O1—Mn1—N292.69 (8)C12—C11—C10120.0 (2)
O2—Mn1—N2175.37 (8)C12—C11—H11120.0
O1—Mn1—N1175.33 (8)C10—C11—H11120.0
O2—Mn1—N193.71 (8)C11—C12—C13120.1 (2)
N2—Mn1—N182.83 (9)C11—C12—H12119.9
O1—Mn1—N395.95 (8)C13—C12—H12119.9
O2—Mn1—N396.55 (7)C12—C13—C8119.7 (2)
N2—Mn1—N386.26 (8)C12—C13—N1125.1 (2)
N1—Mn1—N385.12 (8)C8—C13—N1115.1 (2)
O1—Mn1—O1W94.00 (7)N1—C14—C15125.5 (2)
O2—Mn1—O1W88.14 (7)N1—C14—H14117.2
N2—Mn1—O1W88.47 (7)C15—C14—H14117.2
N1—Mn1—O1W84.58 (7)C20—C15—C16118.3 (2)
N3—Mn1—O1W168.94 (7)C20—C15—C14125.0 (2)
O1—C1—C2118.3 (2)C16—C15—C14116.6 (2)
O1—C1—C6123.5 (2)C17—C16—C15121.8 (3)
C2—C1—C6118.2 (2)C17—C16—H16119.1
C3—C2—C1121.3 (2)C15—C16—H16119.1
C3—C2—H2119.4C16—C17—C18119.3 (2)
C1—C2—H2119.4C16—C17—H17120.3
C2—C3—C4120.9 (3)C18—C17—H17120.3
C2—C3—H3119.6C19—C18—C17120.6 (2)
C4—C3—H3119.6C19—C18—H18119.7
C5—C4—C3119.1 (2)C17—C18—H18119.7
C5—C4—H4120.5C18—C19—C20121.3 (3)
C3—C4—H4120.5C18—C19—H19119.3
C4—C5—C6121.4 (2)C20—C19—H19119.3
C4—C5—H5119.3O2—C20—C19118.9 (2)
C6—C5—H5119.3O2—C20—C15122.5 (2)
C5—C6—C1119.2 (2)C19—C20—C15118.6 (2)
C5—C6—C7117.7 (2)C14—N1—C13122.8 (2)
C1—C6—C7123.1 (2)C14—N1—Mn1124.04 (18)
N2—C7—C6125.9 (2)C13—N1—Mn1113.16 (16)
N2—C7—H7117.1C7—N2—C8122.2 (2)
C6—C7—H7117.1C7—N2—Mn1124.61 (18)
C9—C8—C13119.9 (2)C8—N2—Mn1112.96 (15)
C9—C8—N2124.3 (2)N4—N3—Mn1117.69 (16)
C13—C8—N2115.8 (2)N5—N4—N3178.8 (3)
C10—C9—C8119.6 (2)C1—O1—Mn1129.44 (16)
C10—C9—H9120.2C20—O2—Mn1128.82 (16)
C8—C9—H9120.2Mn1—O1W—H1W107.2 (17)
C9—C10—C11120.7 (2)Mn1—O1W—H2W123.5 (18)
C9—C10—H10119.7H1W—O1W—H2W114.6 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H2W···N3i0.82 (2)2.12 (2)2.937 (3)176 (3)
O1W—H1W···O2ii0.82 (1)2.08 (1)2.885 (3)169 (2)
O2W—H3W···N50.82 (3)2.18 (3)3.000 (3)173 (4)
Symmetry codes: (i) x, y, z+1/2; (ii) x+1/2, y+1/2, z+2.

Experimental details

Crystal data
Chemical formula[Mn(C20H14N2O2)(N3)(H2O)]·0.5H2O
Mr438.33
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)25.10 (1), 11.478 (5), 12.599 (5)
β (°) 94.175 (3)
V3)3620 (3)
Z8
Radiation typeMo Kα
µ (mm1)0.77
Crystal size (mm)0.12 × 0.10 × 0.08
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.914, 0.941
No. of measured, independent and
observed [I > 2σ(I)] reflections
11927, 3162, 2371
Rint0.082
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.086, 1.00
No. of reflections3162
No. of parameters280
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.32, 0.38

Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Mn1—O11.8636 (18)Mn1—N11.988 (2)
Mn1—O21.8844 (18)Mn1—N32.306 (2)
Mn1—N21.986 (2)Mn1—O1W2.321 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H2W···N3i0.82 (2)2.12 (2)2.937 (3)176 (3)
O1W—H1W···O2ii0.820 (11)2.076 (6)2.885 (3)169 (2)
O2W—H3W···N50.82 (3)2.18 (3)3.000 (3)173 (4)
Symmetry codes: (i) x, y, z+1/2; (ii) x+1/2, y+1/2, z+2.
 

Acknowledgements

The authors thank the National Ministry of Science and Technology of China (grant No. 2001CB6105–07) for support.

References

First citationAlam, M. A., Nethaji, M. & Ray, M. (2003). Angew. Chem. Int. Ed. 42, 1940–1942.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2004). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZelewsky, A. & von Knof, U. (1999). Angew. Chem. Int. Ed. 38, 302–322.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds