metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 7| July 2009| Pages m724-m725

Bis(4-amino­benzene­sulfonato-κN)di­aqua­bis­(di­methyl­formamide-κO)nickel(II) dihydrate

aCollege of Biological and Chemical Engineering, Jiaxing University, Jiaxing 314001, People's Republic of China
*Correspondence e-mail: catalyst007@126.com

(Received 24 May 2009; accepted 28 May 2009; online 6 June 2009)

In the title compound, [Ni(C6H6NO3S)2(C3H7NO)2(H2O)2]·2H2O, the NiII ion (site symmetry [\overline{1}]) is coordinated by two –NH2 groups from two 4-amino­benzene­sulfonate anions, two O atoms from two dimethyl­formamide mol­ecules and two water mol­ecules, forming a slightly distorted trans-NiN2O4 octa­hedral geometry. In the crystal structure, inter­molecular O—H⋯O, O—H⋯(O,O) and N—H⋯O hydrogen bonds link the components into a three-dimensional network. The O atoms of the sulfonate group are disordered over two sets of sites in a 0.833 (4):0.167 (4) ratio and the O atom of the uncoordinated water mol­ecule is disordered over two sites in a 0.637 (18):0.363 (18) ratio.

Related literature

For related structures, see: Zhao et al. (2007[Zhao, J., Dang, Z.-H., Wang, Y.-J., Ye, Y.-Z. & Xu, L. (2007). Acta Cryst. E63, m1773.]); Li et al. (2008[Li, Z. L., Xuan, Y. W., Wu, W. & Xie, D. P. (2008). Acta Cryst. E64, m1162-m1163.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C6H6NO3S)2(C3H7NO)2(H2O)2]·2H2O

  • Mr = 621.32

  • Orthorhombic, P b c a

  • a = 11.3197 (6) Å

  • b = 15.2174 (7) Å

  • c = 15.9061 (8) Å

  • V = 2739.9 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.92 mm−1

  • T = 296 K

  • 0.20 × 0.18 × 0.15 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Siemens, 1996[Siemens (1996). SMART, SAINT and SADABS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]) Tmin = 0.837, Tmax = 0.874

  • 13538 measured reflections

  • 2424 independent reflections

  • 1991 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.075

  • S = 1.03

  • 2424 reflections

  • 209 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Selected bond lengths (Å)

Ni1—O4 2.0385 (15)
Ni1—O5 2.0664 (15)
Ni1—N1 2.1579 (19)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1i 0.90 2.15 2.992 (3) 156
N1—H1B⋯O3ii 0.90 2.06 2.919 (3) 160
O5—H5B⋯O6Ai 0.85 1.84 2.685 (5) 174
O5—H5B⋯O6Bi 0.85 1.87 2.669 (8) 156
O5—H5C⋯O3iii 0.85 1.95 2.743 (3) 155
O6A—H6A⋯O2iv 0.85 1.96 2.768 (6) 158
O6B—H6B⋯O1 0.85 1.95 2.694 (8) 146
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, z]; (iii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (iv) [x+{\script{1\over 2}}, y, -z+{\script{3\over 2}}].

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART, SAINT and SADABS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART, SAINT and SADABS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

4-Aminobenzenesulfonic acid can bind to transition metals through the amino as well as the carboxylate groups (Zhao et al., 2007; Li et al., 2008). Therefore, we extended these investigations to the use of the ligand 4-aminobenzenesulfonic acid and obtained various framework structures.

In this paper, we report the structure of the title compound, (I), im which the NiII ion is located on a crystallographic inversion center and is coordinated by two –NH2 groups from two 4-aminobenzenesulfonate ligands and four oxygen atoms from two water molecules and two N,N'-dimethylformamide molecules (Table 1 and Fig. 1), forming a slightly distorted octahedral coordination environment.

In the crystal structure, intermolecular O—H···O and N—H···O hydrogen bonds link the title complex into a three-dimensional network (Table 2 and Fig.2).

Related literature top

For related structures, see: Zhao et al. (2007); Li et al. (2008).

Experimental top

An ethanol solution (20 ml) containing nickel chloride (0.237 g, 1 mmol) was added dropwise to an aqueous solution containing 4-aminobenzenesulfonic acid (0.180 g, 1 mmol) and sodium hydroxide (0.040 g, 1 mmol) with stirring over a period of 10 min. The green solid compound was separated out and dissolved in N,N-dimethylformamide, then the green solution was filtrated. After 20 days, green blocks of (I) were produced from the filtrate (yield: 35.3%).

Refinement top

The –SO3 group is disordered over two positions with respect to the O atoms in a 0.83 (1):0.17 (1) ratio. The solvent water molecule is also disordered over two positions in a 0.64 (4):0.46 (4) ratio. All H atoms were initially located in a difference map, then relocated to idealised positions (C—H = 0.93–0.96 Å, O—H = 0.85 Å, N—H = 0.90 Å) and refined as riding with Uiso(H) = 1.2Ueq(C,N) or 1.5Ueq(O).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with displacement ellipsoids drawn at the 30% probability level. Unlabelled atoms in the complex are generated by the symmetry operation (1–x, –y, 1–z).
[Figure 2] Fig. 2. Part of the crystal structure of the title compound showing hydrogen bonds as dashed lines.
Bis(4-aminobenzenesulfonato-κN)diaquabis(dimethylformamide- κO)nickel(II) dihydrate top
Crystal data top
[Ni(C6H6NO3S)2(C3H7NO)2(H2O)2]·2H2OF(000) = 1304
Mr = 621.32Dx = 1.506 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 4096 reflections
a = 11.3197 (6) Åθ = 2.6–25.5°
b = 15.2174 (7) ŵ = 0.92 mm1
c = 15.9061 (8) ÅT = 296 K
V = 2739.9 (2) Å3Block, green
Z = 40.20 × 0.18 × 0.15 mm
Data collection top
Bruker SMART CCD
diffractometer
2424 independent reflections
Radiation source: fine-focus sealed tube1991 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ω scansθmax = 25.0°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Siemens, 1996)
h = 1213
Tmin = 0.837, Tmax = 0.874k = 1618
13538 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.075H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0336P)2 + 1.5689P]
where P = (Fo2 + 2Fc2)/3
2424 reflections(Δ/σ)max = 0.001
209 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
[Ni(C6H6NO3S)2(C3H7NO)2(H2O)2]·2H2OV = 2739.9 (2) Å3
Mr = 621.32Z = 4
Orthorhombic, PbcaMo Kα radiation
a = 11.3197 (6) ŵ = 0.92 mm1
b = 15.2174 (7) ÅT = 296 K
c = 15.9061 (8) Å0.20 × 0.18 × 0.15 mm
Data collection top
Bruker SMART CCD
diffractometer
2424 independent reflections
Absorption correction: multi-scan
(SADABS; Siemens, 1996)
1991 reflections with I > 2σ(I)
Tmin = 0.837, Tmax = 0.874Rint = 0.030
13538 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.075H-atom parameters constrained
S = 1.03Δρmax = 0.26 e Å3
2424 reflectionsΔρmin = 0.22 e Å3
209 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ni10.50000.00000.50000.03111 (13)
S10.64988 (5)0.40238 (4)0.68338 (4)0.04007 (17)
O10.6512 (3)0.42317 (15)0.77146 (15)0.0660 (8)0.833 (4)
O20.5613 (3)0.45099 (16)0.6392 (2)0.0928 (12)0.833 (4)
O30.7645 (2)0.41103 (15)0.64593 (19)0.0679 (9)0.833 (4)
O1'0.5600 (13)0.4437 (7)0.7240 (10)0.071 (3)0.167 (4)
O2'0.6567 (14)0.4346 (7)0.5970 (8)0.067 (3)0.167 (4)
O3'0.7703 (12)0.4053 (8)0.7150 (11)0.070 (3)0.167 (4)
O40.55301 (15)0.12118 (10)0.46049 (10)0.0419 (4)
O50.32791 (14)0.04268 (11)0.51454 (10)0.0457 (4)
H5B0.28090.01480.54660.069*
H5C0.28780.05390.47070.069*
O6A0.8209 (4)0.4456 (7)0.8924 (4)0.087 (2)0.637 (18)
O6B0.8230 (7)0.4993 (10)0.8633 (7)0.084 (4)0.363 (18)
H6B0.78860.45760.83760.125*
H6A0.88960.45910.87520.125*
N10.52928 (17)0.02527 (12)0.63186 (12)0.0364 (4)
H1A0.46360.01000.66020.044*
H1B0.58810.00980.64970.044*
N20.54722 (19)0.26684 (12)0.43764 (13)0.0439 (5)
C10.61336 (19)0.28983 (14)0.67466 (13)0.0342 (5)
C20.49911 (19)0.26121 (15)0.68652 (16)0.0413 (6)
H20.44040.30100.70160.050*
C30.4716 (2)0.17309 (15)0.67590 (15)0.0405 (6)
H30.39450.15390.68410.049*
C40.5583 (2)0.11367 (14)0.65318 (14)0.0340 (5)
C50.6738 (2)0.14216 (15)0.64516 (16)0.0435 (6)
H5A0.73320.10210.63260.052*
C60.7012 (2)0.22980 (15)0.65571 (16)0.0426 (6)
H60.77900.24860.65010.051*
C70.5020 (2)0.19226 (16)0.46400 (16)0.0409 (6)
H70.42640.19340.48680.049*
C80.6644 (3)0.26965 (19)0.4022 (2)0.0663 (8)
H8A0.71510.30360.43800.099*
H8B0.66130.29620.34750.099*
H8C0.69480.21100.39740.099*
C90.4834 (3)0.34922 (18)0.4453 (2)0.0702 (9)
H9A0.40830.33870.47150.105*
H9B0.47130.37400.39040.105*
H9C0.52840.38940.47900.105*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0330 (2)0.0253 (2)0.0350 (2)0.00230 (15)0.00010 (17)0.00224 (16)
S10.0420 (3)0.0321 (3)0.0461 (4)0.0058 (2)0.0025 (3)0.0025 (3)
O10.097 (2)0.0512 (14)0.0500 (15)0.0101 (13)0.0151 (14)0.0190 (11)
O20.091 (2)0.0413 (14)0.146 (3)0.0075 (14)0.059 (2)0.0242 (17)
O30.0698 (17)0.0487 (13)0.085 (2)0.0243 (12)0.0369 (16)0.0132 (14)
O1'0.078 (7)0.035 (5)0.099 (7)0.015 (5)0.039 (6)0.029 (5)
O2'0.085 (7)0.039 (5)0.075 (7)0.011 (5)0.005 (6)0.009 (5)
O3'0.063 (6)0.052 (5)0.096 (7)0.018 (5)0.021 (6)0.007 (6)
O40.0504 (10)0.0286 (8)0.0467 (10)0.0046 (7)0.0029 (8)0.0029 (7)
O50.0366 (9)0.0494 (10)0.0512 (10)0.0032 (8)0.0009 (7)0.0064 (8)
O6A0.059 (2)0.111 (5)0.091 (4)0.009 (3)0.007 (2)0.036 (3)
O6B0.074 (4)0.088 (7)0.089 (6)0.017 (4)0.012 (4)0.048 (5)
N10.0410 (10)0.0300 (9)0.0380 (11)0.0026 (8)0.0014 (9)0.0018 (8)
N20.0544 (12)0.0298 (11)0.0476 (12)0.0075 (9)0.0063 (10)0.0053 (9)
C10.0374 (12)0.0313 (11)0.0338 (12)0.0037 (9)0.0011 (10)0.0018 (9)
C20.0362 (12)0.0353 (13)0.0526 (15)0.0016 (10)0.0061 (11)0.0024 (11)
C30.0320 (11)0.0388 (13)0.0506 (15)0.0033 (10)0.0042 (10)0.0004 (11)
C40.0393 (12)0.0313 (12)0.0315 (12)0.0020 (9)0.0023 (10)0.0012 (9)
C50.0352 (12)0.0363 (13)0.0591 (16)0.0026 (10)0.0025 (11)0.0067 (11)
C60.0308 (11)0.0404 (14)0.0566 (15)0.0060 (10)0.0027 (11)0.0052 (11)
C70.0448 (14)0.0372 (14)0.0407 (13)0.0053 (11)0.0031 (11)0.0046 (11)
C80.072 (2)0.0506 (17)0.076 (2)0.0178 (14)0.0161 (16)0.0022 (15)
C90.072 (2)0.0375 (15)0.101 (3)0.0028 (14)0.0144 (18)0.0084 (16)
Geometric parameters (Å, º) top
Ni1—O42.0385 (15)N1—H1A0.9000
Ni1—O4i2.0385 (15)N1—H1B0.9000
Ni1—O5i2.0664 (15)N2—C71.314 (3)
Ni1—O52.0664 (15)N2—C81.442 (3)
Ni1—N1i2.1579 (19)N2—C91.452 (3)
Ni1—N12.1579 (19)C1—C21.378 (3)
S1—O1'1.359 (11)C1—C61.383 (3)
S1—O21.431 (3)C2—C31.387 (3)
S1—O31.434 (2)C2—H20.9300
S1—O11.436 (2)C3—C41.382 (3)
S1—O3'1.454 (12)C3—H30.9300
S1—O2'1.461 (12)C4—C51.383 (3)
S1—C11.767 (2)C5—C61.379 (3)
O4—C71.228 (3)C5—H5A0.9300
O5—H5B0.8499C6—H60.9300
O5—H5C0.8499C7—H70.9300
O6A—O6B0.940 (10)C8—H8A0.9600
O6A—H6B0.9632C8—H8B0.9600
O6A—H6A0.8491C8—H8C0.9600
O6B—H6B0.8500C9—H9A0.9600
O6B—H6A0.9898C9—H9B0.9600
N1—C41.426 (3)C9—H9C0.9600
O4—Ni1—O4i180.0O6A—O6B—H6A52.1
O4—Ni1—O5i88.41 (7)H6B—O6B—H6A88.7
O4i—Ni1—O5i91.59 (7)C4—N1—Ni1115.77 (14)
O4—Ni1—O591.59 (7)C4—N1—H1A108.3
O4i—Ni1—O588.41 (7)Ni1—N1—H1A108.3
O5i—Ni1—O5180.0C4—N1—H1B108.3
O4—Ni1—N1i84.65 (7)Ni1—N1—H1B108.3
O4i—Ni1—N1i95.35 (7)H1A—N1—H1B107.4
O5i—Ni1—N1i88.85 (7)C7—N2—C8120.6 (2)
O5—Ni1—N1i91.15 (7)C7—N2—C9121.7 (2)
O4—Ni1—N195.35 (7)C8—N2—C9117.7 (2)
O4i—Ni1—N184.65 (7)C2—C1—C6119.7 (2)
O5i—Ni1—N191.15 (7)C2—C1—S1121.02 (17)
O5—Ni1—N188.85 (7)C6—C1—S1119.27 (17)
N1i—Ni1—N1180.0C1—C2—C3120.0 (2)
O1'—S1—O258.0 (8)C1—C2—H2120.0
O1'—S1—O3146.3 (5)C3—C2—H2120.0
O2—S1—O3112.5 (2)C4—C3—C2120.4 (2)
O1'—S1—O156.1 (8)C4—C3—H3119.8
O2—S1—O1111.9 (2)C2—C3—H3119.8
O3—S1—O1112.05 (17)C3—C4—C5119.3 (2)
O1'—S1—O3'121.5 (9)C3—C4—N1121.1 (2)
O2—S1—O3'144.2 (5)C5—C4—N1119.4 (2)
O3—S1—O3'45.0 (6)C6—C5—C4120.3 (2)
O1—S1—O3'69.2 (7)C6—C5—H5A119.9
O1'—S1—O2'109.3 (9)C4—C5—H5A119.9
O2—S1—O2'53.2 (6)C5—C6—C1120.2 (2)
O3—S1—O2'62.0 (6)C5—C6—H6119.9
O1—S1—O2'147.5 (5)C1—C6—H6119.9
O3'—S1—O2'105.4 (9)O4—C7—N2124.3 (2)
O1'—S1—C1108.1 (5)O4—C7—H7117.9
O2—S1—C1107.36 (13)N2—C7—H7117.9
O3—S1—C1105.55 (12)N2—C8—H8A109.5
O1—S1—C1107.01 (12)N2—C8—H8B109.5
O3'—S1—C1106.0 (5)H8A—C8—H8B109.5
O2'—S1—C1105.3 (5)N2—C8—H8C109.5
C7—O4—Ni1130.13 (16)H8A—C8—H8C109.5
Ni1—O5—H5B120.0H8B—C8—H8C109.5
Ni1—O5—H5C118.3N2—C9—H9A109.5
H5B—O5—H5C105.0N2—C9—H9B109.5
O6B—O6A—H6B53.0H9A—C9—H9B109.5
O6B—O6A—H6A67.0N2—C9—H9C109.5
H6B—O6A—H6A90.6H9A—C9—H9C109.5
O6A—O6B—H6B64.9H9B—C9—H9C109.5
Symmetry code: (i) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1ii0.902.152.992 (3)156
N1—H1B···O3iii0.902.062.919 (3)160
O5—H5B···O6Aii0.851.842.685 (5)174
O5—H5B···O6Bii0.851.872.669 (8)156
O5—H5C···O3iv0.851.952.743 (3)155
O6A—H6A···O2v0.851.962.768 (6)158
O6B—H6B···O10.851.952.694 (8)146
Symmetry codes: (ii) x+1, y1/2, z+3/2; (iii) x+3/2, y1/2, z; (iv) x1/2, y+1/2, z+1; (v) x+1/2, y, z+3/2.

Experimental details

Crystal data
Chemical formula[Ni(C6H6NO3S)2(C3H7NO)2(H2O)2]·2H2O
Mr621.32
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)296
a, b, c (Å)11.3197 (6), 15.2174 (7), 15.9061 (8)
V3)2739.9 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.92
Crystal size (mm)0.20 × 0.18 × 0.15
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Siemens, 1996)
Tmin, Tmax0.837, 0.874
No. of measured, independent and
observed [I > 2σ(I)] reflections
13538, 2424, 1991
Rint0.030
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.075, 1.03
No. of reflections2424
No. of parameters209
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.22

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Ni1—O42.0385 (15)Ni1—N12.1579 (19)
Ni1—O52.0664 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.902.152.992 (3)156
N1—H1B···O3ii0.902.062.919 (3)160
O5—H5B···O6Ai0.851.842.685 (5)174
O5—H5B···O6Bi0.851.872.669 (8)156
O5—H5C···O3iii0.851.952.743 (3)155
O6A—H6A···O2iv0.851.962.768 (6)158
O6B—H6B···O10.851.952.694 (8)146
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x+3/2, y1/2, z; (iii) x1/2, y+1/2, z+1; (iv) x+1/2, y, z+3/2.
 

Acknowledgements

This project was supported by Natural Science Foundation of Zhejiang Province for Distinguished Young Students (No. 2008R40G2190024) and Scientific Research Fund of Zhejiang Provincial Education Department (No. Y200803569).

References

First citationLi, Z. L., Xuan, Y. W., Wu, W. & Xie, D. P. (2008). Acta Cryst. E64, m1162–m1163.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART, SAINT and SADABS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationZhao, J., Dang, Z.-H., Wang, Y.-J., Ye, Y.-Z. & Xu, L. (2007). Acta Cryst. E63, m1773.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 7| July 2009| Pages m724-m725
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds