metal-organic compounds
catena-Poly[[bis(4-carboxycyclohexanecarboxylato-κ2O1,O1′)cadmium(II)]-μ-1,4-bis(imidazol-1-ylmethyl)benzene-κ2N3:N3′]
aSchool of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China, and bDepartment of Bioengineering, Henan University of Urban Construction, Pingdingshan 467000, People's Republic of China
*Correspondence e-mail: libingbinghncj@yahoo.com.cn
In the title coordination polymer, [Cd(C8H11O4)2(C14H14N4)]n, the Cd atom (site symmetry 2) is six-coordinated by two O,O′-bidentate 4-carboxycyclohexanecarboxylate (Hchdc) ligands and two N atoms from two different 1,4-bis(imidazol-1-ylmethyl)benzene (1,4-bix) molecules in a very distorted cis-CdN2O4 octahedral environment. The 1,4-bix molecules act as bridging ligands that bind two CdII atoms, thus forming an infinite chain propagating in [100], which is decorated by the Hchdc anions. The structure is completed by O—H⋯O hydrogen bonds, which link the chains together.
Related literature
For related structures, see: Qi et al. (2003). For background to coordination polymers, see: Chen & Liu (2002); Fang et al. (2006); Kim & Jung (2002); Lehn (1990); Batten & Robson (1998); Yang et al. (2008).
Experimental
Crystal data
|
Refinement
|
|
Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL-Plus (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536809021618/hb2986sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809021618/hb2986Isup2.hkl
A mixture of CdCl2.2H2O (0.5 mmol), H2chdc acid (0.5 mmol), 1,4-bix (0.5 mmol), and H2O (500 mmol) was adjusted to pH = 5.8 by addition of aqueous NaOH solution, and heated at 453 K for 5 days. After the mixture was slowly cooled to room temperature, colorless blocks of (I) were recovered in a 28% yield.
The H atoms were positioned geometrically (C—H = 0.93–0.97 Å, O—H = 0.82Å) and refined as riding, with Uiso(H)=1.2Ueq(carrier).
Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell
CrysAlis CCD (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL-Plus (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).[Cd(C8H11O4)2(C14H14N4)] | F(000) = 1424 |
Mr = 693.03 | Dx = 1.475 Mg m−3 |
Orthorhombic, Pccn | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ab 2ac | Cell parameters from 3190 reflections |
a = 12.6317 (5) Å | θ = 3.0–26.5° |
b = 19.9697 (12) Å | µ = 0.75 mm−1 |
c = 12.3703 (7) Å | T = 292 K |
V = 3120.4 (3) Å3 | Block, colorless |
Z = 4 | 0.26 × 0.22 × 0.17 mm |
Oxford Diffraction Gemini R Ultra diffractometer | 3190 independent reflections |
Radiation source: fine-focus sealed tube | 1658 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.116 |
Detector resolution: 10.0 pixels mm-1 | θmax = 26.5°, θmin = 4.7° |
ω scans | h = −15→15 |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2006) | k = −24→24 |
Tmin = 0.816, Tmax = 0.882 | l = −15→15 |
26676 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.052 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.120 | H-atom parameters constrained |
S = 0.95 | w = 1/[σ2(Fo2) + (0.0575P)2] where P = (Fo2 + 2Fc2)/3 |
3190 reflections | (Δ/σ)max < 0.001 |
195 parameters | Δρmax = 0.62 e Å−3 |
0 restraints | Δρmin = −0.30 e Å−3 |
[Cd(C8H11O4)2(C14H14N4)] | V = 3120.4 (3) Å3 |
Mr = 693.03 | Z = 4 |
Orthorhombic, Pccn | Mo Kα radiation |
a = 12.6317 (5) Å | µ = 0.75 mm−1 |
b = 19.9697 (12) Å | T = 292 K |
c = 12.3703 (7) Å | 0.26 × 0.22 × 0.17 mm |
Oxford Diffraction Gemini R Ultra diffractometer | 3190 independent reflections |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2006) | 1658 reflections with I > 2σ(I) |
Tmin = 0.816, Tmax = 0.882 | Rint = 0.116 |
26676 measured reflections |
R[F2 > 2σ(F2)] = 0.052 | 0 restraints |
wR(F2) = 0.120 | H-atom parameters constrained |
S = 0.95 | Δρmax = 0.62 e Å−3 |
3190 reflections | Δρmin = −0.30 e Å−3 |
195 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.7200 (5) | 0.1255 (3) | 0.1946 (5) | 0.0556 (16) | |
C2 | 0.7134 (5) | 0.0551 (3) | 0.1562 (5) | 0.0703 (18) | |
H2 | 0.6472 | 0.0495 | 0.1158 | 0.084* | |
C3 | 0.8075 (6) | 0.0347 (3) | 0.0813 (6) | 0.089 (2) | |
H3A | 0.8072 | 0.0627 | 0.0172 | 0.107* | |
H3B | 0.8738 | 0.0420 | 0.1190 | 0.107* | |
C4 | 0.7998 (7) | −0.0363 (4) | 0.0488 (6) | 0.106 (3) | |
H4A | 0.8606 | −0.0478 | 0.0045 | 0.127* | |
H4B | 0.7367 | −0.0427 | 0.0054 | 0.127* | |
C5 | 0.7956 (5) | −0.0833 (3) | 0.1467 (6) | 0.082 (2) | |
H5 | 0.7788 | −0.1281 | 0.1192 | 0.099* | |
C6 | 0.7065 (7) | −0.0639 (4) | 0.2243 (7) | 0.098 (2) | |
H6A | 0.6387 | −0.0729 | 0.1905 | 0.118* | |
H6B | 0.7113 | −0.0910 | 0.2891 | 0.118* | |
C7 | 0.7123 (6) | 0.0065 (3) | 0.2537 (6) | 0.089 (2) | |
H7A | 0.7758 | 0.0137 | 0.2961 | 0.107* | |
H7B | 0.6521 | 0.0172 | 0.2992 | 0.107* | |
C8 | 0.9032 (6) | −0.0881 (3) | 0.2022 (7) | 0.078 (2) | |
C9 | 0.9060 (3) | 0.2554 (3) | 0.4765 (4) | 0.0524 (13) | |
H9 | 0.8851 | 0.2997 | 0.4856 | 0.063* | |
C10 | 0.9221 (4) | 0.1567 (3) | 0.4138 (5) | 0.0657 (16) | |
H10 | 0.9152 | 0.1192 | 0.3699 | 0.079* | |
C11 | 0.9818 (5) | 0.1601 (3) | 0.5038 (5) | 0.0665 (18) | |
H11 | 1.0218 | 0.1258 | 0.5339 | 0.080* | |
C12 | 1.0206 (3) | 0.2510 (3) | 0.6389 (4) | 0.0612 (14) | |
H12A | 0.9962 | 0.2257 | 0.7010 | 0.073* | |
H12B | 0.9972 | 0.2969 | 0.6481 | 0.073* | |
C13 | 1.1951 (4) | 0.2506 (5) | 0.5441 (5) | 0.125 (4) | |
H13 | 1.1592 | 0.2521 | 0.4785 | 0.150* | |
C14 | 1.1390 (3) | 0.2497 (3) | 0.6368 (4) | 0.0479 (11) | |
C15 | 1.1954 (4) | 0.2499 (4) | 0.7277 (5) | 0.0693 (15) | |
H15 | 1.1599 | 0.2498 | 0.7936 | 0.083* | |
N1 | 0.8735 (3) | 0.2166 (2) | 0.3967 (4) | 0.0527 (11) | |
N2 | 0.9721 (3) | 0.2237 (2) | 0.5420 (4) | 0.0515 (12) | |
O1 | 0.7903 (3) | 0.1640 (2) | 0.1601 (3) | 0.0683 (11) | |
O2 | 0.6563 (3) | 0.1466 (2) | 0.2657 (4) | 0.0700 (12) | |
O3 | 0.9194 (5) | −0.0730 (3) | 0.2950 (5) | 0.120 (2) | |
O4 | 0.9764 (4) | −0.1119 (2) | 0.1406 (4) | 0.0951 (15) | |
H4 | 1.0323 | −0.1134 | 0.1741 | 0.143* | |
Cd1 | 0.7500 | 0.2500 | 0.27740 (4) | 0.04487 (19) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.062 (4) | 0.045 (3) | 0.059 (4) | 0.007 (3) | −0.007 (3) | 0.005 (3) |
C2 | 0.096 (5) | 0.045 (3) | 0.069 (4) | 0.000 (3) | 0.000 (4) | 0.002 (3) |
C3 | 0.149 (6) | 0.058 (4) | 0.061 (4) | −0.006 (4) | 0.036 (5) | 0.000 (4) |
C4 | 0.118 (6) | 0.103 (6) | 0.096 (6) | 0.048 (5) | −0.013 (5) | −0.008 (5) |
C5 | 0.085 (4) | 0.068 (4) | 0.093 (6) | 0.022 (4) | −0.020 (4) | 0.014 (4) |
C6 | 0.095 (5) | 0.078 (5) | 0.123 (7) | 0.020 (4) | 0.014 (5) | 0.016 (5) |
C7 | 0.111 (6) | 0.065 (4) | 0.092 (6) | −0.013 (4) | 0.027 (4) | 0.005 (4) |
C8 | 0.089 (5) | 0.058 (4) | 0.087 (6) | 0.029 (4) | −0.001 (4) | 0.002 (4) |
C9 | 0.036 (2) | 0.060 (3) | 0.062 (3) | 0.015 (3) | −0.002 (3) | 0.001 (4) |
C10 | 0.067 (4) | 0.055 (4) | 0.075 (5) | 0.009 (3) | −0.018 (3) | 0.002 (3) |
C11 | 0.060 (4) | 0.062 (4) | 0.077 (5) | 0.014 (3) | −0.018 (3) | 0.006 (3) |
C12 | 0.037 (2) | 0.094 (4) | 0.052 (3) | 0.009 (4) | −0.006 (2) | 0.000 (4) |
C13 | 0.042 (3) | 0.291 (12) | 0.042 (4) | −0.020 (7) | −0.008 (3) | −0.003 (6) |
C14 | 0.040 (2) | 0.062 (3) | 0.042 (3) | −0.002 (3) | 0.001 (2) | −0.009 (4) |
C15 | 0.048 (3) | 0.119 (5) | 0.041 (3) | −0.006 (5) | 0.004 (2) | −0.004 (5) |
N1 | 0.039 (2) | 0.056 (3) | 0.064 (3) | 0.000 (2) | −0.007 (2) | 0.006 (3) |
N2 | 0.030 (2) | 0.069 (3) | 0.056 (3) | −0.0009 (19) | −0.002 (2) | 0.006 (2) |
O1 | 0.083 (3) | 0.058 (2) | 0.064 (3) | 0.001 (2) | 0.021 (2) | −0.004 (2) |
O2 | 0.051 (2) | 0.059 (2) | 0.100 (3) | −0.0010 (18) | 0.015 (2) | −0.025 (2) |
O3 | 0.143 (5) | 0.130 (5) | 0.088 (4) | 0.059 (4) | −0.019 (4) | −0.005 (4) |
O4 | 0.077 (3) | 0.099 (4) | 0.110 (4) | 0.027 (3) | −0.007 (3) | −0.027 (3) |
Cd1 | 0.0318 (2) | 0.0523 (3) | 0.0505 (3) | 0.0036 (3) | 0.000 | 0.000 |
C1—O1 | 1.250 (6) | C9—N2 | 1.325 (7) |
C1—O2 | 1.265 (6) | C9—H9 | 0.9300 |
C1—C2 | 1.487 (8) | C10—C11 | 1.347 (8) |
C1—Cd1 | 2.716 (6) | C10—N1 | 1.361 (6) |
C2—C7 | 1.548 (8) | C10—H10 | 0.9300 |
C2—C3 | 1.561 (8) | C11—N2 | 1.360 (7) |
C2—H2 | 0.9800 | C11—H11 | 0.9300 |
C3—C4 | 1.478 (9) | C12—N2 | 1.453 (7) |
C3—H3A | 0.9700 | C12—C14 | 1.496 (6) |
C3—H3B | 0.9700 | C12—H12A | 0.9700 |
C4—C5 | 1.533 (10) | C12—H12B | 0.9700 |
C4—H4A | 0.9700 | C13—C14 | 1.347 (7) |
C4—H4B | 0.9700 | C13—C13i | 1.388 (11) |
C5—C8 | 1.526 (9) | C13—H13 | 0.9300 |
C5—C6 | 1.529 (9) | C14—C15 | 1.331 (7) |
C5—H5 | 0.9800 | C15—C15i | 1.379 (10) |
C6—C7 | 1.453 (9) | C15—H15 | 0.9300 |
C6—H6A | 0.9700 | O4—H4 | 0.8200 |
C6—H6B | 0.9700 | Cd1—N1 | 2.249 (4) |
C7—H7A | 0.9700 | Cd1—O1 | 2.306 (4) |
C7—H7B | 0.9700 | Cd1—O2 | 2.384 (4) |
C8—O3 | 1.205 (8) | Cd1—N1ii | 2.249 (4) |
C8—O4 | 1.288 (8) | Cd1—O1ii | 2.306 (4) |
C9—N1 | 1.320 (7) | Cd1—O2ii | 2.384 (4) |
O1—C1—O2 | 119.0 (5) | C11—C10—N1 | 109.7 (5) |
O1—C1—C2 | 120.8 (5) | C11—C10—H10 | 125.2 |
O2—C1—C2 | 120.2 (6) | N1—C10—H10 | 125.2 |
C1—C2—C7 | 110.2 (5) | C10—C11—N2 | 106.5 (5) |
C1—C2—C3 | 113.2 (5) | C10—C11—H11 | 126.8 |
C7—C2—C3 | 107.8 (5) | N2—C11—H11 | 126.8 |
C1—C2—H2 | 108.5 | N2—C12—C14 | 113.6 (4) |
C7—C2—H2 | 108.5 | N2—C12—H12A | 108.8 |
C3—C2—H2 | 108.5 | C14—C12—H12A | 108.8 |
C4—C3—C2 | 111.2 (6) | N2—C12—H12B | 108.8 |
C4—C3—H3A | 109.4 | C14—C12—H12B | 108.8 |
C2—C3—H3A | 109.4 | H12A—C12—H12B | 107.7 |
C4—C3—H3B | 109.4 | C14—C13—C13i | 121.7 (3) |
C2—C3—H3B | 109.4 | C14—C13—H13 | 119.2 |
H3A—C3—H3B | 108.0 | C13i—C13—H13 | 119.2 |
C3—C4—C5 | 112.0 (6) | C15—C14—C13 | 115.9 (4) |
C3—C4—H4A | 109.2 | C15—C14—C12 | 121.3 (4) |
C5—C4—H4A | 109.2 | C13—C14—C12 | 122.7 (5) |
C3—C4—H4B | 109.2 | C14—C15—C15i | 122.4 (3) |
C5—C4—H4B | 109.2 | C14—C15—H15 | 118.8 |
H4A—C4—H4B | 107.9 | C15i—C15—H15 | 118.8 |
C8—C5—C6 | 112.9 (6) | C9—N1—C10 | 105.1 (5) |
C8—C5—C4 | 111.2 (6) | C9—N1—Cd1 | 122.2 (4) |
C6—C5—C4 | 111.5 (6) | C10—N1—Cd1 | 132.5 (4) |
C8—C5—H5 | 106.9 | C9—N2—C11 | 106.9 (5) |
C6—C5—H5 | 106.9 | C9—N2—C12 | 126.2 (5) |
C4—C5—H5 | 106.9 | C11—N2—C12 | 126.8 (5) |
C7—C6—C5 | 111.5 (6) | C1—O1—Cd1 | 94.9 (3) |
C7—C6—H6A | 109.3 | C1—O2—Cd1 | 90.9 (3) |
C5—C6—H6A | 109.3 | C8—O4—H4 | 109.5 |
C7—C6—H6B | 109.3 | N1—Cd1—N1ii | 97.9 (2) |
C5—C6—H6B | 109.3 | N1—Cd1—O1 | 92.24 (16) |
H6A—C6—H6B | 108.0 | N1ii—Cd1—O1 | 141.92 (15) |
C6—C7—C2 | 114.3 (6) | N1—Cd1—O1ii | 141.92 (15) |
C6—C7—H7A | 108.7 | N1ii—Cd1—O1ii | 92.24 (16) |
C2—C7—H7A | 108.7 | O1—Cd1—O1ii | 102.0 (2) |
C6—C7—H7B | 108.7 | N1—Cd1—O2 | 97.33 (15) |
C2—C7—H7B | 108.7 | N1ii—Cd1—O2 | 87.24 (15) |
H7A—C7—H7B | 107.6 | O1—Cd1—O2 | 55.00 (14) |
O3—C8—O4 | 122.2 (7) | O1ii—Cd1—O2 | 119.83 (15) |
O3—C8—C5 | 124.4 (7) | N1—Cd1—O2ii | 87.24 (15) |
O4—C8—C5 | 113.3 (7) | N1ii—Cd1—O2ii | 97.33 (15) |
N1—C9—N2 | 111.8 (6) | O1—Cd1—O2ii | 119.83 (15) |
N1—C9—H9 | 124.1 | O1ii—Cd1—O2ii | 55.00 (14) |
N2—C9—H9 | 124.1 | O2—Cd1—O2ii | 173.1 (2) |
Symmetry codes: (i) −x+5/2, −y+1/2, z; (ii) −x+3/2, −y+1/2, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O4—H4···O2iii | 0.82 | 1.86 | 2.644 (6) | 161 |
Symmetry code: (iii) x+1/2, −y, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | [Cd(C8H11O4)2(C14H14N4)] |
Mr | 693.03 |
Crystal system, space group | Orthorhombic, Pccn |
Temperature (K) | 292 |
a, b, c (Å) | 12.6317 (5), 19.9697 (12), 12.3703 (7) |
V (Å3) | 3120.4 (3) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.75 |
Crystal size (mm) | 0.26 × 0.22 × 0.17 |
Data collection | |
Diffractometer | Oxford Diffraction Gemini R Ultra diffractometer |
Absorption correction | Multi-scan (CrysAlis RED; Oxford Diffraction, 2006) |
Tmin, Tmax | 0.816, 0.882 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 26676, 3190, 1658 |
Rint | 0.116 |
(sin θ/λ)max (Å−1) | 0.627 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.052, 0.120, 0.95 |
No. of reflections | 3190 |
No. of parameters | 195 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.62, −0.30 |
Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL-Plus (Sheldrick, 2008).
Cd1—N1 | 2.249 (4) | Cd1—O2 | 2.384 (4) |
Cd1—O1 | 2.306 (4) | ||
O1—Cd1—O2 | 55.00 (14) |
D—H···A | D—H | H···A | D···A | D—H···A |
O4—H4···O2i | 0.82 | 1.86 | 2.644 (6) | 161 |
Symmetry code: (i) x+1/2, −y, −z+1/2. |
Acknowledgements
The authors thank Henan University of Urban Construction for support of this work.
References
Batten, S. R. & Robson, R. (1998). Angew. Chem. Int. Ed. 37, 1460–1494. Web of Science CrossRef Google Scholar
Chen, X. M. & Liu, G. F. (2002). Chem. Eur. J. 8, 4811–4817. CrossRef PubMed CAS Google Scholar
Fang, Q.-R., Zhu, G.-S., Xue, M., Zhang, Q.-L., Sun, J.-Y., Guo, X.-D., Qiu, S.-L., Xu, S.-T., Wang, P., Wang, D.-J., Wei, Y. (2006). Chem. Eur. J. 12, 3754-3758. Web of Science CrossRef PubMed CAS Google Scholar
Kim, Y. J. & Jung, D.-Y. (2002). Chem. Commun. pp. 908–909. Web of Science CSD CrossRef Google Scholar
Lehn, J. M. (1990). Angew. Chem., Int. Ed. Engl. 29, 1304–1305. Google Scholar
Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England. Google Scholar
Qi, Y., Wang, Y., Hu, C., Cao, M., Mao, L. & Wang, E. (2003). Inorg. Chem. 42, 8519–8523. Web of Science CSD CrossRef PubMed CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yang, J., Ma, J.-F., Batten, S. R. & Su, Z.-M. (2008). Chem. Commun. pp. 2233–2235. Web of Science CSD CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The rational design and synthesis of metal-organic coordination polymers have received intense interest due to their fascinating structural topologies and potential applications as functional materials (e.g. Fang et al., 2006). These coordination polymers can be specially designed by the careful selection of metal cations with preferred coordination geometries, the nature of the anions, the structure of the connecting ligands, and the reaction conditions (Kim & Jung, 2002). The selection of ligand is extremely important because changing the structures of the ligands can control and adjust the topologies of coordination frameworks. Among these mentioned above, chain structures have received much attention in coordination chemistry and life sciecnce (Lehn, 1990). So far, many chain complexes have been generated by self-assembly processes (Chen & Liu, 2002). In this regard, metal 1,4-benzenedicarboxylates (1,4-bdc) have been widely studied (Qi et al., 2003). However, so far, less attention has been given to the 1,4-cyclohexanedicarboxylic acid ligand (H2chdc). The H2chdc as an important analogues of 1,4-bdc may be a good candidate for the construction of metal-organic architectures. On the other hand, 4,4'-byridine is a rigid rod-like spacer, well known in the construction of metal-organic polymers, and it has adopted numerous interesting supramolecular architectures (Batten & Robson, 1998). However, flexible ligands such as 1,4-bis(imidazole-1-ylmethyl)-benzene (1,4-bix) have not been so well explored to date (Yang et al., 2008). In this work, the combination of 1,4-bix with H2chdc and CdII cations resulted in the title compound [Cd(1,4-bix)(Hchdc)2], (I), a new one-dimensional chain coordination polymer.
The selected bond lengthes and angles are listed in Table 1. In compound (I), the CdII atom is is six-coordinated by four carboxylate O atoms from two different Hchdc ligands, and two N atoms from two different 1,4-bix molecules in a distorted octahedral environment (Fig. 1). The O1, O2, O2i and N1i atoms comprise the basal plane, whereas the N1 and O1i occupy the axial positions of the octahedron. As shown in Fig. 2, each 1,4-bix acts as a bridging ligand that binds two CdII atoms, thus forming a unique chain. The chain is decorated with Hchdc molecules alternately at two sides. Furthermore, the O—H···O hydrogen bonds link the chains together, stablizing the structure of (I).