organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 7| July 2009| Pages o1461-o1462

(S)-Methyl 2-[(3R,4R)-2-benzyl-3-(2-fur­yl)-1-oxo-1,2,3,4-tetra­hydro­iso­quinoline-4-carboxamido]-3-(1H-indol-3-yl)propanoate

aDepartment of Physics, Faculty of Arts and Sciences, Erciyes University, 38039 Kayseri, Turkey, bFaculty of Chemistry, University of Sofia, 1 James Bourchier blv., 1164 Sofia, Bulgaria, and cDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139 Samsun, Turkey
*Correspondence e-mail: akkurt@erciyes.edu.tr

(Received 26 May 2009; accepted 27 May 2009; online 6 June 2009)

The title compound, C33H29N3O5, was synthesized by the reaction of racemic trans-2-benzyl-3-(2-fur­yl)-1-oxo-1,2,3,4-tetra­hydro­isoquinoline-4-carboxylic acid, L-tryptophan methyl ester and diisopropylcarbodiimide in dry dichloro­methane. The furan ring is disordered over two positions in a 0.859 (14):0.141 (14) ratio. In the 1,2,3,4-tetra­hydro­iso­quin­oline ring system, the heterocyclic ring is not planar, with puckering parameters QT = 0.448 (2) Å, θ = 64.9 (3) and φ = 268.3 (3)°. The crystal is extended into a three-dimensional supra­molecular architecture through inter­molecular N—H⋯O hydrogen bonds and C—H⋯π inter­actions. The absolute structure was assigned by reference to the chiral starting material.

Related literature

For the synthesis of new heterocyclic compounds with pharmacological activities, see: Bogdanov et al. (2007[Bogdanov, M. G., Kandinska, M. I., Dimitrova, D. B., Gocheva, B. T. & Palamareva, M. D. (2007). Z. Naturforsch. Teil C, 62, 477-482.]); Burdzhiev & Stanoeva (2006[Burdzhiev, N. T. & Stanoeva, E. R. (2006). Tetrahedron, 62, 8318-8326.]); Kandinska et al. (2006[Kandinska, M. I., Kozekov, I. D. & Palamareva, M. D. (2006). Molecules, 11, 403-414.]). For ring conformation analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C33H29N3O5

  • Mr = 547.59

  • Monoclinic, P 21

  • a = 8.6866 (5) Å

  • b = 15.8630 (7) Å

  • c = 10.5480 (6) Å

  • β = 104.543 (5)°

  • V = 1406.90 (13) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.60 × 0.54 × 0.36 mm

Data collection
  • Stoe IPDS-2 diffractometer

  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.949, Tmax = 0.969

  • 8814 measured reflections

  • 3010 independent reflections

  • 2613 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.082

  • S = 1.02

  • 3010 reflections

  • 409 parameters

  • 16 restraints

  • H-atom parameters constrained

  • Δρmax = 0.11 e Å−3

  • Δρmin = −0.10 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O3i 0.86 2.12 2.942 (3) 161
C12—H12ACg5ii 0.96 2.63 3.551 (5) 160
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+2]; (ii) x+1, y, z. Cg5 is the centroid of the C1–C6 ring.

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

As a part of our studies on the synthesis of new heterocyclic compounds with expected pharmacological activities carried out in our laboratory (Bogdanov et al., 2007; Burdzhiev & Stanoeva, 2006; Kandinska et al., 2006) we focused our attention to some 3,4-dihydroisoquinolin-1-ones, containing amino acid moieties. The title compound (I) was synthesized while searching for new ACE inhibitors of this type. The structure of (I) was determined by spectral analysis (1HNMR & IR) and microanalysis. In this paper, we report the X-ray crystallographic studies of (I).

In the title molecule, (Fig. 1), the furan ring is of positional disorder, with a 0.859 (14):0.141 (14) ratio of site occupancy. There is a dihedral angle of 28.7 (12) ° between the planes of the major and minor components (O5/C23—C26) and (O5'/C23/C24'-C26') of the disordered furan ring. In the 1,2,3,4-tetrahydroisoquinoline ring system (N3/C14—C22), the six-membered ring (N3/C14/C15/C20—C22) is not planar with the puckering parameters of QT = 0.448 (2) Å, θ = 64.9 (3) ° and ϕ = 268.3 (3) ° (Cremer & Pople, 1975). In the 1H-indole ring system (N1/C1—C8), the dihedral angle between the planes of the six- and five-membered rings is 2.60 (17)°. The values of the dihedral angles between the other ring planes [A(O5/C23—C26), A'(O5'/C23/C24'-C26'), B(C15—C20), C(C28—C33), D(C1—C6) and E(N1/C1/C6—C8)] are: A/B = 78.5 (3) °, A'/B = 66.2 (11) °, A/C = 25.4 (3) °, A'/C = 50.9 (11) °, A/D = 9.5 (3) °, A'/D = 30.7 (11) °, A/E = 7.2 (3) °, A'/E = 29.0 (11) °, B/C = 78.13 (12) °, B/D = 70.54 (14) °, B/E = 71.98 (14) °, C/D = 31.63 (16) ° and C/E = 30.60 (16)°.

The crystal is extended into three dimensional supramolecular architecture through intermolecular N—H···O hydrogen bonds (Fig. 2) and C—H···π interactions (Table 1).

Related literature top

For the synthesis of new heterocyclic compounds with pharmacological activities, see: Bogdanov et al. (2007); Burdzhiev & Stanoeva (2006); Kandinska et al. (2006). For ring conformation analysis, see: Cremer & Pople (1975). Cg5 is the centroid of the C1–C6 ring.

Experimental top

Compound (I) was synthesized by the reaction of racemic trans-2-benzyl-3-(furan-2-yl)-1-oxo-1,2,3,4-tetrahydroisoquinoline-4carboxylic acid (Kandinska et al., 2006) (0.347 g, 0.001 mol), L-tryptophan methylester (0.217 g, 0.001 mol) and diisopropilcarbodiimide (0.20 ml, 0.0013 mol) in dry dichloromethane (3 ml). The reaction mixture was stirred at 263 K for 1 h. Resulting diisopropylurea was filtered and washed with dichloromethane. After evaporation of the solvent, the crude product was dissolved in ethyl acetate and washed once with HCl (1:1), once with 10% sodium carbonate and three times with water. The organic layer was dried (sodium sulfate) and evaporated to dryness. Resulting oil (yield 93%, 0.508 g, mixture of diastereomers) was purified by column chromatography with hexane/ethyl acetate (3:2) (yield 88%, 0.480 g, mixture of diastereomers) and compound (I) with smaller RF was isolated as asingle diastereomer (m.p. 422–424 K). Single crystals of (I) were obtained by slow evaporation from hexane/ethyl acetate solution (3:2) at room temperature. Analysis, calculated for C33H29N3O5: C 72.38, H 5.34, N 7.67 (%); found C 72.77, H 5.73, N 7.66 (%). IR (chloroform) 1640, 1660 cm-1 (C=O, amide), 1730 cm-1 (C=O, ester), 3440 cm-1 (NH, Trp). The 1H NMR spectra of (I) were obtained on a Bruker DRX250 spectrometer at 250.13 MHz in CDCl3 at 293 K. Chemical shifts δ are expressed in parts per million (p.p.m.) from tetramethylsilane as an internal standard. 1H NMR (250 MHz, CDCl3, p.p.m.): δ = 3.12 (dd, 1H, Ha—CH2—Trp, J = 5.0; 15.0 Hz); 3.24 (dd, 1H, Hb—CH2—Trp, J = 5.0; 15.0 Hz); 3.58 (s, 3H, H-COOCH3); 3.82 (d, 1H, H-4, J = 1.8 Hz); 4.13 (d, 1H, Ha-benzyl, J = 14.5 H); 4.63 (dt, 1H, H—CH-Trp, J = 5.0; 7.8 Hz); 5.29 (d, 1H, Hb– benzyl, J = 14.5 Hz); 5.37 (d, 1H, H-3, J = 1.8 Hz); 5.57 (d, 1H, NH-amide, J = 7.8 Hz); 5.80 (d, 1H, H-10, J = 3.3 Hz); 6.09 (dd, 1H, H-9, J = 2.0; 3.3 Hz); 6.60 (d, 1H, H-Ind, J = 7.3 Hz); 6.64 (d, 1H, H-Ind, J = 2.3 Hz); 7.07–7.19 (m, 4H, H-Ind, H-5, 2H-Ph); 7.21–7.24 (m, 5H, H-11, H-Ind, 3H-Ph); 7.28–7.35 (m, 2H, H-6,7); 7.41 (d, 1H, H-Ind, J = 8.3 Hz); 8.08 (bs, 1H, NH-Ind); 8.14 (d, 1H, H-8, J = 1.3; 7.8 Hz).

Refinement top

Anomalous dispersion was negligible and Friedel pairs were merged before refinement. H-atoms were positioned geometrically, with N—H = 0.86 Å and C—H = 0.93–0.98 Å and refined as riding with Uiso(H) = 1.2 or 1.5Ueq(carrier). The refined site occupancies for the major and minor components of the disordered furan ring has a ratio of 0.859 (14):0.141 (14). Geometrical restraints were applied to the positional parameters of the disordered atoms.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. View of the title molecule (I) with displacement ellipsoids drawn at the 30% probability level. The minor component of the disordered furan ring has been omitted, for clarity.
[Figure 2] Fig. 2. The hydrogen bondging of (I) showing that molecules linked through intermolecular N–H···O bonding. For the sake of clarity, the H-atoms not involved in H-bonding and the minor component of the disordered furan ring have been omitted.
(S)-Methyl 2-[(3R,4R)-2-benzyl-3-(2-furyl)-1-oxo-1,2,3,4- tetrahydroisoquinoline-4-carboxamido]-3-(1H-indol-3-yl)propanoate top
Crystal data top
C33H29N3O5F(000) = 576
Mr = 547.59Dx = 1.293 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 15289 reflections
a = 8.6866 (5) Åθ = 2.0–28.1°
b = 15.8630 (7) ŵ = 0.09 mm1
c = 10.5480 (6) ÅT = 296 K
β = 104.543 (5)°Prism, colourless
V = 1406.90 (13) Å30.60 × 0.54 × 0.36 mm
Z = 2
Data collection top
Stoe IPDS-2
diffractometer
3010 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus2613 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.034
Detector resolution: 6.67 pixels mm-1θmax = 26.5°, θmin = 2.0°
ω scansh = 1010
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
k = 1919
Tmin = 0.949, Tmax = 0.969l = 1313
8814 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.082 w = 1/[σ2(Fo2) + (0.0477P)2 + 0.0571P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
3010 reflectionsΔρmax = 0.11 e Å3
409 parametersΔρmin = 0.10 e Å3
16 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001Fc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.015 (2)
Crystal data top
C33H29N3O5V = 1406.90 (13) Å3
Mr = 547.59Z = 2
Monoclinic, P21Mo Kα radiation
a = 8.6866 (5) ŵ = 0.09 mm1
b = 15.8630 (7) ÅT = 296 K
c = 10.5480 (6) Å0.60 × 0.54 × 0.36 mm
β = 104.543 (5)°
Data collection top
Stoe IPDS-2
diffractometer
3010 independent reflections
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
2613 reflections with I > 2σ(I)
Tmin = 0.949, Tmax = 0.969Rint = 0.034
8814 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03316 restraints
wR(F2) = 0.082H-atom parameters constrained
S = 1.02Δρmax = 0.11 e Å3
3010 reflectionsΔρmin = 0.10 e Å3
409 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.7796 (3)0.13450 (15)0.8595 (2)0.0877 (8)
O20.8751 (3)0.20882 (15)1.04255 (18)0.0900 (8)
O30.5503 (2)0.39216 (9)0.73029 (15)0.0623 (5)
O40.7409 (2)0.14390 (12)0.4350 (2)0.0714 (7)
O50.3408 (6)0.3203 (3)0.2533 (3)0.0832 (15)0.859 (14)
N10.4577 (3)0.03542 (17)1.0943 (2)0.0817 (10)
N20.5562 (3)0.25261 (12)0.76349 (16)0.0559 (6)
N30.6645 (2)0.27926 (11)0.45137 (17)0.0475 (5)
C10.3339 (4)0.04232 (19)0.9851 (3)0.0717 (10)
C20.2120 (5)0.0141 (2)0.9326 (3)0.0926 (14)
C30.0984 (5)0.0105 (3)0.8234 (3)0.0994 (14)
C40.1055 (5)0.0888 (3)0.7664 (3)0.1012 (13)
C50.2279 (4)0.1442 (2)0.8179 (3)0.0822 (11)
C60.3448 (3)0.12196 (17)0.9300 (2)0.0655 (9)
C70.4798 (3)0.16422 (17)1.0120 (2)0.0654 (9)
C80.5422 (4)0.1086 (2)1.1101 (2)0.0751 (10)
C90.5382 (4)0.25128 (18)0.9959 (2)0.0731 (9)
C100.6440 (3)0.25915 (15)0.8994 (2)0.0631 (8)
C110.7722 (3)0.19342 (17)0.9276 (2)0.0638 (8)
C120.9983 (5)0.1470 (3)1.0888 (4)0.1111 (14)
C130.5186 (2)0.32068 (13)0.68794 (18)0.0442 (6)
C140.4349 (2)0.30917 (13)0.54335 (18)0.0424 (6)
C150.3774 (2)0.22153 (12)0.50037 (18)0.0422 (6)
C160.2255 (3)0.19519 (15)0.4982 (2)0.0525 (7)
C170.1728 (3)0.11632 (16)0.4523 (2)0.0596 (8)
C180.2738 (3)0.06173 (15)0.4106 (2)0.0598 (8)
C190.4266 (3)0.08634 (14)0.4148 (2)0.0541 (7)
C200.4788 (2)0.16665 (13)0.45772 (18)0.0449 (6)
C210.6383 (2)0.19472 (14)0.44794 (19)0.0490 (7)
C220.5424 (2)0.34225 (13)0.45839 (18)0.0457 (6)
C230.4504 (3)0.37158 (14)0.3274 (2)0.0552 (7)
C240.4590 (11)0.4436 (3)0.2647 (4)0.0905 (19)0.859 (14)
C250.3411 (11)0.4410 (4)0.1445 (5)0.101 (2)0.859 (14)
C260.2724 (10)0.3674 (7)0.1422 (7)0.106 (3)0.859 (14)
C270.8112 (3)0.31240 (18)0.4263 (2)0.0591 (8)
C280.9227 (2)0.34976 (14)0.5463 (2)0.0502 (7)
C290.9300 (3)0.3188 (2)0.6691 (2)0.0682 (8)
C301.0360 (4)0.3530 (3)0.7775 (3)0.0895 (13)
C311.1350 (4)0.4169 (2)0.7639 (3)0.0872 (11)
C321.1294 (3)0.44850 (17)0.6434 (3)0.0751 (9)
C331.0234 (3)0.41541 (15)0.5341 (3)0.0615 (8)
C25'0.273 (4)0.346 (2)0.134 (3)0.069 (10)0.141 (14)
C26'0.280 (3)0.4291 (17)0.162 (3)0.088 (13)0.141 (14)
C24'0.385 (3)0.3089 (12)0.246 (2)0.043 (6)0.141 (14)
O5'0.390 (3)0.4486 (14)0.281 (3)0.127 (13)0.141 (14)
H30.015200.025900.786900.1190*
H2A0.527600.203700.730800.0670*
H80.630800.119201.178800.0900*
H40.026900.104200.692600.1210*
H50.232400.196100.778100.0990*
H100.695200.314600.912100.0760*
H12A1.058400.139601.024700.1340*
H12B0.950900.094301.102900.1340*
H12C1.067600.166001.169600.1340*
H140.340700.345500.525500.0510*
H9A0.597700.271501.080900.0880*
H9B0.446900.288000.966500.0880*
H180.238400.008400.379700.0720*
H190.495500.049100.388900.0650*
H220.598600.391500.503700.0550*
H240.529500.487600.294500.1090*0.859 (14)
H250.317400.482700.080700.1220*0.859 (14)
H260.188400.348800.074700.1270*0.859 (14)
H27A0.784200.355400.358900.0710*
H27B0.865500.267200.393200.0710*
H290.863600.274800.679600.0820*
H301.039400.332000.860400.1070*
H311.206600.438800.837300.1050*
H321.196700.492400.634100.0900*
H331.019800.437400.451700.0740*
H160.157700.231100.528100.0630*
H170.069200.099800.449400.0720*
H10.478700.008001.144600.0980*
H20.207700.066700.970300.1110*
H24'0.407200.251800.259500.0520*0.141 (14)
H25'0.211500.319200.060700.0840*0.141 (14)
H26'0.218400.469400.108800.1060*0.141 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0850 (14)0.0796 (14)0.0907 (14)0.0121 (11)0.0078 (11)0.0070 (11)
O20.0954 (15)0.0963 (16)0.0643 (11)0.0005 (12)0.0062 (10)0.0093 (10)
O30.0906 (12)0.0369 (8)0.0542 (8)0.0009 (8)0.0084 (8)0.0075 (7)
O40.0567 (10)0.0609 (11)0.0991 (13)0.0151 (9)0.0240 (9)0.0105 (9)
O50.086 (3)0.092 (3)0.0578 (17)0.009 (2)0.0076 (14)0.0135 (15)
N10.0965 (18)0.0772 (17)0.0752 (15)0.0155 (15)0.0288 (13)0.0313 (12)
N20.0781 (13)0.0367 (9)0.0477 (9)0.0064 (9)0.0062 (8)0.0007 (7)
N30.0401 (8)0.0474 (10)0.0548 (9)0.0010 (8)0.0116 (7)0.0024 (7)
C10.0840 (19)0.0725 (17)0.0662 (14)0.0151 (15)0.0333 (14)0.0193 (13)
C20.111 (3)0.083 (2)0.095 (2)0.003 (2)0.047 (2)0.0175 (18)
C30.099 (2)0.119 (3)0.086 (2)0.023 (2)0.0338 (19)0.013 (2)
C40.091 (2)0.140 (3)0.0739 (18)0.010 (2)0.0232 (16)0.027 (2)
C50.088 (2)0.094 (2)0.0674 (16)0.0045 (18)0.0250 (15)0.0286 (15)
C60.0792 (16)0.0700 (16)0.0543 (12)0.0158 (14)0.0301 (12)0.0154 (11)
C70.0897 (18)0.0642 (15)0.0479 (12)0.0188 (14)0.0277 (12)0.0099 (11)
C80.0902 (18)0.084 (2)0.0525 (13)0.0158 (17)0.0207 (12)0.0141 (13)
C90.110 (2)0.0568 (14)0.0521 (12)0.0172 (15)0.0195 (13)0.0027 (11)
C100.0926 (18)0.0425 (11)0.0479 (11)0.0084 (12)0.0058 (11)0.0001 (9)
C110.0714 (15)0.0610 (15)0.0554 (12)0.0085 (13)0.0095 (11)0.0075 (11)
C120.092 (2)0.141 (3)0.086 (2)0.018 (2)0.0044 (18)0.030 (2)
C130.0492 (10)0.0376 (10)0.0473 (10)0.0005 (9)0.0149 (8)0.0032 (8)
C140.0434 (9)0.0355 (10)0.0479 (10)0.0042 (8)0.0105 (8)0.0021 (8)
C150.0445 (10)0.0378 (10)0.0423 (9)0.0006 (8)0.0074 (8)0.0002 (7)
C160.0470 (11)0.0539 (13)0.0571 (12)0.0009 (11)0.0138 (9)0.0017 (10)
C170.0518 (12)0.0590 (14)0.0651 (13)0.0142 (11)0.0092 (10)0.0024 (11)
C180.0699 (15)0.0418 (12)0.0622 (13)0.0121 (11)0.0064 (11)0.0043 (10)
C190.0627 (13)0.0405 (12)0.0578 (12)0.0037 (10)0.0128 (10)0.0044 (9)
C200.0475 (11)0.0379 (10)0.0474 (10)0.0021 (9)0.0083 (8)0.0024 (8)
C210.0451 (11)0.0486 (12)0.0515 (11)0.0078 (10)0.0088 (9)0.0064 (9)
C220.0515 (11)0.0375 (10)0.0464 (10)0.0007 (9)0.0094 (8)0.0005 (8)
C230.0657 (14)0.0493 (13)0.0505 (11)0.0076 (11)0.0144 (10)0.0010 (9)
C240.140 (5)0.058 (2)0.067 (2)0.001 (3)0.014 (3)0.0133 (17)
C250.156 (6)0.089 (3)0.059 (2)0.053 (4)0.027 (3)0.025 (2)
C260.105 (6)0.142 (7)0.054 (3)0.011 (5)0.014 (3)0.009 (4)
C270.0488 (11)0.0696 (15)0.0609 (13)0.0075 (12)0.0175 (10)0.0001 (11)
C280.0380 (10)0.0452 (11)0.0675 (13)0.0024 (9)0.0133 (9)0.0017 (9)
C290.0559 (13)0.0757 (16)0.0675 (14)0.0098 (13)0.0052 (11)0.0103 (13)
C300.0757 (17)0.113 (3)0.0682 (16)0.0181 (18)0.0037 (13)0.0065 (16)
C310.0659 (17)0.093 (2)0.090 (2)0.0139 (17)0.0041 (14)0.0100 (17)
C320.0493 (13)0.0509 (14)0.121 (2)0.0071 (12)0.0136 (14)0.0062 (15)
C330.0497 (12)0.0516 (13)0.0825 (16)0.0002 (11)0.0152 (11)0.0099 (11)
C25'0.09 (2)0.077 (17)0.052 (16)0.047 (16)0.039 (16)0.031 (12)
C26'0.037 (11)0.15 (3)0.08 (2)0.004 (15)0.019 (11)0.08 (2)
C24'0.045 (11)0.032 (9)0.051 (10)0.007 (8)0.010 (8)0.010 (7)
O5'0.12 (2)0.088 (15)0.18 (3)0.059 (14)0.049 (17)0.023 (14)
Geometric parameters (Å, º) top
O1—C111.190 (3)C24—C251.416 (9)
O2—C111.336 (3)C24'—C25'1.45 (4)
O2—C121.443 (5)C25—C261.309 (13)
O3—C131.225 (2)C25'—C26'1.35 (4)
O4—C211.235 (3)C27—C281.509 (3)
O5—C231.344 (5)C28—C331.387 (3)
O5—C261.391 (9)C28—C291.372 (3)
O5'—C26'1.41 (4)C29—C301.386 (4)
O5'—C231.37 (2)C30—C311.360 (5)
N1—C81.361 (4)C31—C321.356 (4)
N1—C11.369 (4)C32—C331.385 (4)
N2—C131.333 (3)C2—H20.9300
N2—C101.449 (3)C3—H30.9300
N3—C221.473 (3)C4—H40.9300
N3—C211.359 (3)C5—H50.9300
N3—C271.463 (3)C8—H80.9300
N1—H10.8600C9—H9A0.9700
N2—H2A0.8600C9—H9B0.9700
C1—C61.404 (4)C10—H100.9800
C1—C21.391 (5)C12—H12A0.9600
C2—C31.372 (5)C12—H12B0.9600
C3—C41.388 (6)C12—H12C0.9600
C4—C51.381 (6)C14—H140.9800
C5—C61.397 (4)C16—H160.9300
C6—C71.436 (4)C17—H170.9300
C7—C81.364 (4)C18—H180.9300
C7—C91.496 (4)C19—H190.9300
C9—C101.538 (4)C22—H220.9800
C10—C111.500 (4)C24—H240.9300
C13—C141.527 (3)C24'—H24'0.9300
C14—C221.540 (3)C25—H250.9300
C14—C151.508 (3)C25'—H25'0.9300
C15—C161.379 (3)C26—H260.9300
C15—C201.391 (3)C26'—H26'0.9300
C16—C171.378 (3)C27—H27A0.9700
C17—C181.381 (4)C27—H27B0.9700
C18—C191.374 (4)C29—H290.9300
C19—C201.389 (3)C30—H300.9300
C20—C211.483 (3)C31—H310.9300
C22—C231.487 (3)C32—H320.9300
C23—C24'1.34 (2)C33—H330.9300
C23—C241.332 (5)
C11—O2—C12116.9 (3)C28—C29—C30120.2 (3)
C23—O5—C26104.8 (5)C29—C30—C31120.8 (3)
C23—O5'—C26'103.6 (19)C30—C31—C32120.0 (3)
C1—N1—C8108.7 (2)C31—C32—C33120.0 (3)
C10—N2—C13121.51 (19)C28—C33—C32120.7 (3)
C21—N3—C22123.57 (17)C1—C2—H2121.00
C22—N3—C27115.88 (18)C3—C2—H2121.00
C21—N3—C27119.83 (18)C2—C3—H3119.00
C1—N1—H1126.00C4—C3—H3119.00
C8—N1—H1126.00C3—C4—H4120.00
C10—N2—H2A119.00C5—C4—H4120.00
C13—N2—H2A119.00C4—C5—H5120.00
N1—C1—C6107.5 (3)C6—C5—H5120.00
C2—C1—C6122.6 (3)N1—C8—H8124.00
N1—C1—C2130.0 (3)C7—C8—H8125.00
C1—C2—C3117.8 (3)C7—C9—H9A109.00
C2—C3—C4121.2 (4)C7—C9—H9B109.00
C3—C4—C5120.8 (3)C10—C9—H9A108.00
C4—C5—C6119.8 (3)C10—C9—H9B108.00
C5—C6—C7134.6 (3)H9A—C9—H9B107.00
C1—C6—C5117.9 (3)N2—C10—H10108.00
C1—C6—C7107.5 (2)C9—C10—H10108.00
C6—C7—C9127.7 (2)C11—C10—H10108.00
C6—C7—C8105.3 (2)O2—C12—H12A109.00
C8—C7—C9127.0 (2)O2—C12—H12B109.00
N1—C8—C7111.1 (2)O2—C12—H12C109.00
C7—C9—C10115.2 (2)H12A—C12—H12B109.00
C9—C10—C11110.5 (2)H12A—C12—H12C109.00
N2—C10—C11109.07 (19)H12B—C12—H12C109.00
N2—C10—C9113.3 (2)C13—C14—H14107.00
O1—C11—O2124.5 (3)C15—C14—H14107.00
O1—C11—C10125.2 (2)C22—C14—H14107.00
O2—C11—C10110.3 (2)C15—C16—H16120.00
O3—C13—N2122.22 (18)C17—C16—H16120.00
N2—C13—C14118.95 (18)C16—C17—H17120.00
O3—C13—C14118.83 (18)C18—C17—H17120.00
C15—C14—C22110.04 (15)C17—C18—H18120.00
C13—C14—C15116.70 (16)C19—C18—H18120.00
C13—C14—C22109.53 (15)C18—C19—H19120.00
C14—C15—C20119.04 (16)C20—C19—H19120.00
C16—C15—C20119.08 (18)N3—C22—H22107.00
C14—C15—C16121.85 (18)C14—C22—H22107.00
C15—C16—C17120.9 (2)C23—C22—H22107.00
C16—C17—C18120.0 (2)C23—C24—H24126.00
C17—C18—C19119.8 (2)C25—C24—H24126.00
C18—C19—C20120.3 (2)C23—C24'—H24'126.00
C19—C20—C21119.12 (19)C25'—C24'—H24'126.00
C15—C20—C19119.86 (19)C24—C25—H25127.00
C15—C20—C21120.86 (18)C26—C25—H25127.00
O4—C21—C20121.6 (2)C24'—C25'—H25'128.00
N3—C21—C20116.58 (17)C26'—C25'—H25'128.00
O4—C21—N3121.77 (18)O5—C26—H26124.00
C14—C22—C23112.62 (17)C25—C26—H26124.00
N3—C22—C14110.35 (16)O5'—C26'—H26'123.00
N3—C22—C23113.05 (17)C25'—C26'—H26'124.00
O5'—C23—C24'111.7 (15)N3—C27—H27B109.00
C22—C23—C24130.3 (3)C28—C27—H27A109.00
C22—C23—C24'113.9 (9)N3—C27—H27A109.00
O5—C23—C24110.5 (4)H27A—C27—H27B108.00
O5—C23—C22119.2 (2)C28—C27—H27B109.00
O5'—C23—C22132.8 (12)C28—C29—H29120.00
C23—C24—C25107.6 (5)C30—C29—H29120.00
C23—C24'—C25'108.0 (18)C29—C30—H30120.00
C24—C25—C26105.5 (6)C31—C30—H30120.00
C24'—C25'—C26'104 (2)C32—C31—H31120.00
O5—C26—C25111.6 (7)C30—C31—H31120.00
O5'—C26'—C25'113 (3)C31—C32—H32120.00
N3—C27—C28113.23 (17)C33—C32—H32120.00
C27—C28—C33120.3 (2)C32—C33—H33120.00
C29—C28—C33118.4 (2)C28—C33—H33120.00
C27—C28—C29121.3 (2)
C12—O2—C11—C10175.0 (3)N2—C10—C11—O114.8 (4)
C12—O2—C11—O13.2 (4)N2—C13—C14—C22116.6 (2)
C23—O5—C26—C253.2 (9)N2—C13—C14—C159.3 (3)
C26—O5—C23—C22177.2 (4)O3—C13—C14—C2262.7 (2)
C26—O5—C23—C244.0 (7)O3—C13—C14—C15171.43 (17)
C8—N1—C1—C61.4 (3)C13—C14—C15—C2089.9 (2)
C1—N1—C8—C71.3 (4)C15—C14—C22—C2377.8 (2)
C8—N1—C1—C2177.0 (4)C22—C14—C15—C16142.20 (18)
C13—N2—C10—C11135.0 (2)C22—C14—C15—C2035.7 (2)
C10—N2—C13—C14176.3 (2)C15—C14—C22—N349.5 (2)
C13—N2—C10—C9101.6 (3)C13—C14—C15—C1692.2 (2)
C10—N2—C13—O33.0 (4)C13—C14—C22—C23152.62 (17)
C27—N3—C21—C20172.55 (17)C13—C14—C22—N380.0 (2)
C22—N3—C21—C202.7 (3)C14—C15—C16—C17176.68 (19)
C27—N3—C22—C2378.7 (2)C20—C15—C16—C171.2 (3)
C21—N3—C22—C2391.5 (2)C16—C15—C20—C190.5 (3)
C21—N3—C22—C1435.6 (2)C14—C15—C20—C213.1 (3)
C27—N3—C21—O46.2 (3)C16—C15—C20—C21174.88 (18)
C27—N3—C22—C14154.15 (16)C14—C15—C20—C19178.47 (18)
C22—N3—C27—C2878.7 (2)C15—C16—C17—C181.6 (3)
C21—N3—C27—C28110.7 (2)C16—C17—C18—C190.1 (3)
C22—N3—C21—O4176.06 (19)C17—C18—C19—C201.6 (3)
C2—C1—C6—C7177.5 (3)C18—C19—C20—C151.9 (3)
C2—C1—C6—C50.2 (5)C18—C19—C20—C21173.54 (19)
N1—C1—C6—C71.0 (3)C15—C20—C21—O4165.9 (2)
N1—C1—C6—C5178.7 (3)C19—C20—C21—N3160.05 (18)
C6—C1—C2—C30.6 (5)C19—C20—C21—O418.7 (3)
N1—C1—C2—C3177.5 (4)C15—C20—C21—N315.4 (3)
C1—C2—C3—C40.6 (6)N3—C22—C23—C24104.3 (5)
C2—C3—C4—C50.3 (6)N3—C22—C23—O574.3 (3)
C3—C4—C5—C61.1 (6)C14—C22—C23—C24129.8 (5)
C4—C5—C6—C11.0 (5)C14—C22—C23—O551.6 (4)
C4—C5—C6—C7175.9 (3)O5—C23—C24—C253.3 (7)
C1—C6—C7—C9178.5 (3)C22—C23—C24—C25178.0 (4)
C1—C6—C7—C80.2 (3)C23—C24—C25—C261.2 (9)
C5—C6—C7—C8177.4 (3)C24—C25—C26—O51.3 (10)
C5—C6—C7—C91.3 (5)N3—C27—C28—C2931.7 (3)
C9—C7—C8—N1179.4 (3)N3—C27—C28—C33149.9 (2)
C6—C7—C8—N10.7 (3)C27—C28—C29—C30178.6 (3)
C8—C7—C9—C1098.6 (3)C33—C28—C29—C300.1 (4)
C6—C7—C9—C1082.9 (4)C27—C28—C33—C32178.1 (2)
C7—C9—C10—C1148.9 (3)C29—C28—C33—C320.4 (4)
C7—C9—C10—N273.8 (3)C28—C29—C30—C310.6 (5)
C9—C10—C11—O267.8 (3)C29—C30—C31—C320.8 (6)
N2—C10—C11—O2167.1 (2)C30—C31—C32—C330.3 (5)
C9—C10—C11—O1110.3 (3)C31—C32—C33—C280.3 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10···O30.982.362.751 (3)103
C22—H22···O30.982.532.959 (2)106
C27—H27B···O40.972.332.748 (3)105
N1—H1···O3i0.862.122.942 (3)161
C12—H12A···Cg5ii0.962.633.551 (5)160
Symmetry codes: (i) x+1, y1/2, z+2; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC33H29N3O5
Mr547.59
Crystal system, space groupMonoclinic, P21
Temperature (K)296
a, b, c (Å)8.6866 (5), 15.8630 (7), 10.5480 (6)
β (°) 104.543 (5)
V3)1406.90 (13)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.60 × 0.54 × 0.36
Data collection
DiffractometerStoe IPDS2
diffractometer
Absorption correctionIntegration
(X-RED32; Stoe & Cie, 2002)
Tmin, Tmax0.949, 0.969
No. of measured, independent and
observed [I > 2σ(I)] reflections
8814, 3010, 2613
Rint0.034
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.082, 1.02
No. of reflections3010
No. of parameters409
No. of restraints16
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.11, 0.10

Computer programs: X-AREA (Stoe & Cie, 2002), X-RED32 (Stoe & Cie, 2002), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O3i0.862.122.942 (3)161
C12—H12A···Cg5ii0.962.633.551 (5)160
Symmetry codes: (i) x+1, y1/2, z+2; (ii) x+1, y, z.
 

Acknowledgements

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS-2 diffractometer (purchased under grant F.279 of the University Research Fund) and the National Science Fund of Bulgaria at the Ministry of Education and Science (project TK—X-1706/07) for financial support of the synthetic work.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBogdanov, M. G., Kandinska, M. I., Dimitrova, D. B., Gocheva, B. T. & Palamareva, M. D. (2007). Z. Naturforsch. Teil C, 62, 477–482.  CAS Google Scholar
First citationBurdzhiev, N. T. & Stanoeva, E. R. (2006). Tetrahedron, 62, 8318–8326.  Web of Science CrossRef CAS Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKandinska, M. I., Kozekov, I. D. & Palamareva, M. D. (2006). Molecules, 11, 403–414.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 7| July 2009| Pages o1461-o1462
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds