metal-organic compounds
[5-Chloro-2-hydroxy-N′-(2-oxidobenzylidene)benzohydrazidato]pyridinecopper(II)
aCollege of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, People's Republic of China
*Correspondence e-mail: lidacheng62@lcu.edu.cn
In the title complex, [Cu(C14H9ClN2O3)(C5H5N)], the CuII ion exhibits a distorted trans-CuN2O2 square-planar geometry arising from the O,O,N-tridentate ligand and a pyridine molecule. An intramolecular O—H⋯N hydrogen bond occurs. In the weak intermolecular C—H⋯π interactions generate a chain. The crystal studied was an inversion twin.
Related literature
For background on the coordination chemistry of salicylaldehyde-type ligands, see: Bai et al. (2005). For information on C—H⋯π interactions, see: Nishio (2004).
Experimental
Crystal data
|
|
Data collection: SMART (Siemens, 1996); cell SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536809020546/hb2989sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809020546/hb2989Isup2.hkl
A solution of salicylaldehyde (1.46 g, 12 mmol) in ethanol (10 ml) was added to a solution of 5-chlorosalicylichydrazine (1.87 g, 10 mmol) in ehanol (10 ml). The mixture was refluxed for 3 h, and then the precipitate was collected, washed several times with ethanol and dried in vacuo (yield 75.6%). m.p. > 300 K. A solution of Cu(OAc)2 (0.04 g, 0.2 mmol)in methanol (10 ml) was added to the mixture of salicylaldehyde -5-chlorosalicylichydrazone (0.058 g, 0.2 mmol)and sodium methylate (0.0324 g, 0.6 mmol) in pyridine (10 ml). A green solution was obtained after stirring for 4 h. After being filtrated, dimethyl ether was slowly diffused into the filtrate, then green blocks of (I) were obtained after several weeks (m.p. >400 K) Elemental analysis calculated for C19H14Cl1N3O3Cu1: C, 52.90; H, 3.27; N, 9.74. Found (%): C, 52.95; H, 3.19; N, 9.69
The H atoms were positioned with idealized geometry (C—H = 0.93Å, O—H = 0.82Å) and were refined as riding with Uiso(H) = 1.2Ueq(carrier).
Data collection: SMART (Siemens, 1996); cell
SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).[Cu(C14H9ClN2O3)(C5H5N)] | F(000) = 876 |
Mr = 431.32 | Dx = 1.638 Mg m−3 |
Monoclinic, Cc | Mo Kα radiation, λ = 0.71073 Å |
a = 23.586 (2) Å | Cell parameters from 1781 reflections |
b = 4.8268 (6) Å | θ = 2.7–23.7° |
c = 17.88540 (18) Å | µ = 1.43 mm−1 |
β = 120.809 (2)° | T = 298 K |
V = 1748.8 (3) Å3 | Block, green |
Z = 4 | 0.39 × 0.28 × 0.17 mm |
Siemens SMART CCD diffractometer | 2273 independent reflections |
Radiation source: fine-focus sealed tube | 1849 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.021 |
ω scans | θmax = 25.0°, θmin = 2.0° |
Absorption correction: multi-scan (SADABS; Siemens, 1996) | h = −28→25 |
Tmin = 0.606, Tmax = 0.793 | k = −5→5 |
4087 measured reflections | l = −17→21 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.040 | H-atom parameters constrained |
wR(F2) = 0.116 | w = 1/[σ2(Fo2) + (0.0729P)2 + 0.8658P] where P = (Fo2 + 2Fc2)/3 |
S = 1.00 | (Δ/σ)max < 0.001 |
2273 reflections | Δρmax = 0.37 e Å−3 |
244 parameters | Δρmin = −0.19 e Å−3 |
2 restraints | Absolute structure: Flack (1983), 725 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.50 (2) |
[Cu(C14H9ClN2O3)(C5H5N)] | V = 1748.8 (3) Å3 |
Mr = 431.32 | Z = 4 |
Monoclinic, Cc | Mo Kα radiation |
a = 23.586 (2) Å | µ = 1.43 mm−1 |
b = 4.8268 (6) Å | T = 298 K |
c = 17.88540 (18) Å | 0.39 × 0.28 × 0.17 mm |
β = 120.809 (2)° |
Siemens SMART CCD diffractometer | 2273 independent reflections |
Absorption correction: multi-scan (SADABS; Siemens, 1996) | 1849 reflections with I > 2σ(I) |
Tmin = 0.606, Tmax = 0.793 | Rint = 0.021 |
4087 measured reflections |
R[F2 > 2σ(F2)] = 0.040 | H-atom parameters constrained |
wR(F2) = 0.116 | Δρmax = 0.37 e Å−3 |
S = 1.00 | Δρmin = −0.19 e Å−3 |
2273 reflections | Absolute structure: Flack (1983), 725 Friedel pairs |
244 parameters | Absolute structure parameter: 0.50 (2) |
2 restraints |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.18179 (4) | 0.48947 (15) | 0.25227 (4) | 0.0455 (2) | |
Cl1 | 0.00840 (11) | 1.5179 (4) | −0.07019 (13) | 0.0697 (5) | |
N1 | 0.0517 (3) | 0.6161 (12) | 0.2113 (3) | 0.0462 (13) | |
N2 | 0.1052 (3) | 0.4396 (12) | 0.2649 (4) | 0.0452 (14) | |
N3 | 0.2566 (3) | 0.5850 (12) | 0.2378 (4) | 0.0487 (13) | |
O1 | 0.1235 (2) | 0.7588 (9) | 0.1676 (3) | 0.0519 (11) | |
O2 | −0.0618 (2) | 0.8534 (11) | 0.1447 (4) | 0.0721 (14) | |
H2 | −0.0319 | 0.7470 | 0.1764 | 0.108* | |
O3 | 0.2275 (2) | 0.1945 (8) | 0.3304 (3) | 0.0509 (11) | |
C1 | 0.0675 (3) | 0.7694 (13) | 0.1643 (4) | 0.0468 (15) | |
C2 | 0.0182 (3) | 0.9709 (11) | 0.1036 (4) | 0.0438 (14) | |
C3 | −0.0435 (4) | 1.0041 (13) | 0.0969 (5) | 0.0545 (17) | |
C4 | −0.0874 (3) | 1.1994 (15) | 0.0388 (5) | 0.064 (2) | |
H4 | −0.1282 | 1.2236 | 0.0343 | 0.076* | |
C5 | −0.0718 (3) | 1.3556 (16) | −0.0116 (5) | 0.0611 (19) | |
H5 | −0.1020 | 1.4840 | −0.0503 | 0.073* | |
C6 | −0.0118 (3) | 1.3239 (12) | −0.0053 (4) | 0.0502 (15) | |
C7 | 0.0333 (3) | 1.1330 (13) | 0.0522 (4) | 0.0478 (15) | |
H7 | 0.0740 | 1.1134 | 0.0564 | 0.057* | |
C8 | 0.0986 (3) | 0.2719 (14) | 0.3155 (4) | 0.0494 (16) | |
H8 | 0.0590 | 0.2752 | 0.3150 | 0.059* | |
C9 | 0.1478 (3) | 0.0818 (12) | 0.3722 (4) | 0.0450 (15) | |
C10 | 0.2086 (3) | 0.0513 (12) | 0.3749 (4) | 0.0460 (15) | |
C11 | 0.2519 (3) | −0.1564 (13) | 0.4325 (5) | 0.0539 (16) | |
H11 | 0.2920 | −0.1860 | 0.4357 | 0.065* | |
C12 | 0.2365 (3) | −0.3133 (13) | 0.4832 (4) | 0.0576 (17) | |
H12 | 0.2661 | −0.4472 | 0.5197 | 0.069* | |
C13 | 0.1771 (4) | −0.2753 (13) | 0.4808 (4) | 0.0579 (19) | |
H13 | 0.1671 | −0.3797 | 0.5162 | 0.069* | |
C14 | 0.1341 (4) | −0.0825 (14) | 0.4255 (5) | 0.0540 (16) | |
H14 | 0.0940 | −0.0587 | 0.4230 | 0.065* | |
C15 | 0.2503 (4) | 0.7717 (17) | 0.1806 (5) | 0.069 (2) | |
H15 | 0.2091 | 0.8520 | 0.1452 | 0.083* | |
C16 | 0.3020 (4) | 0.8541 (18) | 0.1705 (6) | 0.076 (2) | |
H16 | 0.2958 | 0.9905 | 0.1302 | 0.092* | |
C17 | 0.3626 (3) | 0.7324 (16) | 0.2205 (5) | 0.0635 (18) | |
H17 | 0.3981 | 0.7803 | 0.2143 | 0.076* | |
C18 | 0.3687 (4) | 0.5405 (17) | 0.2790 (6) | 0.080 (3) | |
H18 | 0.4090 | 0.4535 | 0.3143 | 0.095* | |
C19 | 0.3141 (4) | 0.4733 (15) | 0.2863 (6) | 0.068 (2) | |
H19 | 0.3193 | 0.3431 | 0.3277 | 0.082* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0378 (3) | 0.0493 (4) | 0.0461 (4) | 0.0027 (3) | 0.0192 (3) | −0.0002 (4) |
Cl1 | 0.0771 (12) | 0.0676 (12) | 0.0674 (12) | 0.0189 (9) | 0.0392 (10) | 0.0148 (9) |
N1 | 0.039 (3) | 0.044 (3) | 0.046 (3) | 0.012 (3) | 0.015 (3) | 0.000 (3) |
N2 | 0.036 (3) | 0.052 (3) | 0.038 (3) | 0.000 (3) | 0.012 (3) | −0.010 (3) |
N3 | 0.045 (3) | 0.051 (3) | 0.053 (4) | 0.002 (3) | 0.027 (3) | 0.002 (3) |
O1 | 0.041 (2) | 0.061 (3) | 0.053 (3) | 0.007 (2) | 0.024 (2) | 0.008 (2) |
O2 | 0.060 (3) | 0.079 (3) | 0.090 (4) | 0.019 (3) | 0.048 (3) | 0.013 (3) |
O3 | 0.045 (2) | 0.046 (2) | 0.060 (3) | 0.007 (2) | 0.026 (2) | 0.005 (2) |
C1 | 0.041 (3) | 0.045 (3) | 0.044 (4) | 0.002 (3) | 0.013 (3) | −0.010 (3) |
C2 | 0.040 (3) | 0.044 (3) | 0.044 (3) | 0.004 (3) | 0.019 (3) | −0.011 (3) |
C3 | 0.047 (4) | 0.057 (4) | 0.061 (4) | 0.005 (3) | 0.028 (3) | −0.004 (3) |
C4 | 0.046 (3) | 0.068 (5) | 0.072 (5) | 0.013 (3) | 0.027 (4) | −0.006 (4) |
C5 | 0.049 (4) | 0.062 (4) | 0.057 (5) | 0.020 (4) | 0.016 (3) | −0.003 (4) |
C6 | 0.054 (4) | 0.045 (4) | 0.043 (4) | 0.006 (3) | 0.019 (3) | −0.006 (3) |
C7 | 0.041 (3) | 0.049 (4) | 0.049 (4) | 0.005 (3) | 0.019 (3) | −0.012 (3) |
C8 | 0.045 (3) | 0.054 (4) | 0.054 (4) | −0.004 (3) | 0.030 (3) | −0.009 (3) |
C9 | 0.053 (3) | 0.035 (3) | 0.048 (4) | −0.003 (3) | 0.026 (3) | −0.010 (3) |
C10 | 0.048 (3) | 0.038 (3) | 0.048 (4) | −0.006 (3) | 0.021 (3) | −0.010 (3) |
C11 | 0.054 (4) | 0.040 (3) | 0.065 (4) | −0.005 (3) | 0.028 (3) | −0.006 (3) |
C12 | 0.060 (4) | 0.043 (4) | 0.057 (4) | 0.003 (3) | 0.021 (3) | −0.001 (3) |
C13 | 0.069 (4) | 0.053 (4) | 0.050 (5) | −0.013 (4) | 0.028 (4) | −0.005 (3) |
C14 | 0.060 (4) | 0.051 (4) | 0.053 (4) | −0.003 (3) | 0.031 (3) | −0.003 (3) |
C15 | 0.050 (4) | 0.083 (5) | 0.067 (5) | 0.015 (4) | 0.024 (4) | 0.017 (4) |
C16 | 0.078 (5) | 0.083 (5) | 0.084 (6) | 0.018 (5) | 0.053 (5) | 0.031 (5) |
C17 | 0.052 (4) | 0.081 (5) | 0.062 (4) | −0.001 (4) | 0.031 (3) | 0.000 (4) |
C18 | 0.047 (4) | 0.095 (6) | 0.092 (6) | 0.009 (4) | 0.033 (4) | 0.033 (5) |
C19 | 0.049 (4) | 0.074 (6) | 0.072 (6) | 0.002 (3) | 0.024 (4) | 0.023 (4) |
Cu1—O3 | 1.897 (4) | C7—H7 | 0.9300 |
Cu1—O1 | 1.934 (4) | C8—C9 | 1.419 (9) |
Cu1—N2 | 1.945 (6) | C8—H8 | 0.9300 |
Cu1—N3 | 1.965 (6) | C9—C14 | 1.401 (10) |
Cl1—C6 | 1.737 (7) | C9—C10 | 1.416 (9) |
N1—C1 | 1.310 (9) | C10—C11 | 1.426 (10) |
N1—N2 | 1.413 (8) | C11—C12 | 1.364 (10) |
N2—C8 | 1.282 (9) | C11—H11 | 0.9300 |
N3—C19 | 1.296 (10) | C12—C13 | 1.393 (10) |
N3—C15 | 1.313 (9) | C12—H12 | 0.9300 |
O1—C1 | 1.292 (7) | C13—C14 | 1.359 (9) |
O2—C3 | 1.351 (9) | C13—H13 | 0.9300 |
O2—H2 | 0.8200 | C14—H14 | 0.9300 |
O3—C10 | 1.293 (8) | C15—C16 | 1.380 (11) |
C1—C2 | 1.478 (8) | C15—H15 | 0.9300 |
C2—C7 | 1.386 (10) | C16—C17 | 1.370 (10) |
C2—C3 | 1.405 (10) | C16—H16 | 0.9300 |
C3—C4 | 1.393 (10) | C17—C18 | 1.349 (11) |
C4—C5 | 1.362 (11) | C17—H17 | 0.9300 |
C4—H4 | 0.9300 | C18—C19 | 1.396 (12) |
C5—C6 | 1.370 (10) | C18—H18 | 0.9300 |
C5—H5 | 0.9300 | C19—H19 | 0.9300 |
C6—C7 | 1.385 (9) | ||
O3—Cu1—O1 | 171.5 (2) | N2—C8—C9 | 124.1 (6) |
O3—Cu1—N2 | 91.9 (2) | N2—C8—H8 | 117.9 |
O1—Cu1—N2 | 81.0 (2) | C9—C8—H8 | 117.9 |
O3—Cu1—N3 | 93.6 (2) | C14—C9—C10 | 120.1 (6) |
O1—Cu1—N3 | 93.7 (2) | C14—C9—C8 | 117.5 (6) |
N2—Cu1—N3 | 173.5 (3) | C10—C9—C8 | 122.4 (6) |
C1—N1—N2 | 109.1 (5) | O3—C10—C9 | 125.8 (6) |
C8—N2—N1 | 118.0 (6) | O3—C10—C11 | 118.4 (6) |
C8—N2—Cu1 | 128.0 (5) | C9—C10—C11 | 115.8 (6) |
N1—N2—Cu1 | 114.0 (4) | C12—C11—C10 | 122.4 (7) |
C19—N3—C15 | 118.0 (7) | C12—C11—H11 | 118.8 |
C19—N3—Cu1 | 121.1 (6) | C10—C11—H11 | 118.8 |
C15—N3—Cu1 | 120.8 (5) | C11—C12—C13 | 120.8 (6) |
C1—O1—Cu1 | 111.3 (4) | C11—C12—H12 | 119.6 |
C3—O2—H2 | 109.5 | C13—C12—H12 | 119.6 |
C10—O3—Cu1 | 127.5 (4) | C14—C13—C12 | 118.5 (6) |
O1—C1—N1 | 124.6 (5) | C14—C13—H13 | 120.7 |
O1—C1—C2 | 117.5 (6) | C12—C13—H13 | 120.7 |
N1—C1—C2 | 117.9 (5) | C13—C14—C9 | 122.4 (7) |
C7—C2—C3 | 119.1 (6) | C13—C14—H14 | 118.8 |
C7—C2—C1 | 119.0 (6) | C9—C14—H14 | 118.8 |
C3—C2—C1 | 121.9 (6) | N3—C15—C16 | 123.0 (7) |
O2—C3—C4 | 118.6 (7) | N3—C15—H15 | 118.5 |
O2—C3—C2 | 122.5 (6) | C16—C15—H15 | 118.5 |
C4—C3—C2 | 118.9 (7) | C17—C16—C15 | 119.1 (7) |
C5—C4—C3 | 121.2 (7) | C17—C16—H16 | 120.4 |
C5—C4—H4 | 119.4 | C15—C16—H16 | 120.4 |
C3—C4—H4 | 119.4 | C18—C17—C16 | 117.6 (7) |
C4—C5—C6 | 120.1 (6) | C18—C17—H17 | 121.2 |
C4—C5—H5 | 120.0 | C16—C17—H17 | 121.2 |
C6—C5—H5 | 120.0 | C17—C18—C19 | 119.6 (7) |
C5—C6—C7 | 120.3 (7) | C17—C18—H18 | 120.2 |
C5—C6—Cl1 | 120.7 (5) | C19—C18—H18 | 120.2 |
C7—C6—Cl1 | 119.0 (5) | N3—C19—C18 | 122.7 (8) |
C6—C7—C2 | 120.5 (6) | N3—C19—H19 | 118.7 |
C6—C7—H7 | 119.8 | C18—C19—H19 | 118.7 |
C2—C7—H7 | 119.8 | ||
C1—N1—N2—C8 | −179.6 (6) | O1—C1—C2—C3 | −178.1 (6) |
C1—N1—N2—Cu1 | 1.2 (6) | N1—C1—C2—C3 | 1.3 (9) |
O3—Cu1—N2—C8 | 4.3 (6) | C7—C2—C3—O2 | 179.9 (6) |
O1—Cu1—N2—C8 | 179.6 (6) | C7—C2—C3—C4 | −0.1 (9) |
N3—Cu1—N2—C8 | −143 (2) | C1—C2—C3—C4 | 179.5 (6) |
O3—Cu1—N2—N1 | −176.6 (4) | O2—C3—C4—C5 | −179.4 (7) |
O1—Cu1—N2—N1 | −1.2 (4) | C4—C5—C6—Cl1 | 179.1 (6) |
N3—Cu1—N2—N1 | 36 (3) | C5—C6—C7—C2 | 0.4 (9) |
O3—Cu1—N3—C19 | −9.1 (7) | Cl1—C6—C7—C2 | −178.7 (5) |
O1—Cu1—N3—C19 | 175.1 (7) | C3—C2—C7—C6 | −0.4 (9) |
N2—Cu1—N3—C19 | 139 (2) | C1—C2—C7—C6 | −180.0 (5) |
O3—Cu1—N3—C15 | 173.4 (6) | N1—N2—C8—C9 | 179.5 (5) |
O1—Cu1—N3—C15 | −2.5 (6) | N2—C8—C9—C14 | 178.1 (6) |
N2—Cu1—N3—C15 | −39 (3) | Cu1—O3—C10—C9 | 1.9 (9) |
O3—Cu1—O1—C1 | 34.5 (18) | Cu1—O3—C10—C11 | −177.8 (4) |
N2—Cu1—O1—C1 | 1.0 (4) | C14—C9—C10—O3 | −178.4 (6) |
N3—Cu1—O1—C1 | −175.1 (4) | C8—C9—C10—O3 | 2.9 (9) |
O1—Cu1—O3—C10 | −37.5 (19) | C14—C9—C10—C11 | 1.3 (8) |
N2—Cu1—O3—C10 | −4.5 (5) | C8—C9—C10—C11 | −177.4 (6) |
N3—Cu1—O3—C10 | 172.0 (5) | O3—C10—C11—C12 | 178.6 (6) |
Cu1—O1—C1—N1 | −0.6 (7) | C9—C10—C11—C12 | −1.0 (9) |
Cu1—O1—C1—C2 | 178.7 (4) | C8—C9—C14—C13 | 178.5 (6) |
N2—N1—C1—O1 | −0.4 (8) | Cu1—N3—C15—C16 | 177.2 (7) |
N2—N1—C1—C2 | −179.7 (5) | N3—C15—C16—C17 | 1.7 (14) |
O1—C1—C2—C7 | 1.4 (8) | Cu1—N3—C19—C18 | −178.7 (7) |
N1—C1—C2—C7 | −179.2 (6) |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2···N1 | 0.82 | 1.85 | 2.575 (9) | 147 |
C16—H16···Cg1i | 0.93 | 2.81 | 3.48 (3) | 130 |
Symmetry code: (i) x, −y+1, z−1/2. |
Experimental details
Crystal data | |
Chemical formula | [Cu(C14H9ClN2O3)(C5H5N)] |
Mr | 431.32 |
Crystal system, space group | Monoclinic, Cc |
Temperature (K) | 298 |
a, b, c (Å) | 23.586 (2), 4.8268 (6), 17.88540 (18) |
β (°) | 120.809 (2) |
V (Å3) | 1748.8 (3) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.43 |
Crystal size (mm) | 0.39 × 0.28 × 0.17 |
Data collection | |
Diffractometer | Siemens SMART CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Siemens, 1996) |
Tmin, Tmax | 0.606, 0.793 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 4087, 2273, 1849 |
Rint | 0.021 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.040, 0.116, 1.00 |
No. of reflections | 2273 |
No. of parameters | 244 |
No. of restraints | 2 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.37, −0.19 |
Absolute structure | Flack (1983), 725 Friedel pairs |
Absolute structure parameter | 0.50 (2) |
Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2···N1 | 0.82 | 1.85 | 2.575 (9) | 147 |
C16—H16···Cg1i | 0.93 | 2.81 | 3.48 (3) | 130 |
Symmetry code: (i) x, −y+1, z−1/2. |
Acknowledgements
We acknowledge the National Natural Science Foundation of China (grant No. 20771053) and the Natural Science Foundation of Shandong Province (grant No. 2005ZX09) for financial support.
References
Bai, Y., Dang, D. B., Duan, C. Y., Song, Y. & Meng, Q. J. (2005). Inorg. Chem. 44, 5972–5974. Web of Science CSD CrossRef PubMed CAS Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Nishio, M. (2004). CrystEngComm, 6, 130–158. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Siemens (1996). SMART, SAINT and SADABS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The chemistry of aroylhydrazones has gained a special attraction due to their coordination abilities to metal ions (Bai et al.,2005). However, researches on the complexes with salicylaldehyde-5-chlorosalicylichydrazone have not reported. So we have synthesized a new complex(Fig.1), which has been characterized by X-ray diffraction and elemental analysis. The structure of the title complex, (I), contains one ligand molecule, one pyridine molecule and one copper(II). The copper(II) coordination environment in the complex exhibits a distorted quadrilateral geometry (Table 1). In the crystal packing, the complex molecules are linked into one-dimensional chain by intermolecular C—H···π interactions (Nishio, 2004) (Table 2, Fig. 2).