metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[5-Chloro-2-hy­droxy-N′-(2-oxido­ben­zyl­­idene)benzo­hy­dra­zidato]­pyridine­copper(II)

aCollege of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, People's Republic of China
*Correspondence e-mail: lidacheng62@lcu.edu.cn

(Received 27 May 2009; accepted 29 May 2009; online 6 June 2009)

In the title complex, [Cu(C14H9ClN2O3)(C5H5N)], the CuII ion exhibits a distorted trans-CuN2O2 square-planar geometry arising from the O,O,N-tridentate ligand and a pyridine mol­ecule. An intra­molecular O—H⋯N hydrogen bond occurs. In the crystal structure, weak inter­molecular C—H⋯π inter­actions generate a chain. The crystal studied was an inversion twin.

Related literature

For background on the coordination chemistry of salicyl­aldehyde-type ligands, see: Bai et al. (2005[Bai, Y., Dang, D. B., Duan, C. Y., Song, Y. & Meng, Q. J. (2005). Inorg. Chem. 44, 5972-5974.]). For information on C—H⋯π inter­actions, see: Nishio (2004[Nishio, M. (2004). CrystEngComm, 6, 130-158.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C14H9ClN2O3)(C5H5N)]

  • Mr = 431.32

  • Monoclinic, C c

  • a = 23.586 (2) Å

  • b = 4.8268 (6) Å

  • c = 17.88540 (18) Å

  • β = 120.809 (2)°

  • V = 1748.8 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.43 mm−1

  • T = 298 K

  • 0.39 × 0.28 × 0.17 mm

Data collection
  • Siemens SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Siemens, 1996[Siemens (1996). SMART, SAINT and SADABS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]) Tmin = 0.606, Tmax = 0.793

  • 4087 measured reflections

  • 2273 independent reflections

  • 1849 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.116

  • S = 1.00

  • 2273 reflections

  • 244 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.19 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 725 Friedel pairs

  • Flack parameter: 0.50 (2)

Table 1
Selected bond lengths (Å)

Cu1—O3 1.897 (4)
Cu1—O1 1.934 (4)
Cu1—N2 1.945 (6)
Cu1—N3 1.965 (6)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯N1 0.82 1.85 2.575 (9) 147
C16—H16⋯Cg1i 0.93 2.81 3.48 (3) 130
Symmetry code: (i) [x, -y+1, z-{\script{1\over 2}}]. Cg1 is the centroid of the C9–C14 ring.

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART, SAINT and SADABS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART, SAINT and SADABS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The chemistry of aroylhydrazones has gained a special attraction due to their coordination abilities to metal ions (Bai et al.,2005). However, researches on the complexes with salicylaldehyde-5-chlorosalicylichydrazone have not reported. So we have synthesized a new complex(Fig.1), which has been characterized by X-ray diffraction and elemental analysis. The structure of the title complex, (I), contains one ligand molecule, one pyridine molecule and one copper(II). The copper(II) coordination environment in the complex exhibits a distorted quadrilateral geometry (Table 1). In the crystal packing, the complex molecules are linked into one-dimensional chain by intermolecular C—H···π interactions (Nishio, 2004) (Table 2, Fig. 2).

Related literature top

For background on the coordination chemistry of salicylaldehyde-type ligands, see: Bai et al. (2005). For information on C—H···π interactions, see: Nishio (2004).

Experimental top

A solution of salicylaldehyde (1.46 g, 12 mmol) in ethanol (10 ml) was added to a solution of 5-chlorosalicylichydrazine (1.87 g, 10 mmol) in ehanol (10 ml). The mixture was refluxed for 3 h, and then the precipitate was collected, washed several times with ethanol and dried in vacuo (yield 75.6%). m.p. > 300 K. A solution of Cu(OAc)2 (0.04 g, 0.2 mmol)in methanol (10 ml) was added to the mixture of salicylaldehyde -5-chlorosalicylichydrazone (0.058 g, 0.2 mmol)and sodium methylate (0.0324 g, 0.6 mmol) in pyridine (10 ml). A green solution was obtained after stirring for 4 h. After being filtrated, dimethyl ether was slowly diffused into the filtrate, then green blocks of (I) were obtained after several weeks (m.p. >400 K) Elemental analysis calculated for C19H14Cl1N3O3Cu1: C, 52.90; H, 3.27; N, 9.74. Found (%): C, 52.95; H, 3.19; N, 9.69

Refinement top

The H atoms were positioned with idealized geometry (C—H = 0.93Å, O—H = 0.82Å) and were refined as riding with Uiso(H) = 1.2Ueq(carrier).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 40% probability displacement ellipsoids. H atoms have been omitted for clarity.
[Figure 2] Fig. 2. View of the chains in (I). Intermolecular C—H···π are shown as dashed lines. Most of H atoms are omitted.
[5-Chloro-2-hydroxy-N'-(2- oxidobenzylidene)benzohydrazidato]pyridinecopper(II) top
Crystal data top
[Cu(C14H9ClN2O3)(C5H5N)]F(000) = 876
Mr = 431.32Dx = 1.638 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
a = 23.586 (2) ÅCell parameters from 1781 reflections
b = 4.8268 (6) Åθ = 2.7–23.7°
c = 17.88540 (18) ŵ = 1.43 mm1
β = 120.809 (2)°T = 298 K
V = 1748.8 (3) Å3Block, green
Z = 40.39 × 0.28 × 0.17 mm
Data collection top
Siemens SMART CCD
diffractometer
2273 independent reflections
Radiation source: fine-focus sealed tube1849 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Siemens, 1996)
h = 2825
Tmin = 0.606, Tmax = 0.793k = 55
4087 measured reflectionsl = 1721
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.116 w = 1/[σ2(Fo2) + (0.0729P)2 + 0.8658P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
2273 reflectionsΔρmax = 0.37 e Å3
244 parametersΔρmin = 0.19 e Å3
2 restraintsAbsolute structure: Flack (1983), 725 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.50 (2)
Crystal data top
[Cu(C14H9ClN2O3)(C5H5N)]V = 1748.8 (3) Å3
Mr = 431.32Z = 4
Monoclinic, CcMo Kα radiation
a = 23.586 (2) ŵ = 1.43 mm1
b = 4.8268 (6) ÅT = 298 K
c = 17.88540 (18) Å0.39 × 0.28 × 0.17 mm
β = 120.809 (2)°
Data collection top
Siemens SMART CCD
diffractometer
2273 independent reflections
Absorption correction: multi-scan
(SADABS; Siemens, 1996)
1849 reflections with I > 2σ(I)
Tmin = 0.606, Tmax = 0.793Rint = 0.021
4087 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.116Δρmax = 0.37 e Å3
S = 1.00Δρmin = 0.19 e Å3
2273 reflectionsAbsolute structure: Flack (1983), 725 Friedel pairs
244 parametersAbsolute structure parameter: 0.50 (2)
2 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.18179 (4)0.48947 (15)0.25227 (4)0.0455 (2)
Cl10.00840 (11)1.5179 (4)0.07019 (13)0.0697 (5)
N10.0517 (3)0.6161 (12)0.2113 (3)0.0462 (13)
N20.1052 (3)0.4396 (12)0.2649 (4)0.0452 (14)
N30.2566 (3)0.5850 (12)0.2378 (4)0.0487 (13)
O10.1235 (2)0.7588 (9)0.1676 (3)0.0519 (11)
O20.0618 (2)0.8534 (11)0.1447 (4)0.0721 (14)
H20.03190.74700.17640.108*
O30.2275 (2)0.1945 (8)0.3304 (3)0.0509 (11)
C10.0675 (3)0.7694 (13)0.1643 (4)0.0468 (15)
C20.0182 (3)0.9709 (11)0.1036 (4)0.0438 (14)
C30.0435 (4)1.0041 (13)0.0969 (5)0.0545 (17)
C40.0874 (3)1.1994 (15)0.0388 (5)0.064 (2)
H40.12821.22360.03430.076*
C50.0718 (3)1.3556 (16)0.0116 (5)0.0611 (19)
H50.10201.48400.05030.073*
C60.0118 (3)1.3239 (12)0.0053 (4)0.0502 (15)
C70.0333 (3)1.1330 (13)0.0522 (4)0.0478 (15)
H70.07401.11340.05640.057*
C80.0986 (3)0.2719 (14)0.3155 (4)0.0494 (16)
H80.05900.27520.31500.059*
C90.1478 (3)0.0818 (12)0.3722 (4)0.0450 (15)
C100.2086 (3)0.0513 (12)0.3749 (4)0.0460 (15)
C110.2519 (3)0.1564 (13)0.4325 (5)0.0539 (16)
H110.29200.18600.43570.065*
C120.2365 (3)0.3133 (13)0.4832 (4)0.0576 (17)
H120.26610.44720.51970.069*
C130.1771 (4)0.2753 (13)0.4808 (4)0.0579 (19)
H130.16710.37970.51620.069*
C140.1341 (4)0.0825 (14)0.4255 (5)0.0540 (16)
H140.09400.05870.42300.065*
C150.2503 (4)0.7717 (17)0.1806 (5)0.069 (2)
H150.20910.85200.14520.083*
C160.3020 (4)0.8541 (18)0.1705 (6)0.076 (2)
H160.29580.99050.13020.092*
C170.3626 (3)0.7324 (16)0.2205 (5)0.0635 (18)
H170.39810.78030.21430.076*
C180.3687 (4)0.5405 (17)0.2790 (6)0.080 (3)
H180.40900.45350.31430.095*
C190.3141 (4)0.4733 (15)0.2863 (6)0.068 (2)
H190.31930.34310.32770.082*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0378 (3)0.0493 (4)0.0461 (4)0.0027 (3)0.0192 (3)0.0002 (4)
Cl10.0771 (12)0.0676 (12)0.0674 (12)0.0189 (9)0.0392 (10)0.0148 (9)
N10.039 (3)0.044 (3)0.046 (3)0.012 (3)0.015 (3)0.000 (3)
N20.036 (3)0.052 (3)0.038 (3)0.000 (3)0.012 (3)0.010 (3)
N30.045 (3)0.051 (3)0.053 (4)0.002 (3)0.027 (3)0.002 (3)
O10.041 (2)0.061 (3)0.053 (3)0.007 (2)0.024 (2)0.008 (2)
O20.060 (3)0.079 (3)0.090 (4)0.019 (3)0.048 (3)0.013 (3)
O30.045 (2)0.046 (2)0.060 (3)0.007 (2)0.026 (2)0.005 (2)
C10.041 (3)0.045 (3)0.044 (4)0.002 (3)0.013 (3)0.010 (3)
C20.040 (3)0.044 (3)0.044 (3)0.004 (3)0.019 (3)0.011 (3)
C30.047 (4)0.057 (4)0.061 (4)0.005 (3)0.028 (3)0.004 (3)
C40.046 (3)0.068 (5)0.072 (5)0.013 (3)0.027 (4)0.006 (4)
C50.049 (4)0.062 (4)0.057 (5)0.020 (4)0.016 (3)0.003 (4)
C60.054 (4)0.045 (4)0.043 (4)0.006 (3)0.019 (3)0.006 (3)
C70.041 (3)0.049 (4)0.049 (4)0.005 (3)0.019 (3)0.012 (3)
C80.045 (3)0.054 (4)0.054 (4)0.004 (3)0.030 (3)0.009 (3)
C90.053 (3)0.035 (3)0.048 (4)0.003 (3)0.026 (3)0.010 (3)
C100.048 (3)0.038 (3)0.048 (4)0.006 (3)0.021 (3)0.010 (3)
C110.054 (4)0.040 (3)0.065 (4)0.005 (3)0.028 (3)0.006 (3)
C120.060 (4)0.043 (4)0.057 (4)0.003 (3)0.021 (3)0.001 (3)
C130.069 (4)0.053 (4)0.050 (5)0.013 (4)0.028 (4)0.005 (3)
C140.060 (4)0.051 (4)0.053 (4)0.003 (3)0.031 (3)0.003 (3)
C150.050 (4)0.083 (5)0.067 (5)0.015 (4)0.024 (4)0.017 (4)
C160.078 (5)0.083 (5)0.084 (6)0.018 (5)0.053 (5)0.031 (5)
C170.052 (4)0.081 (5)0.062 (4)0.001 (4)0.031 (3)0.000 (4)
C180.047 (4)0.095 (6)0.092 (6)0.009 (4)0.033 (4)0.033 (5)
C190.049 (4)0.074 (6)0.072 (6)0.002 (3)0.024 (4)0.023 (4)
Geometric parameters (Å, º) top
Cu1—O31.897 (4)C7—H70.9300
Cu1—O11.934 (4)C8—C91.419 (9)
Cu1—N21.945 (6)C8—H80.9300
Cu1—N31.965 (6)C9—C141.401 (10)
Cl1—C61.737 (7)C9—C101.416 (9)
N1—C11.310 (9)C10—C111.426 (10)
N1—N21.413 (8)C11—C121.364 (10)
N2—C81.282 (9)C11—H110.9300
N3—C191.296 (10)C12—C131.393 (10)
N3—C151.313 (9)C12—H120.9300
O1—C11.292 (7)C13—C141.359 (9)
O2—C31.351 (9)C13—H130.9300
O2—H20.8200C14—H140.9300
O3—C101.293 (8)C15—C161.380 (11)
C1—C21.478 (8)C15—H150.9300
C2—C71.386 (10)C16—C171.370 (10)
C2—C31.405 (10)C16—H160.9300
C3—C41.393 (10)C17—C181.349 (11)
C4—C51.362 (11)C17—H170.9300
C4—H40.9300C18—C191.396 (12)
C5—C61.370 (10)C18—H180.9300
C5—H50.9300C19—H190.9300
C6—C71.385 (9)
O3—Cu1—O1171.5 (2)N2—C8—C9124.1 (6)
O3—Cu1—N291.9 (2)N2—C8—H8117.9
O1—Cu1—N281.0 (2)C9—C8—H8117.9
O3—Cu1—N393.6 (2)C14—C9—C10120.1 (6)
O1—Cu1—N393.7 (2)C14—C9—C8117.5 (6)
N2—Cu1—N3173.5 (3)C10—C9—C8122.4 (6)
C1—N1—N2109.1 (5)O3—C10—C9125.8 (6)
C8—N2—N1118.0 (6)O3—C10—C11118.4 (6)
C8—N2—Cu1128.0 (5)C9—C10—C11115.8 (6)
N1—N2—Cu1114.0 (4)C12—C11—C10122.4 (7)
C19—N3—C15118.0 (7)C12—C11—H11118.8
C19—N3—Cu1121.1 (6)C10—C11—H11118.8
C15—N3—Cu1120.8 (5)C11—C12—C13120.8 (6)
C1—O1—Cu1111.3 (4)C11—C12—H12119.6
C3—O2—H2109.5C13—C12—H12119.6
C10—O3—Cu1127.5 (4)C14—C13—C12118.5 (6)
O1—C1—N1124.6 (5)C14—C13—H13120.7
O1—C1—C2117.5 (6)C12—C13—H13120.7
N1—C1—C2117.9 (5)C13—C14—C9122.4 (7)
C7—C2—C3119.1 (6)C13—C14—H14118.8
C7—C2—C1119.0 (6)C9—C14—H14118.8
C3—C2—C1121.9 (6)N3—C15—C16123.0 (7)
O2—C3—C4118.6 (7)N3—C15—H15118.5
O2—C3—C2122.5 (6)C16—C15—H15118.5
C4—C3—C2118.9 (7)C17—C16—C15119.1 (7)
C5—C4—C3121.2 (7)C17—C16—H16120.4
C5—C4—H4119.4C15—C16—H16120.4
C3—C4—H4119.4C18—C17—C16117.6 (7)
C4—C5—C6120.1 (6)C18—C17—H17121.2
C4—C5—H5120.0C16—C17—H17121.2
C6—C5—H5120.0C17—C18—C19119.6 (7)
C5—C6—C7120.3 (7)C17—C18—H18120.2
C5—C6—Cl1120.7 (5)C19—C18—H18120.2
C7—C6—Cl1119.0 (5)N3—C19—C18122.7 (8)
C6—C7—C2120.5 (6)N3—C19—H19118.7
C6—C7—H7119.8C18—C19—H19118.7
C2—C7—H7119.8
C1—N1—N2—C8179.6 (6)O1—C1—C2—C3178.1 (6)
C1—N1—N2—Cu11.2 (6)N1—C1—C2—C31.3 (9)
O3—Cu1—N2—C84.3 (6)C7—C2—C3—O2179.9 (6)
O1—Cu1—N2—C8179.6 (6)C7—C2—C3—C40.1 (9)
N3—Cu1—N2—C8143 (2)C1—C2—C3—C4179.5 (6)
O3—Cu1—N2—N1176.6 (4)O2—C3—C4—C5179.4 (7)
O1—Cu1—N2—N11.2 (4)C4—C5—C6—Cl1179.1 (6)
N3—Cu1—N2—N136 (3)C5—C6—C7—C20.4 (9)
O3—Cu1—N3—C199.1 (7)Cl1—C6—C7—C2178.7 (5)
O1—Cu1—N3—C19175.1 (7)C3—C2—C7—C60.4 (9)
N2—Cu1—N3—C19139 (2)C1—C2—C7—C6180.0 (5)
O3—Cu1—N3—C15173.4 (6)N1—N2—C8—C9179.5 (5)
O1—Cu1—N3—C152.5 (6)N2—C8—C9—C14178.1 (6)
N2—Cu1—N3—C1539 (3)Cu1—O3—C10—C91.9 (9)
O3—Cu1—O1—C134.5 (18)Cu1—O3—C10—C11177.8 (4)
N2—Cu1—O1—C11.0 (4)C14—C9—C10—O3178.4 (6)
N3—Cu1—O1—C1175.1 (4)C8—C9—C10—O32.9 (9)
O1—Cu1—O3—C1037.5 (19)C14—C9—C10—C111.3 (8)
N2—Cu1—O3—C104.5 (5)C8—C9—C10—C11177.4 (6)
N3—Cu1—O3—C10172.0 (5)O3—C10—C11—C12178.6 (6)
Cu1—O1—C1—N10.6 (7)C9—C10—C11—C121.0 (9)
Cu1—O1—C1—C2178.7 (4)C8—C9—C14—C13178.5 (6)
N2—N1—C1—O10.4 (8)Cu1—N3—C15—C16177.2 (7)
N2—N1—C1—C2179.7 (5)N3—C15—C16—C171.7 (14)
O1—C1—C2—C71.4 (8)Cu1—N3—C19—C18178.7 (7)
N1—C1—C2—C7179.2 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···N10.821.852.575 (9)147
C16—H16···Cg1i0.932.813.48 (3)130
Symmetry code: (i) x, y+1, z1/2.

Experimental details

Crystal data
Chemical formula[Cu(C14H9ClN2O3)(C5H5N)]
Mr431.32
Crystal system, space groupMonoclinic, Cc
Temperature (K)298
a, b, c (Å)23.586 (2), 4.8268 (6), 17.88540 (18)
β (°) 120.809 (2)
V3)1748.8 (3)
Z4
Radiation typeMo Kα
µ (mm1)1.43
Crystal size (mm)0.39 × 0.28 × 0.17
Data collection
DiffractometerSiemens SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Siemens, 1996)
Tmin, Tmax0.606, 0.793
No. of measured, independent and
observed [I > 2σ(I)] reflections
4087, 2273, 1849
Rint0.021
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.116, 1.00
No. of reflections2273
No. of parameters244
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.37, 0.19
Absolute structureFlack (1983), 725 Friedel pairs
Absolute structure parameter0.50 (2)

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Cu1—O31.897 (4)Cu1—N21.945 (6)
Cu1—O11.934 (4)Cu1—N31.965 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···N10.821.852.575 (9)147
C16—H16···Cg1i0.932.813.48 (3)130
Symmetry code: (i) x, y+1, z1/2.
 

Acknowledgements

We acknowledge the National Natural Science Foundation of China (grant No. 20771053) and the Natural Science Foundation of Shandong Province (grant No. 2005ZX09) for financial support.

References

First citationBai, Y., Dang, D. B., Duan, C. Y., Song, Y. & Meng, Q. J. (2005). Inorg. Chem. 44, 5972–5974.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationNishio, M. (2004). CrystEngComm, 6, 130–158.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART, SAINT and SADABS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds