metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

trans-Bis(aceto­nitrile-κN)bis­­{1,2-bis­­[bis­­(3-hy­droxy­prop­yl)phosphino]ethane-κ2P,P′}iron(II) dichloride

aDepartment of Chemistry, Pacific University, 2043 College Way, Forest Grove, OR, USA, and bDepartment of Chemistry, 1253 University of Oregon, Eugene, Oregon 97403-1253, USA
*Correspondence e-mail: dtyler@uoregon.edu

(Received 30 May 2009; accepted 8 June 2009; online 17 June 2009)

In the title compound, [Fe(CH3CN)2(C14H32O4P2)2]Cl2, the FeII atom lies on a crystallographic inversion center and has a distorted trans-FeN2P4 octa­hedral coordination environment arising from two P,P′-bidentate 1,2-bis­[bis­(3-hydroxy­prop­yl)phosphino]ethane ligands in the equatorial plane and two acetonitrile mol­ecules in the axial positions. One of the pendant –(CH2)3OH groups of the ligand is disordered over two sets of sites in a 0.597 (5):0.403 (5) ratio. In the crystal, O—H⋯Cl and O—H⋯O hydrogen bonding helps to establish the packing.

Related literature

For related compounds containing bidentate phosphine ligands, see: Gilbertson et al. (2007[Gilbertson, J. D., Szymczak, N. K., Crossland, J. L., Miller, W. K., Lyon, D. K., Foxman, B. M., Davis, J. & Tyler, D. R. (2007). Inorg. Chem. 46, 1205-1214.]); Miller et al. (2002[Miller, W. K., Gilbertson, J. D., Leiva-Paredes, C., Bernatis, P. R., Weakley, T. J. R., Lyon, K. D. & Tyler, D. R. (2002). Inorg. Chem. 41, 5453-5465.]); Martins et al. (1998[Martins, L. M. D. R. S., Duarte, M. T., Galvao, A. M., Resende, C., Pombiero, A. J. L., Henderson, R. A. & Evans, D. J. (1998). J. Chem. Soc. Dalton Trans. pp. 3311-3318.]); Barron et al. (1987[Barron, A. R., Wilkinson, G., Motevalli, M. & Hursthouse, M. B. (1987). Polyhedron, 6, 1089-1095.]); George et al. (1997[George, A. V., Field, L. D., Malouf, E. Y., McQueen, A. E. D., Pike, S. R., Purches, G. R., Hambley, T. W., Buys, I. E., White, A. H., Hockless, D. C. R. & Skelton, B. W. (1997). J. Organomet. Chem. 538, 101-110.]); Edwards et al. (2006[Edwards, P. E., Harrison, A., Newman, P. D. & Zhang, W. (2006). Inorg. Chim. Acta, 359, 3549-3556.]). For reference structural data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe(C2H3N)2(C14H32O4P2)2]Cl2

  • Mr = 861.53

  • Orthorhombic, P b c a

  • a = 18.3024 (12) Å

  • b = 11.5220 (8) Å

  • c = 19.8413 (13) Å

  • V = 4184.1 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.69 mm−1

  • T = 173 K

  • 0.22 × 0.18 × 0.17 mm

Data collection
  • Bruker APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.863, Tmax = 0.892

  • 24288 measured reflections

  • 4571 independent reflections

  • 4122 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.092

  • S = 1.04

  • 4571 reflections

  • 269 parameters

  • 7 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.88 e Å−3

  • Δρmin = −1.01 e Å−3

Table 1
Selected bond lengths (Å)

Fe1—N1 1.9077 (14)
Fe1—P1 2.2884 (4)
Fe1—P2 2.3049 (4)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O⋯Cl1 0.928 (17) 2.126 (18) 3.0493 (16) 173 (3)
O2—H2O⋯Cl1i 0.976 (18) 2.23 (2) 3.1777 (19) 164 (3)
O3—H3O⋯O1i 0.924 (17) 1.841 (18) 2.741 (2) 164 (2)
O4—H4O⋯Cl1ii 0.98 (2) 1.95 (2) 2.931 (6) 177 (3)
O4A—H4OA⋯Cl1ii 0.98 (2) 2.84 (11) 3.490 (10) 125 (9)
Symmetry codes: (i) x, y-1, z; (ii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The bidentate phosphine 1,2-bis[di(3-hydroxypropyl)phosphino]ethane (DHPrPE) was developed as a water soluble ligand for use in making iron complexes capable of binding dinitrogen and hydrogen (Miller et al., 2002). It was found that the hydroxypropyl groups were non-innocent in reactions with iron(II), and a stable complex was isolated in which the chelating phosphine ligands are tridentate and coordinate through one of the hydroxypropyl groups in addition to both phosphines. This results in a coordinatively saturated complex where the alcohols ligands are cis to one another. The current work shows that addition of acetonitrile to this species results in the rearrangement to the trans geometry.

The stucture of the cation [Fe(DHPrPE)2(CH3CN)2]2+ in the title compound, (I), is shown in Fig. 1. The four phosphine donors from the DHPrPE ligands form a square planar arrangement around the iron atom and the two coordinated acetonitrile ligands occupy the trans axial sites to form a distorted octahedral geometry around the iron. Such trans bis acetonitrile complexes of iron(II) with bidentate phosphines are not uncommon. The first reported structure was of the DMPE analog (Barron et al. 1987). An examination of similar compounds (George et al. 1997, Martins et al. 1998, Gilbertson et al. 2007 and Edwards et al. 2006) shows there are minor variations within the primary coordination sphere of all of these complexes. The Fe—N bond distances vary from 1.895 to 1.917 Å; the Fe—P bond distances vary from 2.255 to 2.3032 Å and the P—Fe—P bite angles are between 84.0° and 85.5°. The Fe—P distances in the title compound, 2.2883 (5) and 2.3044 (5) Å, are at the high end of the expected range while the bite angle of 84.2° is at the low end of the range, indicating significant steric crowding around the iron center.

Related literature top

For related compounds containing bidentate phosphine ligands, see: Gilbertson et al. (2007); Miller et al. (2002); Martins et al. (1998); Barron et al. (1987); George et al. (1997); Edwards et al. (2006). For reference structural data, see: Allen et al. (1987).

Experimental top

The title compound was prepared by dissolving 60 mg of iron(II)chloride tetrahydrate (0.30 mmole) and 200 mg of 1,2-bis[di(3-hydroxypropyl)phosphino]ethane (0.61 mmole) in 3.0 ml of methanol to give a dark purple solution. After addition of 2.0 ml of acetonitrile, the solution slowly turned orange indicating formation of the title complex. Addition of diethylether and filtration yielded 215 mg (90%) of the title compound as an orange, crystalline powder and gave a single resonance in the 31P{1H} NMR spectrum at 61.4 p.p.m.. Yellow blocks of (I) were grown by vapor diffusion of diethylether into a 3:1 methanol/acetonitrile solution of the complex.

Refinement top

One of the hydroxypropyl side chains is disordered over two postions in ratio 60/40. The disordered fragment was refined with the same displacement parameters for atoms in each disordered positions. The H atoms on the acetonitrile methyl groups and the alcohol groups except for the disordered one were located on residual density map and refined with isotropic thermal parameters and with restrictions; the average O—H distance of 0.967 Å (Allen et al. 1987) was used as a target for corresponding O—H bonds. All H atoms in –CH2 groups were positioned geometrically and refined as riding with C—H = 0.99 Å and Uiso(H)=1.2 Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The stucture of the [Fe(DHPrPE)2(CH3CN)2]2+ cation in (I) with 50% probability displacement elipsoids. Only the H atoms in the –OH and –CH3 groups and only one position of the disordered hydroxypropyl group are shown for clarity. Symmetry code (i): –x, –y, –z.
trans-Bis(acetonitrile-κN)bis{1,2-bis[bis(3- hydroxypropyl)phosphino]ethane-κ2P,P'}iron(II) dichloride top
Crystal data top
[Fe(C2H3N)2(C14H32O4P2)2]Cl2F(000) = 1840
Mr = 861.53Dx = 1.368 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 5018 reflections
a = 18.3024 (12) Åθ = 2.3–27.0°
b = 11.5220 (8) ŵ = 0.69 mm1
c = 19.8413 (13) ÅT = 173 K
V = 4184.1 (5) Å3Block, yellow
Z = 40.22 × 0.18 × 0.17 mm
Data collection top
Bruker APEX CCD
diffractometer
4571 independent reflections
Radiation source: fine-focus sealed tube4122 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ϕ and ω scansθmax = 27.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 2223
Tmin = 0.863, Tmax = 0.892k = 1413
24288 measured reflectionsl = 2514
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0451P)2 + 3.5311P]
where P = (Fo2 + 2Fc2)/3
4571 reflections(Δ/σ)max = 0.001
269 parametersΔρmax = 0.88 e Å3
7 restraintsΔρmin = 1.01 e Å3
Crystal data top
[Fe(C2H3N)2(C14H32O4P2)2]Cl2V = 4184.1 (5) Å3
Mr = 861.53Z = 4
Orthorhombic, PbcaMo Kα radiation
a = 18.3024 (12) ŵ = 0.69 mm1
b = 11.5220 (8) ÅT = 173 K
c = 19.8413 (13) Å0.22 × 0.18 × 0.17 mm
Data collection top
Bruker APEX CCD
diffractometer
4571 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
4122 reflections with I > 2σ(I)
Tmin = 0.863, Tmax = 0.892Rint = 0.024
24288 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0357 restraints
wR(F2) = 0.092H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.88 e Å3
4571 reflectionsΔρmin = 1.01 e Å3
269 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)

are estimated using the full covariance matrix. The cell e.s.d.'s are taken

into account individually in the estimation of e.s.d.'s in distances, angles

and torsion angles; correlations between e.s.d.'s in cell parameters are only

used when they are defined by crystal symmetry. An approximate (isotropic)

treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Fe10.00000.00000.00000.01629 (10)
Cl10.09382 (5)0.65273 (5)0.16061 (4)0.0673 (2)
P10.08435 (2)0.04855 (4)0.08033 (2)0.01886 (11)
P20.08545 (2)0.13647 (4)0.03165 (2)0.01984 (11)
O10.17032 (9)0.42889 (12)0.11886 (8)0.0372 (3)
O20.01646 (10)0.18587 (14)0.26912 (9)0.0484 (4)
O30.15466 (8)0.58403 (12)0.01831 (8)0.0334 (3)
N10.04458 (8)0.11038 (12)0.05870 (7)0.0203 (3)
C10.07048 (10)0.17507 (16)0.09498 (9)0.0252 (4)
C20.10388 (16)0.2552 (2)0.14267 (12)0.0427 (6)
C30.17298 (10)0.00506 (16)0.04511 (10)0.0253 (4)
H3A0.18550.05420.00590.030*
H3B0.21190.01340.07940.030*
C40.16574 (9)0.12177 (16)0.02359 (9)0.0245 (4)
H4A0.15990.17180.06380.029*
H4B0.21030.14650.00080.029*
C50.09772 (10)0.19994 (15)0.10533 (9)0.0229 (4)
H5A0.09700.24870.06430.028*
H5B0.05590.22390.13370.028*
C60.16840 (11)0.22501 (16)0.14399 (11)0.0344 (5)
H6A0.17340.16860.18130.041*
H6B0.21060.21450.11340.041*
C70.16982 (12)0.34726 (17)0.17253 (11)0.0351 (5)
H7A0.12630.36000.20120.042*
H7B0.21390.35770.20080.042*
C80.08669 (10)0.03375 (16)0.15970 (9)0.0249 (4)
H8A0.07560.11580.14900.030*
H8B0.13740.03130.17710.030*
C90.03621 (13)0.00366 (17)0.21634 (10)0.0342 (5)
H9A0.01500.00000.20040.041*
H9B0.04700.08520.22850.041*
C100.04449 (13)0.07267 (18)0.27889 (10)0.0369 (5)
H10A0.09690.07800.29090.044*
H10B0.01860.03580.31710.044*
C110.06233 (10)0.29074 (15)0.02366 (10)0.0269 (4)
H11A0.03640.30190.01960.032*
H11B0.02770.31090.06020.032*
C120.12616 (10)0.37655 (16)0.02629 (11)0.0282 (4)
H12A0.15330.36650.06900.034*
H12B0.16010.36110.01150.034*
C130.09764 (11)0.49987 (16)0.02144 (11)0.0293 (4)
H13A0.06670.50700.01930.035*
H13B0.06650.51620.06110.035*
C140.12156 (11)0.12509 (18)0.11788 (9)0.0310 (4)0.50
H14A0.09970.18920.14430.037*0.50
H14B0.10250.05190.13720.037*0.50
C150.2010 (2)0.1272 (5)0.1306 (2)0.0463 (10)0.597 (5)
H15A0.22420.06260.10570.056*0.597 (5)
H15B0.22140.20070.11290.056*0.597 (5)
C160.2200 (4)0.1169 (9)0.2031 (4)0.067 (3)0.597 (5)
H16A0.19340.05080.22340.081*0.597 (5)
H16B0.27310.10260.20810.081*0.597 (5)
O40.2003 (3)0.2228 (4)0.2368 (2)0.0724 (14)0.597 (5)
H4O0.165 (3)0.196 (3)0.271 (2)0.109*0.597 (5)
C14A0.12156 (11)0.12509 (18)0.11788 (9)0.0310 (4)0.50
H14C0.13030.20440.13530.037*0.50
H14D0.08380.08870.14670.037*0.50
C15A0.1934 (3)0.0543 (8)0.1247 (3)0.0463 (10)0.403 (5)
H15C0.23210.09130.09720.056*0.403 (5)
H15D0.18560.02520.10720.056*0.403 (5)
C16A0.2184 (6)0.0479 (10)0.1982 (6)0.067 (3)0.403 (5)
H16C0.17940.01350.22640.081*0.403 (5)
H16D0.26240.00190.20190.081*0.403 (5)
O4A0.2344 (6)0.1593 (11)0.2206 (4)0.090 (4)0.403 (5)
H4OA0.229 (7)0.155 (4)0.2695 (12)0.135*0.403 (5)
H1O0.1497 (16)0.4974 (19)0.1345 (15)0.065 (9)*
H2O0.0490 (18)0.230 (3)0.2395 (16)0.103 (13)*
H3O0.1677 (14)0.588 (2)0.0266 (9)0.047 (7)*
H2A0.130 (2)0.217 (4)0.171 (2)0.098 (13)*
H2B0.066 (2)0.298 (3)0.1631 (18)0.086 (12)*
H2C0.1313 (18)0.309 (3)0.1215 (16)0.068 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.01608 (17)0.01771 (17)0.01507 (17)0.00023 (12)0.00013 (12)0.00109 (12)
Cl10.1218 (7)0.0311 (3)0.0492 (4)0.0262 (3)0.0298 (4)0.0079 (3)
P10.0194 (2)0.0194 (2)0.0178 (2)0.00012 (15)0.00260 (16)0.00053 (16)
P20.0183 (2)0.0216 (2)0.0196 (2)0.00237 (16)0.00001 (16)0.00075 (17)
O10.0469 (9)0.0247 (7)0.0400 (8)0.0011 (6)0.0088 (7)0.0019 (6)
O20.0623 (11)0.0361 (8)0.0467 (10)0.0004 (8)0.0149 (8)0.0059 (7)
O30.0328 (7)0.0279 (7)0.0393 (8)0.0114 (6)0.0014 (6)0.0036 (6)
N10.0204 (7)0.0217 (7)0.0188 (7)0.0009 (6)0.0002 (6)0.0011 (6)
C10.0281 (9)0.0263 (9)0.0212 (8)0.0027 (7)0.0001 (7)0.0006 (7)
C20.0589 (15)0.0407 (13)0.0285 (11)0.0206 (12)0.0064 (11)0.0062 (10)
C30.0185 (8)0.0289 (9)0.0284 (9)0.0001 (7)0.0023 (7)0.0027 (7)
C40.0197 (8)0.0294 (9)0.0242 (9)0.0051 (7)0.0026 (7)0.0024 (7)
C50.0248 (8)0.0202 (8)0.0237 (9)0.0014 (7)0.0060 (7)0.0000 (7)
C60.0351 (10)0.0230 (9)0.0450 (12)0.0017 (8)0.0191 (9)0.0013 (9)
C70.0402 (11)0.0278 (10)0.0374 (11)0.0054 (8)0.0154 (9)0.0006 (8)
C80.0321 (9)0.0226 (8)0.0201 (8)0.0008 (7)0.0056 (7)0.0034 (7)
C90.0529 (13)0.0278 (10)0.0219 (9)0.0086 (9)0.0019 (9)0.0006 (8)
C100.0547 (13)0.0342 (11)0.0218 (9)0.0022 (9)0.0004 (9)0.0030 (8)
C110.0226 (8)0.0215 (8)0.0365 (10)0.0027 (7)0.0015 (7)0.0006 (8)
C120.0226 (9)0.0253 (9)0.0367 (10)0.0047 (7)0.0002 (8)0.0026 (8)
C130.0260 (9)0.0242 (9)0.0378 (11)0.0064 (7)0.0033 (8)0.0034 (8)
C140.0340 (10)0.0380 (11)0.0212 (9)0.0044 (8)0.0048 (8)0.0031 (8)
C150.0307 (15)0.077 (3)0.0314 (15)0.009 (2)0.0063 (12)0.012 (2)
C160.045 (2)0.107 (7)0.050 (3)0.016 (5)0.0194 (18)0.032 (6)
O40.090 (4)0.082 (3)0.045 (2)0.043 (3)0.024 (2)0.000 (2)
C14A0.0340 (10)0.0380 (11)0.0212 (9)0.0044 (8)0.0048 (8)0.0031 (8)
C15A0.0307 (15)0.077 (3)0.0314 (15)0.009 (2)0.0063 (12)0.012 (2)
C16A0.045 (2)0.107 (7)0.050 (3)0.016 (5)0.0194 (18)0.032 (6)
O4A0.083 (7)0.143 (10)0.043 (4)0.043 (5)0.005 (4)0.008 (5)
Geometric parameters (Å, º) top
Fe1—N1i1.9077 (14)C8—C91.517 (3)
Fe1—N11.9077 (14)C8—H8A0.9900
Fe1—P12.2884 (4)C8—H8B0.9900
Fe1—P1i2.2884 (4)C9—C101.529 (3)
Fe1—P2i2.3049 (4)C9—H9A0.9900
Fe1—P22.3049 (4)C9—H9B0.9900
P1—C51.8300 (18)C10—H10A0.9900
P1—C31.8358 (18)C10—H10B0.9900
P1—C81.8387 (18)C11—C121.531 (2)
P2—C111.8341 (19)C11—H11A0.9900
P2—C141.8388 (19)C11—H11B0.9900
P2—C41.8409 (18)C12—C131.517 (3)
O1—C71.421 (2)C12—H12A0.9900
O1—H1O0.928 (17)C12—H12B0.9900
O2—C101.415 (3)C13—H13A0.9900
O2—H2O0.976 (18)C13—H13B0.9900
O3—C131.426 (2)C14—C151.477 (4)
O3—H3O0.924 (17)C14—H14A0.9900
N1—C11.140 (2)C14—H14B0.9900
C1—C21.457 (3)C15—C161.483 (8)
C2—H2A0.87 (4)C15—H15A0.9900
C2—H2B0.94 (4)C15—H15B0.9900
C2—H2C0.90 (3)C16—O41.438 (10)
C3—C41.528 (3)C16—H16A0.9900
C3—H3A0.9900C16—H16B0.9900
C3—H3B0.9900C16—H4OA1.40 (2)
C4—H4A0.9900O4—H4O0.98 (2)
C4—H4B0.9900O4—H4OA1.15 (9)
C5—C61.531 (2)C15A—C16A1.531 (13)
C5—H5A0.9900C15A—H15C0.9900
C5—H5B0.9900C15A—H15D0.9900
C6—C71.518 (3)C16A—O4A1.390 (15)
C6—H6A0.9900C16A—H16C0.9900
C6—H6B0.9900C16A—H16D0.9900
C7—H7A0.9900O4A—H4O1.67 (3)
C7—H7B0.9900O4A—H4OA0.98 (2)
N1i—Fe1—N1180.0C9—C8—H8B107.7
N1i—Fe1—P191.51 (4)P1—C8—H8B107.7
N1—Fe1—P188.49 (4)H8A—C8—H8B107.1
N1i—Fe1—P1i88.49 (4)C8—C9—C10112.18 (17)
N1—Fe1—P1i91.51 (4)C8—C9—H9A109.2
P1—Fe1—P1i180.00 (3)C10—C9—H9A109.2
N1i—Fe1—P2i89.90 (4)C8—C9—H9B109.2
N1—Fe1—P2i90.10 (4)C10—C9—H9B109.2
P1—Fe1—P2i95.813 (16)H9A—C9—H9B107.9
P1i—Fe1—P2i84.187 (16)O2—C10—C9112.52 (17)
N1i—Fe1—P290.10 (4)O2—C10—H10A109.1
N1—Fe1—P289.90 (4)C9—C10—H10A109.1
P1—Fe1—P284.187 (16)O2—C10—H10B109.1
P1i—Fe1—P295.813 (16)C9—C10—H10B109.1
P2i—Fe1—P2180.00 (3)H10A—C10—H10B107.8
C5—P1—C3104.19 (8)C12—C11—P2116.53 (13)
C5—P1—C8104.85 (8)C12—C11—H11A108.2
C3—P1—C899.48 (9)P2—C11—H11A108.2
C5—P1—Fe1120.80 (6)C12—C11—H11B108.2
C3—P1—Fe1105.32 (6)P2—C11—H11B108.2
C8—P1—Fe1119.09 (6)H11A—C11—H11B107.3
C11—P2—C14103.44 (9)C13—C12—C11109.88 (15)
C11—P2—C4102.82 (9)C13—C12—H12A109.7
C14—P2—C4105.10 (9)C11—C12—H12A109.7
C11—P2—Fe1118.75 (6)C13—C12—H12B109.7
C14—P2—Fe1116.66 (7)C11—C12—H12B109.7
C4—P2—Fe1108.46 (6)H12A—C12—H12B108.2
C7—O1—H1O108.1 (19)O3—C13—C12112.82 (16)
C10—O2—H2O110 (2)O3—C13—H13A109.0
C13—O3—H3O105.3 (17)C12—C13—H13A109.0
C1—N1—Fe1178.43 (15)O3—C13—H13B109.0
N1—C1—C2178.4 (2)C12—C13—H13B109.0
C1—C2—H2A110 (3)H13A—C13—H13B107.8
C1—C2—H2B108 (2)C15—C14—P2120.8 (2)
H2A—C2—H2B113 (3)C15—C14—H14A107.1
C1—C2—H2C112 (2)P2—C14—H14A107.1
H2A—C2—H2C111 (3)C15—C14—H14B107.1
H2B—C2—H2C104 (3)P2—C14—H14B107.1
C4—C3—P1106.90 (12)H14A—C14—H14B106.8
C4—C3—H3A110.3C16—C15—C14113.3 (4)
P1—C3—H3A110.3C16—C15—H15A108.9
C4—C3—H3B110.3C14—C15—H15A108.9
P1—C3—H3B110.3C16—C15—H15B108.9
H3A—C3—H3B108.6C14—C15—H15B108.9
C3—C4—P2108.88 (12)H15A—C15—H15B107.7
C3—C4—H4A109.9O4—C16—C15108.9 (6)
P2—C4—H4A109.9O4—C16—H16A109.9
C3—C4—H4B109.9C15—C16—H16A109.9
P2—C4—H4B109.9O4—C16—H16B109.9
H4A—C4—H4B108.3C15—C16—H16B109.9
C6—C5—P1115.37 (12)H16A—C16—H16B108.3
C6—C5—H5A108.4O4—C16—H4OA48 (4)
P1—C5—H5A108.4C15—C16—H4OA157 (3)
C6—C5—H5B108.4H16A—C16—H4OA85.2
P1—C5—H5B108.4H16B—C16—H4OA80.6
H5A—C5—H5B107.5C16—O4—H4O102.7 (19)
C7—C6—C5112.10 (16)C16—O4—H4OA64.3 (16)
C7—C6—H6A109.2H4O—O4—H4OA73 (5)
C5—C6—H6A109.2C16A—C15A—H15C109.4
C7—C6—H6B109.2C16A—C15A—H15D109.4
C5—C6—H6B109.2H15C—C15A—H15D108.0
H6A—C6—H6B107.9O4A—C16A—C15A108.8 (8)
O1—C7—C6109.56 (17)O4A—C16A—H16C109.9
O1—C7—H7A109.8C15A—C16A—H16C109.9
C6—C7—H7A109.8O4A—C16A—H16D109.9
O1—C7—H7B109.8C15A—C16A—H16D109.9
C6—C7—H7B109.8H16C—C16A—H16D108.3
H7A—C7—H7B108.2C16A—O4A—H4O105.5 (16)
C9—C8—P1118.28 (13)C16A—O4A—H4OA104 (2)
C9—C8—H8A107.7H4O—O4A—H4OA49 (8)
P1—C8—H8A107.7
N1i—Fe1—P1—C5126.74 (8)Fe1—P1—C3—C452.35 (13)
N1—Fe1—P1—C553.26 (8)P1—C3—C4—P252.78 (15)
P2i—Fe1—P1—C536.69 (7)C11—P2—C4—C3157.24 (13)
P2—Fe1—P1—C5143.31 (7)C14—P2—C4—C394.80 (14)
N1i—Fe1—P1—C3115.91 (8)Fe1—P2—C4—C330.65 (14)
N1—Fe1—P1—C364.09 (8)C3—P1—C5—C645.93 (17)
P2i—Fe1—P1—C3154.03 (6)C8—P1—C5—C658.13 (16)
P2—Fe1—P1—C325.97 (6)Fe1—P1—C5—C6163.84 (12)
N1i—Fe1—P1—C85.56 (8)P1—C5—C6—C7170.84 (15)
N1—Fe1—P1—C8174.44 (8)C5—C6—C7—O164.9 (2)
P2i—Fe1—P1—C895.61 (7)C5—P1—C8—C953.06 (17)
P2—Fe1—P1—C884.39 (7)C3—P1—C8—C9160.61 (15)
N1i—Fe1—P2—C1124.40 (9)Fe1—P1—C8—C985.84 (16)
N1—Fe1—P2—C11155.60 (9)P1—C8—C9—C10179.89 (14)
P1—Fe1—P2—C11115.91 (8)C8—C9—C10—O270.4 (2)
P1i—Fe1—P2—C1164.09 (8)C14—P2—C11—C1265.29 (17)
N1i—Fe1—P2—C14149.30 (9)C4—P2—C11—C1243.92 (17)
N1—Fe1—P2—C1430.70 (9)Fe1—P2—C11—C12163.61 (12)
P1—Fe1—P2—C14119.19 (8)P2—C11—C12—C13178.05 (14)
P1i—Fe1—P2—C1460.81 (8)C11—C12—C13—O3175.41 (17)
N1i—Fe1—P2—C492.34 (8)C11—P2—C14—C1597.4 (3)
N1—Fe1—P2—C487.66 (8)C4—P2—C14—C1510.1 (3)
P1—Fe1—P2—C40.84 (7)Fe1—P2—C14—C15130.3 (3)
P1i—Fe1—P2—C4179.16 (7)P2—C14—C15—C16179.9 (5)
C5—P1—C3—C4179.56 (12)C14—C15—C16—O471.1 (7)
C8—P1—C3—C471.49 (14)
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···Cl10.93 (2)2.13 (2)3.0493 (16)173 (3)
O2—H2O···Cl1ii0.98 (2)2.23 (2)3.1777 (19)164 (3)
O3—H3O···O1ii0.92 (2)1.84 (2)2.741 (2)164 (2)
O4—H4O···Cl1iii0.98 (2)1.95 (2)2.931 (6)177 (3)
O4A—H4OA···Cl1iii0.98 (2)2.84 (11)3.490 (10)125 (9)
Symmetry codes: (ii) x, y1, z; (iii) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formula[Fe(C2H3N)2(C14H32O4P2)2]Cl2
Mr861.53
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)173
a, b, c (Å)18.3024 (12), 11.5220 (8), 19.8413 (13)
V3)4184.1 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.69
Crystal size (mm)0.22 × 0.18 × 0.17
Data collection
DiffractometerBruker APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.863, 0.892
No. of measured, independent and
observed [I > 2σ(I)] reflections
24288, 4571, 4122
Rint0.024
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.092, 1.04
No. of reflections4571
No. of parameters269
No. of restraints7
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.88, 1.01

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Fe1—N11.9077 (14)Fe1—P22.3049 (4)
Fe1—P12.2884 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···Cl10.928 (17)2.126 (18)3.0493 (16)173 (3)
O2—H2O···Cl1i0.976 (18)2.23 (2)3.1777 (19)164 (3)
O3—H3O···O1i0.924 (17)1.841 (18)2.741 (2)164 (2)
O4—H4O···Cl1ii0.98 (2)1.95 (2)2.931 (6)177 (3)
O4A—H4OA···Cl1ii0.98 (2)2.84 (11)3.490 (10)125 (9)
Symmetry codes: (i) x, y1, z; (ii) x, y+1/2, z1/2.
 

Acknowledgements

We thank the NSF (CHE-0809393) for funding.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBarron, A. R., Wilkinson, G., Motevalli, M. & Hursthouse, M. B. (1987). Polyhedron, 6, 1089–1095.  CSD CrossRef CAS Web of Science Google Scholar
First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEdwards, P. E., Harrison, A., Newman, P. D. & Zhang, W. (2006). Inorg. Chim. Acta, 359, 3549–3556.  Web of Science CrossRef CAS Google Scholar
First citationGeorge, A. V., Field, L. D., Malouf, E. Y., McQueen, A. E. D., Pike, S. R., Purches, G. R., Hambley, T. W., Buys, I. E., White, A. H., Hockless, D. C. R. & Skelton, B. W. (1997). J. Organomet. Chem. 538, 101–110.  CSD CrossRef CAS Web of Science Google Scholar
First citationGilbertson, J. D., Szymczak, N. K., Crossland, J. L., Miller, W. K., Lyon, D. K., Foxman, B. M., Davis, J. & Tyler, D. R. (2007). Inorg. Chem. 46, 1205–1214.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMartins, L. M. D. R. S., Duarte, M. T., Galvao, A. M., Resende, C., Pombiero, A. J. L., Henderson, R. A. & Evans, D. J. (1998). J. Chem. Soc. Dalton Trans. pp. 3311–3318.  Web of Science CSD CrossRef Google Scholar
First citationMiller, W. K., Gilbertson, J. D., Leiva-Paredes, C., Bernatis, P. R., Weakley, T. J. R., Lyon, K. D. & Tyler, D. R. (2002). Inorg. Chem. 41, 5453–5465.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds