organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-[1-(Hy­droxy­imino)eth­yl]-N-(2-meth­oxy­phen­yl)cyclo­propane­carboxamide

aCollege of Chemical Engineering, Shanxi Datong University, Datong 037009, People's Republic of China
*Correspondence e-mail: junlingwang2009@163.com

(Received 30 May 2009; accepted 11 June 2009; online 20 June 2009)

The title compound, C13H16N2O3, adopts an E configuration with respect to the C=N bond and an intra­molecular N—H⋯N hydrogen bond results in the formation of a six-membered ring. In the crystal, inter­molecular O—H⋯O hydrogen bonds link the mol­ecules into a chain propagating along the b axis. Very weak ππ stacking inter­actions [centroid–centroid distance = 4.18 (2) Å] may further consolidate the packing, forming a two-dimensional supra­molecular network.

Related literature

For background to cyclo­propane derivatives, see: Liu & Montgomery (2006[Liu, L. & Montgomery, J. (2006). J. Am. Chem. Soc. 128, 5348-5349.]); Ogoshi et al. (2006[Ogoshi, S., Nagata, M. & Kurosawa, H. (2006). J. Am. Chem. Soc. 128, 5350-5351.]).

[Scheme 1]

Experimental

Crystal data
  • C13H16N2O3

  • Mr = 248.28

  • Monoclinic, P 21 /c

  • a = 16.062 (6) Å

  • b = 5.483 (2) Å

  • c = 14.250 (6) Å

  • β = 100.055 (6)°

  • V = 1235.7 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.41 × 0.29 × 0.20 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1999[Bruker (1999). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.96, Tmax = 0.99

  • 6430 measured reflections

  • 2432 independent reflections

  • 1520 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.073

  • wR(F2) = 0.170

  • S = 1.09

  • 2432 reflections

  • 169 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯N2 0.856 (17) 1.94 (2) 2.670 (3) 142 (3)
O3—H3O⋯O2i 0.85 (4) 1.93 (2) 2.751 (3) 162 (4)
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 1999[Bruker (1999). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1008); molecular graphics: SHELXTL-Plus (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Cyclopropane and their derivatives are a significant class of compounds which can be used in a variety of studies such as organic synthesis, catalytic reaction and so on (Liu & Montgomery, 2006; Ogoshi et al., 2006). In order to extend our work on structural characterization of cyclopropane compounds, we report the synthesis and the X-ray structure of the title compound, (I), in this paper (Fig. 1).

The title molecule adopts an E configuration with respect to C=N bond. There is an intramolecular O—H···N hydrogen bonds, forming of a six-membered ring (Table 1) and the intermolecular O—H···O hydrogen bonds link the molecules into a one-dimensional chain along the b axis. The crystal structure is further stabilized by π-π interaction involving the benzene rings: Cg1···Cg1 (1 - x, 1 - y, 1 - z) = 4.18 (2) Å, where Cg1 denotes the centroid of the C2—C7 (Fig. 2).

Related literature top

For background to cyclopropane derivatives, see: Liu & Montgomery (2006); Ogoshi et al. (2006).

Experimental top

To a solution of 1-acetyl-N-(2-methoxyphenyl)cyclopropanecarboxamide (2.33 g, 10 mmol) and NaOAc (1.64 g, 20 mmol) in EtOH (25 ml) and H2O (1 ml) was added NH2OH.HCl (1.39 g, 20 mmol) in one portion. The reaction mixture was stirred at room temperature for 12 h, and then poured into ice-water (200 ml) under stirring. A white solid was precipitated, which was filtered and the residue was purified by a flash silica gel column chromatography to give colourless blocks of (I) (eluent: ether/ethyl acetate = 1/3 v/v).

Refinement top

The N- and O-bound H atoms were located in a difference map and their positions were freely refined. The C-bound H atoms were geometrically placed (C—H = 0.93–0.97Å) and refined as riding. The constraints Uiso = 1.2Ueq(C,N) or 1.5Ueq(methyl C,O) were applied.

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 1008); molecular graphics: SHELXTL-Plus (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 1008).

Figures top
[Figure 1] Fig. 1. Molecule structure of (I) with displacement ellipsoids drawn at the 30% probability level for non-H atoms.
[Figure 2] Fig. 2. View of the two-dimensional supramolecular structure of (I): hydrogen bonds and π-π interactions are shown as dashed lines.
1-[1-(Hydroxyimino)ethyl]-N-(2-methoxyphenyl)cyclopropanecarboxamide top
Crystal data top
C13H16N2O3F(000) = 528
Mr = 248.28Dx = 1.335 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ybcCell parameters from 2432 reflections
a = 16.062 (6) Åθ = 1.3–26.1°
b = 5.483 (2) ŵ = 0.10 mm1
c = 14.250 (6) ÅT = 293 K
β = 100.055 (6)°Block, colourless
V = 1235.7 (8) Å30.41 × 0.29 × 0.20 mm
Z = 4
Data collection top
Bruker SMART APEX CCD
diffractometer
2432 independent reflections
Radiation source: fine-focus sealed tube1520 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
ω scansθmax = 26.1°, θmin = 1.3°
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
h = 919
Tmin = 0.96, Tmax = 0.99k = 66
6430 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.073Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.170H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.0648P)2 + 0.566P]
where P = (Fo2 + 2Fc2)/3
2432 reflections(Δ/σ)max < 0.001
169 parametersΔρmax = 0.21 e Å3
2 restraintsΔρmin = 0.20 e Å3
Crystal data top
C13H16N2O3V = 1235.7 (8) Å3
Mr = 248.28Z = 4
Monoclinic, P21/cMo Kα radiation
a = 16.062 (6) ŵ = 0.10 mm1
b = 5.483 (2) ÅT = 293 K
c = 14.250 (6) Å0.41 × 0.29 × 0.20 mm
β = 100.055 (6)°
Data collection top
Bruker SMART APEX CCD
diffractometer
2432 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
1520 reflections with I > 2σ(I)
Tmin = 0.96, Tmax = 0.99Rint = 0.044
6430 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0732 restraints
wR(F2) = 0.170H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 0.21 e Å3
2432 reflectionsΔρmin = 0.20 e Å3
169 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3277 (2)0.2371 (7)1.1123 (2)0.0577 (10)
H1A0.28780.22491.15500.087*
H1B0.38260.18741.14470.087*
H1C0.33030.40291.09140.087*
C20.3509 (2)0.0767 (6)0.9634 (2)0.0428 (8)
C30.4169 (2)0.2323 (6)0.9573 (3)0.0558 (10)
H30.43050.35611.00200.067*
C40.4628 (2)0.2049 (7)0.8849 (3)0.0578 (10)
H40.50750.30990.88120.069*
C50.4432 (2)0.0246 (6)0.8182 (2)0.0525 (9)
H50.47450.00760.76960.063*
C60.3768 (2)0.1321 (6)0.8233 (2)0.0468 (8)
H60.36370.25480.77810.056*
C70.3297 (2)0.1078 (5)0.8954 (2)0.0378 (7)
C80.21464 (19)0.4042 (5)0.8447 (2)0.0365 (7)
C90.14682 (19)0.5534 (5)0.8782 (2)0.0356 (7)
C100.0684 (2)0.5852 (6)0.8000 (2)0.0516 (9)
H10A0.06710.49750.74060.062*
H10B0.01390.60220.81980.062*
C110.1292 (2)0.7886 (6)0.8211 (2)0.0500 (9)
H11A0.11160.92990.85370.060*
H11B0.16470.82520.77450.060*
C120.13045 (19)0.5525 (5)0.9782 (2)0.0366 (7)
C130.0787 (2)0.7537 (6)1.0116 (3)0.0559 (10)
H13A0.07400.72631.07700.084*
H13B0.02330.75530.97310.084*
H13C0.10590.90761.00590.084*
N20.16185 (17)0.3782 (4)1.03227 (17)0.0405 (7)
O10.30181 (15)0.0837 (4)1.03230 (16)0.0589 (7)
O20.22453 (15)0.4164 (4)0.76124 (15)0.0523 (6)
O30.14111 (17)0.3914 (4)1.12368 (16)0.0580 (7)
H3O0.176 (2)0.300 (7)1.159 (3)0.087*
N10.26309 (17)0.2616 (4)0.90914 (18)0.0392 (7)
H1N0.2470 (19)0.254 (6)0.9632 (16)0.047*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.067 (3)0.060 (2)0.048 (2)0.008 (2)0.0146 (18)0.0174 (18)
C20.051 (2)0.0407 (17)0.0392 (18)0.0018 (16)0.0135 (15)0.0005 (15)
C30.061 (2)0.050 (2)0.057 (2)0.0181 (19)0.0139 (19)0.0073 (17)
C40.058 (2)0.056 (2)0.064 (3)0.0165 (19)0.0211 (19)0.0074 (19)
C50.055 (2)0.059 (2)0.049 (2)0.0000 (19)0.0237 (17)0.0093 (18)
C60.054 (2)0.0429 (18)0.046 (2)0.0002 (17)0.0155 (17)0.0008 (15)
C70.045 (2)0.0327 (16)0.0372 (17)0.0028 (15)0.0115 (14)0.0061 (14)
C80.046 (2)0.0311 (15)0.0317 (17)0.0094 (15)0.0058 (14)0.0012 (13)
C90.0413 (18)0.0258 (14)0.0394 (17)0.0050 (14)0.0064 (14)0.0022 (13)
C100.049 (2)0.053 (2)0.050 (2)0.0036 (18)0.0013 (16)0.0030 (17)
C110.065 (2)0.0338 (17)0.051 (2)0.0036 (17)0.0092 (18)0.0139 (15)
C120.0402 (19)0.0257 (14)0.0444 (18)0.0048 (14)0.0089 (14)0.0011 (13)
C130.068 (3)0.0383 (19)0.067 (3)0.0096 (18)0.026 (2)0.0046 (17)
N20.0562 (18)0.0345 (14)0.0336 (14)0.0018 (13)0.0154 (12)0.0017 (12)
O10.0641 (17)0.0655 (16)0.0524 (15)0.0226 (13)0.0245 (12)0.0235 (12)
O20.0684 (16)0.0570 (15)0.0329 (13)0.0035 (13)0.0128 (11)0.0033 (11)
O30.0794 (19)0.0602 (16)0.0402 (14)0.0181 (14)0.0264 (12)0.0069 (11)
N10.0509 (17)0.0354 (13)0.0334 (15)0.0070 (13)0.0133 (13)0.0018 (12)
Geometric parameters (Å, º) top
C1—O11.420 (4)C8—C91.505 (4)
C1—H1A0.9600C9—C121.494 (4)
C1—H1B0.9600C9—C111.525 (4)
C1—H1C0.9600C9—C101.540 (4)
C2—O11.362 (4)C10—C111.478 (5)
C2—C31.376 (4)C10—H10A0.9700
C2—C71.402 (4)C10—H10B0.9700
C3—C41.377 (5)C11—H11A0.9700
C3—H30.9300C11—H11B0.9700
C4—C51.369 (5)C12—N21.275 (4)
C4—H40.9300C12—C131.507 (4)
C5—C61.380 (5)C13—H13A0.9600
C5—H50.9300C13—H13B0.9600
C6—C71.385 (4)C13—H13C0.9600
C6—H60.9300N2—O31.402 (3)
C7—N11.402 (4)O3—H3O0.85 (4)
C8—O21.229 (3)N1—H1N0.856 (17)
C8—N11.345 (4)
O1—C1—H1A109.5C12—C9—C10115.7 (3)
O1—C1—H1B109.5C8—C9—C10112.2 (3)
H1A—C1—H1B109.5C11—C9—C1057.7 (2)
O1—C1—H1C109.5C11—C10—C960.6 (2)
H1A—C1—H1C109.5C11—C10—H10A117.7
H1B—C1—H1C109.5C9—C10—H10A117.7
O1—C2—C3125.3 (3)C11—C10—H10B117.7
O1—C2—C7114.7 (3)C9—C10—H10B117.7
C3—C2—C7120.0 (3)H10A—C10—H10B114.8
C2—C3—C4120.0 (3)C10—C11—C961.7 (2)
C2—C3—H3120.0C10—C11—H11A117.6
C4—C3—H3120.0C9—C11—H11A117.6
C5—C4—C3120.7 (3)C10—C11—H11B117.6
C5—C4—H4119.6C9—C11—H11B117.6
C3—C4—H4119.6H11A—C11—H11B114.7
C4—C5—C6119.9 (3)N2—C12—C9117.5 (3)
C4—C5—H5120.0N2—C12—C13122.7 (3)
C6—C5—H5120.0C9—C12—C13119.8 (3)
C5—C6—C7120.4 (3)C12—C13—H13A109.5
C5—C6—H6119.8C12—C13—H13B109.5
C7—C6—H6119.8H13A—C13—H13B109.5
C6—C7—C2119.0 (3)C12—C13—H13C109.5
C6—C7—N1125.1 (3)H13A—C13—H13C109.5
C2—C7—N1115.9 (3)H13B—C13—H13C109.5
O2—C8—N1122.3 (3)C12—N2—O3112.9 (2)
O2—C8—C9120.0 (3)C2—O1—C1118.0 (3)
N1—C8—C9117.7 (2)N2—O3—H3O107 (3)
C12—C9—C8123.9 (3)C8—N1—C7128.2 (3)
C12—C9—C11117.6 (3)C8—N1—H1N114 (2)
C8—C9—C11111.6 (3)C7—N1—H1N117 (2)
O1—C2—C3—C4179.1 (3)C8—C9—C10—C11102.3 (3)
C7—C2—C3—C40.8 (5)C12—C9—C11—C10104.3 (3)
C2—C3—C4—C50.4 (6)C8—C9—C11—C10103.3 (3)
C3—C4—C5—C60.1 (6)C8—C9—C12—N216.4 (4)
C4—C5—C6—C70.2 (5)C11—C9—C12—N2165.1 (3)
C5—C6—C7—C20.6 (5)C10—C9—C12—N2129.6 (3)
C5—C6—C7—N1177.7 (3)C8—C9—C12—C13163.4 (3)
O1—C2—C7—C6179.0 (3)C11—C9—C12—C1314.7 (4)
C3—C2—C7—C60.9 (5)C10—C9—C12—C1350.6 (4)
O1—C2—C7—N11.7 (4)C9—C12—N2—O3178.6 (2)
C3—C2—C7—N1178.2 (3)C13—C12—N2—O31.7 (4)
O2—C8—C9—C12179.5 (3)C3—C2—O1—C110.3 (5)
N1—C8—C9—C120.1 (4)C7—C2—O1—C1169.6 (3)
O2—C8—C9—C1129.2 (4)O2—C8—N1—C70.4 (5)
N1—C8—C9—C11150.4 (3)C9—C8—N1—C7179.9 (3)
O2—C8—C9—C1033.5 (4)C6—C7—N1—C823.1 (5)
N1—C8—C9—C10146.9 (3)C2—C7—N1—C8159.8 (3)
C12—C9—C10—C11107.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···N20.86 (2)1.94 (2)2.670 (3)142 (3)
O3—H3O···O2i0.85 (4)1.93 (2)2.751 (3)162 (4)
Symmetry code: (i) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC13H16N2O3
Mr248.28
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)16.062 (6), 5.483 (2), 14.250 (6)
β (°) 100.055 (6)
V3)1235.7 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.41 × 0.29 × 0.20
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1999)
Tmin, Tmax0.96, 0.99
No. of measured, independent and
observed [I > 2σ(I)] reflections
6430, 2432, 1520
Rint0.044
(sin θ/λ)max1)0.618
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.073, 0.170, 1.09
No. of reflections2432
No. of parameters169
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.21, 0.20

Computer programs: SMART (Bruker, 1999), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 1008), SHELXTL-Plus (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···N20.856 (17)1.94 (2)2.670 (3)142 (3)
O3—H3O···O2i0.85 (4)1.93 (2)2.751 (3)162 (4)
Symmetry code: (i) x, y+1/2, z+1/2.
 

Acknowledgements

We thank the College of Chemical Engineering of Shanxi Datong University for support.

References

First citationBruker (1999). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLiu, L. & Montgomery, J. (2006). J. Am. Chem. Soc. 128, 5348–5349.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOgoshi, S., Nagata, M. & Kurosawa, H. (2006). J. Am. Chem. Soc. 128, 5350–5351.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds