metal-organic compounds
Poly[diethylenetriammonium [aquadi-μ2-sulfato-sulfatolanthanum(III)]]
aSchool of Chemical Engineering, Changchun University of Technology, Changchun 130012, People's Republic of China
*Correspondence e-mail: fly012345@sohu.com
In the title compound, {(C4H16N3)[La(SO4)3(H2O)]}n, the La atom adopts an irregular LaO9 coordination geometry, including one bonded water molecule. The three sulfate groups adopt both monodentate and bidentate coordination to the metal ions. Two of the sulfate groups serve as bridges in the (100) and (010) directions, yielding infinite sheets, whereas the third is pendant to one La3+ cation. The protonated organic species interacts with the layers by way of N—H⋯O hydrogen bonds, and O–H⋯O hydrogen bonds involving aqua ligands also occur.
Related literature
For related lanthanide sulfate structures, see: Bataille & Louër (2004); Dan et al. (2004); Liu et al. (2005); Rao et al. (2006); Wickleder (2002); Xing et al. (2003).
Experimental
Crystal data
|
|
Data collection: PROCESS-AUTO (Rigaku, 1998); cell PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2000); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536809022272/hb2997sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809022272/hb2997Isup2.hkl
La(NO3)3.6H2O (0.30 g, 0.7 mmol) was dissolved in 5 ml deionized water under stirring, and then H2SO4 (95%, 0.25 ml, 4.55 mmol) and DETA (0.33 ml, 4 mmol) were added drop-wise to a clear solution with pH = 4.0. After being continuously stirred for 3 h, the solution with the molar ratio of La(NO3)3.6H2O: 6.5H2SO4: 4.3DETA: 397H2O was transferred into a 23-ml autoclave and heated at 438 K for 5 days. After cooling to room temperature, colorless rods of (I) were collected by filtration as a single phase (yield 53% based on the La). The atomic ratio of La:S determined by EDX was 1:3, in consistence with the results of structural determination of (I).
Water H atoms were located in a difference Fourier map and were refined with O—H = 0.84 (2) Å, H···H = 1.37 (2) Å and Uiso(H) = 1.2Ueq(O). The remaining H-atoms were placed in calculated positions (C—H = 0.89 Å, N—H = 0.89–0.90 Å) and were included in the
as riding with Uiso(H) = 1.2Ueq(C, N).Data collection: PROCESS-AUTO (Rigaku, 1998); cell
PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2000); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).Fig. 1. The asymmetric unit of (I), expanded to show the complete metal coordination and displacement ellipsoids at the 50% probability level. [Symmetry codes: (i) 1 + x, y, z; (ii) 1 - x, 1/2 + y, -z.] | |
Fig. 2. A stick plot of (I), displaying the layer paralleling ab planar formed by link the La with µ2-S(1)O4 and µ2-S(3)O4. | |
Fig. 3. The ball-stick packing diagram of (I), viewed along (100) direction. The H-bond of N—H···O and OW—H···O hold together adjacent layer. |
(C4H16N3)[La(SO4)3(H2O)] | F(000) = 544 |
Mr = 551.33 | Dx = 2.358 Mg m−3 |
Monoclinic, P21 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2yb | Cell parameters from 2000 reflections |
a = 6.7128 (13) Å | θ = 3.0–27.5° |
b = 10.442 (2) Å | µ = 3.23 mm−1 |
c = 11.103 (2) Å | T = 293 K |
β = 93.94 (3)° | Rod, colourless |
V = 776.4 (3) Å3 | 0.45 × 0.31 × 0.06 mm |
Z = 2 |
Rigaku R-AXIS RAPID diffractometer | 3429 independent reflections |
Radiation source: fine-focus sealed tube | 3312 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.028 |
Detector resolution: 10.00 pixels mm-1 | θmax = 27.5°, θmin = 3.0° |
ω scans | h = −8→7 |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | k = −13→13 |
Tmin = 0.317, Tmax = 0.830 | l = −14→14 |
7574 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.021 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.049 | w = 1/[σ2(Fo2) + (0.0089P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.17 | (Δ/σ)max = 0.006 |
3429 reflections | Δρmax = 0.35 e Å−3 |
225 parameters | Δρmin = −0.61 e Å−3 |
4 restraints | Absolute structure: Flack (1983), 1552 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: −0.098 (11) |
(C4H16N3)[La(SO4)3(H2O)] | V = 776.4 (3) Å3 |
Mr = 551.33 | Z = 2 |
Monoclinic, P21 | Mo Kα radiation |
a = 6.7128 (13) Å | µ = 3.23 mm−1 |
b = 10.442 (2) Å | T = 293 K |
c = 11.103 (2) Å | 0.45 × 0.31 × 0.06 mm |
β = 93.94 (3)° |
Rigaku R-AXIS RAPID diffractometer | 3429 independent reflections |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | 3312 reflections with I > 2σ(I) |
Tmin = 0.317, Tmax = 0.830 | Rint = 0.028 |
7574 measured reflections |
R[F2 > 2σ(F2)] = 0.021 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.049 | Δρmax = 0.35 e Å−3 |
S = 1.17 | Δρmin = −0.61 e Å−3 |
3429 reflections | Absolute structure: Flack (1983), 1552 Friedel pairs |
225 parameters | Absolute structure parameter: −0.098 (11) |
4 restraints |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
La1 | 0.53138 (2) | 0.36394 (2) | 0.180431 (16) | 0.00943 (6) | |
S1 | −0.00721 (14) | 0.31013 (9) | 0.24266 (10) | 0.0156 (2) | |
S2 | 0.42405 (15) | 0.58541 (9) | 0.36244 (10) | 0.0176 (2) | |
S3 | 0.42773 (14) | 0.02938 (9) | 0.06143 (10) | 0.0167 (2) | |
O1 | 0.4541 (4) | 0.1705 (3) | 0.0573 (3) | 0.0236 (7) | |
O2 | 0.6123 (4) | −0.0363 (3) | 0.0235 (3) | 0.0234 (7) | |
O3 | 0.4904 (4) | 0.4531 (3) | 0.3940 (3) | 0.0241 (7) | |
O4 | 0.3862 (5) | −0.0119 (3) | 0.1833 (3) | 0.0287 (7) | |
O5 | −0.1328 (4) | 0.4210 (3) | 0.2793 (3) | 0.0226 (6) | |
O6 | 0.4374 (4) | 0.5935 (3) | 0.2274 (3) | 0.0220 (7) | |
O7 | 0.1623 (3) | 0.3571 (4) | 0.1758 (2) | 0.0233 (6) | |
O8 | −0.1464 (4) | 0.2337 (3) | 0.1610 (3) | 0.0217 (7) | |
O9 | 0.2667 (4) | −0.0115 (3) | −0.0290 (3) | 0.0226 (7) | |
O10 | 0.0654 (5) | 0.2351 (3) | 0.3473 (3) | 0.0333 (8) | |
O11 | 0.5666 (5) | 0.6790 (3) | 0.4210 (3) | 0.0285 (7) | |
O12 | 0.2219 (4) | 0.6107 (3) | 0.3958 (3) | 0.0320 (8) | |
O1W | 0.5151 (5) | 0.1920 (3) | 0.3288 (3) | 0.0242 (7) | |
H1F | 0.478 (6) | 0.119 (3) | 0.303 (4) | 0.029* | |
H1G | 0.554 (7) | 0.188 (4) | 0.403 (2) | 0.029* | |
N1 | 1.0903 (5) | 0.6434 (3) | 0.0681 (4) | 0.0267 (8) | |
H1A | 1.1667 | 0.6620 | 0.0081 | 0.032* | |
H1B | 0.9960 | 0.5881 | 0.0422 | 0.032* | |
H1C | 1.1651 | 0.6089 | 0.1290 | 0.032* | |
N2 | 0.7510 (5) | 0.8376 (3) | 0.2587 (4) | 0.0270 (10) | |
H2A | 0.6714 | 0.8687 | 0.1970 | 0.032* | |
H2B | 0.6714 | 0.8081 | 0.3145 | 0.032* | |
N3 | 1.0998 (5) | 1.0100 (3) | 0.4815 (4) | 0.0265 (9) | |
H3A | 1.1893 | 0.9822 | 0.5384 | 0.032* | |
H3B | 0.9983 | 1.0464 | 0.5159 | 0.032* | |
H3C | 1.1567 | 1.0671 | 0.4352 | 0.032* | |
C1 | 0.9941 (7) | 0.7643 (4) | 0.1105 (5) | 0.0280 (10) | |
H1D | 0.9115 | 0.8028 | 0.0451 | 0.034* | |
H1E | 1.0952 | 0.8257 | 0.1387 | 0.034* | |
C2 | 0.8674 (6) | 0.7262 (4) | 0.2127 (4) | 0.0221 (9) | |
H2C | 0.7749 | 0.6595 | 0.1847 | 0.027* | |
H2D | 0.9532 | 0.6915 | 0.2786 | 0.027* | |
C3 | 0.8728 (7) | 0.9459 (4) | 0.3132 (5) | 0.0293 (11) | |
H3D | 0.9384 | 0.9900 | 0.2500 | 0.035* | |
H3E | 0.7849 | 1.0066 | 0.3492 | 0.035* | |
C4 | 1.0257 (7) | 0.9011 (4) | 0.4067 (5) | 0.0339 (12) | |
H4A | 0.9679 | 0.8373 | 0.4573 | 0.041* | |
H4B | 1.1359 | 0.8618 | 0.3682 | 0.041* |
U11 | U22 | U33 | U12 | U13 | U23 | |
La1 | 0.00845 (8) | 0.00909 (8) | 0.01059 (9) | −0.00017 (11) | −0.00037 (6) | −0.00017 (12) |
S1 | 0.0125 (4) | 0.0176 (4) | 0.0165 (5) | −0.0001 (4) | −0.0004 (4) | 0.0015 (4) |
S2 | 0.0180 (5) | 0.0177 (5) | 0.0169 (5) | −0.0002 (4) | 0.0002 (4) | −0.0024 (4) |
S3 | 0.0182 (5) | 0.0156 (4) | 0.0161 (5) | −0.0013 (4) | 0.0002 (4) | −0.0022 (4) |
O1 | 0.0310 (17) | 0.0163 (14) | 0.0238 (18) | −0.0007 (13) | 0.0034 (14) | −0.0025 (12) |
O2 | 0.0223 (16) | 0.0224 (14) | 0.0253 (18) | 0.0088 (12) | 0.0006 (13) | −0.0037 (13) |
O3 | 0.0279 (17) | 0.0219 (14) | 0.0226 (18) | 0.0050 (13) | 0.0023 (14) | 0.0011 (13) |
O4 | 0.0431 (19) | 0.0273 (16) | 0.0161 (18) | −0.0080 (15) | 0.0038 (14) | −0.0004 (13) |
O5 | 0.0148 (14) | 0.0283 (14) | 0.0247 (17) | 0.0027 (13) | 0.0012 (13) | −0.0069 (13) |
O6 | 0.0255 (16) | 0.0225 (14) | 0.0175 (17) | 0.0009 (13) | −0.0028 (13) | −0.0019 (12) |
O7 | 0.0146 (11) | 0.0317 (14) | 0.0243 (14) | 0.0013 (18) | 0.0053 (10) | 0.010 (2) |
O8 | 0.0191 (14) | 0.0188 (14) | 0.0268 (18) | −0.0017 (12) | −0.0004 (13) | −0.0053 (12) |
O9 | 0.0210 (15) | 0.0258 (15) | 0.0204 (18) | 0.0016 (13) | −0.0035 (12) | −0.0051 (13) |
O10 | 0.0318 (18) | 0.0370 (18) | 0.030 (2) | 0.0032 (16) | −0.0058 (15) | 0.0145 (15) |
O11 | 0.0305 (17) | 0.0313 (16) | 0.0228 (18) | −0.0111 (14) | −0.0037 (14) | −0.0056 (14) |
O12 | 0.0224 (15) | 0.0356 (17) | 0.039 (2) | 0.0066 (14) | 0.0108 (15) | −0.0046 (16) |
O1W | 0.0368 (17) | 0.0208 (15) | 0.0153 (17) | −0.0009 (15) | 0.0034 (14) | 0.0021 (13) |
N1 | 0.0235 (19) | 0.033 (2) | 0.024 (2) | −0.0013 (17) | 0.0031 (16) | 0.0009 (17) |
N2 | 0.0222 (16) | 0.027 (3) | 0.031 (2) | 0.0017 (15) | −0.0033 (15) | −0.0011 (16) |
N3 | 0.030 (2) | 0.0243 (18) | 0.024 (2) | −0.0041 (17) | −0.0034 (17) | 0.0005 (16) |
C1 | 0.028 (2) | 0.026 (2) | 0.030 (3) | −0.0006 (19) | 0.000 (2) | 0.004 (2) |
C2 | 0.023 (2) | 0.020 (2) | 0.024 (2) | 0.0011 (17) | 0.0016 (18) | 0.0003 (18) |
C3 | 0.035 (3) | 0.0159 (19) | 0.036 (3) | −0.0007 (19) | −0.008 (2) | −0.0034 (19) |
C4 | 0.050 (3) | 0.022 (2) | 0.028 (3) | 0.007 (2) | −0.011 (2) | −0.0010 (18) |
La1—O1W | 2.445 (3) | N1—C1 | 1.508 (6) |
La1—O1 | 2.474 (3) | N1—H1A | 0.8900 |
La1—O7 | 2.475 (2) | N1—H1B | 0.8900 |
La1—O5i | 2.510 (3) | N1—H1C | 0.8900 |
La1—O6 | 2.542 (3) | N2—C3 | 1.498 (5) |
La1—O8i | 2.577 (3) | N2—C2 | 1.510 (5) |
La1—O3 | 2.580 (3) | N2—H2A | 0.9000 |
La1—O9ii | 2.583 (3) | N2—H2B | 0.9000 |
La1—O2ii | 2.615 (3) | N3—C4 | 1.474 (5) |
S1—O10 | 1.457 (3) | N3—H3A | 0.8900 |
S1—O7 | 1.484 (3) | N3—H3B | 0.8900 |
S1—O8 | 1.488 (3) | N3—H3C | 0.8900 |
S1—O5 | 1.504 (3) | C1—C2 | 1.517 (6) |
S2—O12 | 1.455 (3) | C1—H1D | 0.9700 |
S2—O11 | 1.486 (3) | C1—H1E | 0.9700 |
S2—O3 | 1.486 (3) | C2—H2C | 0.9700 |
S2—O6 | 1.511 (3) | C2—H2D | 0.9700 |
S3—O4 | 1.465 (3) | C3—C4 | 1.485 (6) |
S3—O1 | 1.485 (3) | C3—H3D | 0.9700 |
S3—O9 | 1.486 (3) | C3—H3E | 0.9700 |
S3—O2 | 1.501 (3) | C4—H4A | 0.9700 |
O1W—H1F | 0.841 (19) | C4—H4B | 0.9700 |
O1W—H1G | 0.850 (18) | ||
O1W—La1—O1 | 75.84 (11) | S3—O1—La1 | 144.5 (2) |
O1W—La1—O7 | 84.36 (11) | S3—O2—La1iii | 99.36 (14) |
O1—La1—O7 | 78.07 (11) | S2—O3—La1 | 99.67 (16) |
O1W—La1—O5i | 87.70 (11) | S1—O5—La1iv | 101.69 (14) |
O1—La1—O5i | 125.67 (9) | S2—O6—La1 | 100.57 (14) |
O7—La1—O5i | 152.06 (10) | S1—O7—La1 | 143.12 (17) |
O1W—La1—O6 | 122.10 (10) | S1—O8—La1iv | 99.29 (14) |
O1—La1—O6 | 146.90 (10) | S3—O9—La1iii | 101.23 (14) |
O7—La1—O6 | 76.67 (11) | La1—O1W—H1F | 117 (3) |
O5i—La1—O6 | 85.11 (9) | La1—O1W—H1G | 132 (3) |
O1W—La1—O8i | 75.26 (11) | H1F—O1W—H1G | 110 (3) |
O1—La1—O8i | 70.62 (9) | C1—N1—H1A | 109.5 |
O7—La1—O8i | 145.87 (10) | C1—N1—H1B | 109.5 |
O5i—La1—O8i | 55.10 (9) | H1A—N1—H1B | 109.5 |
O6—La1—O8i | 137.43 (9) | C1—N1—H1C | 109.5 |
O1W—La1—O3 | 68.48 (10) | H1A—N1—H1C | 109.5 |
O1—La1—O3 | 140.45 (10) | H1B—N1—H1C | 109.5 |
O7—La1—O3 | 81.93 (10) | C3—N2—C2 | 115.9 (3) |
O5i—La1—O3 | 70.24 (10) | C3—N2—H2A | 108.3 |
O6—La1—O3 | 55.07 (9) | C2—N2—H2A | 108.3 |
O8i—La1—O3 | 114.26 (10) | C3—N2—H2B | 108.3 |
O1W—La1—O9ii | 149.15 (10) | C2—N2—H2B | 108.3 |
O1—La1—O9ii | 98.68 (10) | H2A—N2—H2B | 107.4 |
O7—La1—O9ii | 124.77 (10) | C4—N3—H3A | 109.5 |
O5i—La1—O9ii | 70.70 (10) | C4—N3—H3B | 109.5 |
O6—La1—O9ii | 78.89 (10) | H3A—N3—H3B | 109.5 |
O8i—La1—O9ii | 74.33 (10) | C4—N3—H3C | 109.5 |
O3—La1—O9ii | 120.71 (10) | H3A—N3—H3C | 109.5 |
O1W—La1—O2ii | 147.69 (10) | H3B—N3—H3C | 109.5 |
O1—La1—O2ii | 78.24 (10) | N1—C1—C2 | 106.8 (4) |
O7—La1—O2ii | 71.61 (9) | N1—C1—H1D | 110.4 |
O5i—La1—O2ii | 123.41 (9) | C2—C1—H1D | 110.4 |
O6—La1—O2ii | 73.73 (10) | N1—C1—H1E | 110.4 |
O8i—La1—O2ii | 113.54 (10) | C2—C1—H1E | 110.4 |
O3—La1—O2ii | 126.54 (10) | H1D—C1—H1E | 108.6 |
O9ii—La1—O2ii | 54.16 (9) | N2—C2—C1 | 112.4 (3) |
O10—S1—O7 | 110.52 (18) | N2—C2—H2C | 109.1 |
O10—S1—O8 | 111.06 (19) | C1—C2—H2C | 109.1 |
O7—S1—O8 | 110.06 (18) | N2—C2—H2D | 109.1 |
O10—S1—O5 | 111.2 (2) | C1—C2—H2D | 109.1 |
O7—S1—O5 | 110.1 (2) | H2C—C2—H2D | 107.9 |
O8—S1—O5 | 103.72 (16) | C4—C3—N2 | 112.1 (3) |
O12—S2—O11 | 110.7 (2) | C4—C3—H3D | 109.2 |
O12—S2—O3 | 112.23 (19) | N2—C3—H3D | 109.2 |
O11—S2—O3 | 109.55 (19) | C4—C3—H3E | 109.2 |
O12—S2—O6 | 111.26 (19) | N2—C3—H3E | 109.2 |
O11—S2—O6 | 108.49 (18) | H3D—C3—H3E | 107.9 |
O3—S2—O6 | 104.40 (17) | N3—C4—C3 | 109.9 (4) |
O4—S3—O1 | 110.57 (18) | N3—C4—H4A | 109.7 |
O4—S3—O9 | 111.30 (18) | C3—C4—H4A | 109.7 |
O1—S3—O9 | 110.28 (18) | N3—C4—H4B | 109.7 |
O4—S3—O2 | 109.77 (19) | C3—C4—H4B | 109.7 |
O1—S3—O2 | 109.99 (18) | H4A—C4—H4B | 108.2 |
O9—S3—O2 | 104.78 (17) | ||
O4—S3—O1—La1 | 20.4 (4) | O11—S2—O6—La1 | 121.73 (16) |
O4—S3—O1—La1 | 20.4 (4) | O3—S2—O6—La1 | 4.98 (17) |
O9—S3—O1—La1 | 144.0 (3) | O1W—La1—O6—S2 | 11.55 (19) |
O2—S3—O1—La1 | −101.0 (3) | O1—La1—O6—S2 | 127.22 (17) |
La1iii—S3—O1—La1 | −159.2 (2) | O7—La1—O6—S2 | 86.02 (15) |
O1W—La1—O1—S3 | −4.8 (3) | O5i—La1—O6—S2 | −72.65 (15) |
O7—La1—O1—S3 | −91.9 (3) | O8i—La1—O6—S2 | −92.26 (18) |
O5i—La1—O1—S3 | 71.8 (3) | O3—La1—O6—S2 | −3.38 (12) |
O6—La1—O1—S3 | −132.8 (3) | O9ii—La1—O6—S2 | −143.91 (15) |
O8i—La1—O1—S3 | 74.3 (3) | O2ii—La1—O6—S2 | 160.44 (16) |
O3—La1—O1—S3 | −30.7 (4) | S1i—La1—O6—S2 | −79.21 (14) |
O9ii—La1—O1—S3 | 144.2 (3) | S3ii—La1—O6—S2 | −170.95 (15) |
O2ii—La1—O1—S3 | −165.3 (3) | O10—S1—O7—La1 | −4.0 (4) |
S1i—La1—O1—S3 | 71.8 (3) | O8—S1—O7—La1 | −127.0 (3) |
S2—La1—O1—S3 | −76.5 (4) | O5—S1—O7—La1 | 119.3 (4) |
S3ii—La1—O1—S3 | 169.9 (3) | La1iv—S1—O7—La1 | 174.6 (2) |
O4—S3—O2—La1iii | 125.92 (15) | O1W—La1—O7—S1 | 16.6 (4) |
O4—S3—O2—La1iii | 125.92 (15) | O1—La1—O7—S1 | 93.2 (4) |
O1—S3—O2—La1iii | −112.21 (16) | O5i—La1—O7—S1 | −57.7 (5) |
O9—S3—O2—La1iii | 6.31 (17) | O6—La1—O7—S1 | −108.3 (4) |
O12—S2—O3—La1 | 115.73 (19) | O8i—La1—O7—S1 | 69.6 (4) |
O11—S2—O3—La1 | −120.90 (17) | O3—La1—O7—S1 | −52.4 (4) |
O11—S2—O3—La1 | −120.90 (17) | O9ii—La1—O7—S1 | −174.4 (3) |
O6—S2—O3—La1 | −4.89 (17) | O2ii—La1—O7—S1 | 174.7 (4) |
O1W—La1—O3—S2 | −163.00 (19) | S1i—La1—O7—S1 | 15.3 (6) |
O1—La1—O3—S2 | −135.94 (15) | S2—La1—O7—S1 | −79.7 (4) |
O7—La1—O3—S2 | −75.91 (16) | S3ii—La1—O7—S1 | −178.3 (4) |
O5i—La1—O3—S2 | 101.50 (16) | O10—S1—O8—La1iv | 115.43 (17) |
O6—La1—O3—S2 | 3.43 (12) | O7—S1—O8—La1iv | −121.86 (17) |
O8i—La1—O3—S2 | 135.54 (13) | O5—S1—O8—La1iv | −4.05 (18) |
O9ii—La1—O3—S2 | 49.94 (18) | O4—S3—O9—La1iii | −125.00 (16) |
O2ii—La1—O3—S2 | −16.0 (2) | O4—S3—O9—La1iii | −125.00 (16) |
S1i—La1—O3—S2 | 119.34 (14) | O1—S3—O9—La1iii | 111.89 (16) |
S3ii—La1—O3—S2 | 18.23 (18) | O2—S3—O9—La1iii | −6.43 (18) |
O1—S3—O4—O4 | 0.00 (18) | O12—S2—O11—O11 | 0.0 (3) |
O9—S3—O4—O4 | 0.00 (10) | O3—S2—O11—O11 | 0.0 (3) |
O2—S3—O4—O4 | 0.00 (13) | O6—S2—O11—O11 | 0.0 (4) |
La1iii—S3—O4—O4 | 0.00 (5) | La1—S2—O11—O11 | 0.0 (4) |
O10—S1—O5—La1iv | −115.22 (18) | C3—N2—C2—C1 | −62.8 (5) |
O7—S1—O5—La1iv | 121.94 (14) | N1—C1—C2—N2 | −176.3 (3) |
O8—S1—O5—La1iv | 4.19 (18) | C2—N2—C3—C4 | −51.4 (6) |
O12—S2—O6—La1 | −116.29 (17) | N2—C3—C4—N3 | −163.4 (4) |
O11—S2—O6—La1 | 121.73 (16) |
Symmetry codes: (i) x+1, y, z; (ii) −x+1, y+1/2, −z; (iii) −x+1, y−1/2, −z; (iv) x−1, y, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1F···O4 | 0.84 (2) | 1.98 (2) | 2.775 (5) | 157 (4) |
O1W—H1G···O11v | 0.85 (2) | 2.17 (4) | 2.872 (5) | 140 (4) |
N1—H1A···O8ii | 0.89 | 2.02 | 2.762 (5) | 141 |
N1—H1B···O9ii | 0.89 | 2.04 | 2.900 (5) | 161 |
N1—H1C···O6i | 0.89 | 2.07 | 2.874 (5) | 150 |
N2—H2B···O11 | 0.90 | 1.96 | 2.798 (5) | 155 |
N2—H2A···O2vi | 0.90 | 2.18 | 3.015 (5) | 154 |
N2—H2A···O4vi | 0.90 | 2.28 | 2.981 (5) | 134 |
N3—H3A···O5vii | 0.89 | 2.18 | 2.809 (5) | 127 |
N3—H3A···O3viii | 0.89 | 2.25 | 3.051 (5) | 150 |
N3—H3B···O12vii | 0.89 | 1.95 | 2.834 (5) | 174 |
N3—H3C···O10ix | 0.89 | 2.08 | 2.784 (5) | 135 |
Symmetry codes: (i) x+1, y, z; (ii) −x+1, y+1/2, −z; (v) −x+1, y−1/2, −z+1; (vi) x, y+1, z; (vii) −x+1, y+1/2, −z+1; (viii) −x+2, y+1/2, −z+1; (ix) x+1, y+1, z. |
Experimental details
Crystal data | |
Chemical formula | (C4H16N3)[La(SO4)3(H2O)] |
Mr | 551.33 |
Crystal system, space group | Monoclinic, P21 |
Temperature (K) | 293 |
a, b, c (Å) | 6.7128 (13), 10.442 (2), 11.103 (2) |
β (°) | 93.94 (3) |
V (Å3) | 776.4 (3) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 3.23 |
Crystal size (mm) | 0.45 × 0.31 × 0.06 |
Data collection | |
Diffractometer | Rigaku R-AXIS RAPID diffractometer |
Absorption correction | Multi-scan (ABSCOR; Higashi, 1995) |
Tmin, Tmax | 0.317, 0.830 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 7574, 3429, 3312 |
Rint | 0.028 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.021, 0.049, 1.17 |
No. of reflections | 3429 |
No. of parameters | 225 |
No. of restraints | 4 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.35, −0.61 |
Absolute structure | Flack (1983), 1552 Friedel pairs |
Absolute structure parameter | −0.098 (11) |
Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2000).
La1—O1W | 2.445 (3) | La1—O8i | 2.577 (3) |
La1—O1 | 2.474 (3) | La1—O3 | 2.580 (3) |
La1—O7 | 2.475 (2) | La1—O9ii | 2.583 (3) |
La1—O5i | 2.510 (3) | La1—O2ii | 2.615 (3) |
La1—O6 | 2.542 (3) |
Symmetry codes: (i) x+1, y, z; (ii) −x+1, y+1/2, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1F···O4 | 0.841 (19) | 1.98 (2) | 2.775 (5) | 157 (4) |
O1W—H1G···O11iii | 0.850 (18) | 2.17 (4) | 2.872 (5) | 140 (4) |
N1—H1A···O8ii | 0.89 | 2.02 | 2.762 (5) | 141 |
N1—H1B···O9ii | 0.89 | 2.04 | 2.900 (5) | 161 |
N1—H1C···O6i | 0.89 | 2.07 | 2.874 (5) | 150 |
N2—H2B···O11 | 0.90 | 1.96 | 2.798 (5) | 155 |
N2—H2A···O2iv | 0.90 | 2.18 | 3.015 (5) | 154 |
N2—H2A···O4iv | 0.90 | 2.28 | 2.981 (5) | 134 |
N3—H3A···O5v | 0.89 | 2.18 | 2.809 (5) | 127 |
N3—H3A···O3vi | 0.89 | 2.25 | 3.051 (5) | 150 |
N3—H3B···O12v | 0.89 | 1.95 | 2.834 (5) | 174 |
N3—H3C···O10vii | 0.89 | 2.08 | 2.784 (5) | 135 |
Symmetry codes: (i) x+1, y, z; (ii) −x+1, y+1/2, −z; (iii) −x+1, y−1/2, −z+1; (iv) x, y+1, z; (v) −x+1, y+1/2, −z+1; (vi) −x+2, y+1/2, −z+1; (vii) x+1, y+1, z. |
Acknowledgements
The Project is sponsored by the Scientific Research Foundation for Returned Overseas Chinese Scholars, State Education Ministry (20071108).
References
Bataille, T. & Louër, D. (2004). J. Solid State Chem. 177, 1235–1243. Web of Science CSD CrossRef CAS Google Scholar
Brandenburg, K. (2000). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Dan, M., Behera, J. N. & Rao, C. N. R. (2004). J. Mater. Chem. 14, 1257–1265. Web of Science CSD CrossRef CAS Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan. Google Scholar
Liu, L., Meng, H., Li, G., Cui, Y., Wang, X. & Pang, W. (2005). J. Solid State Chem. 178, 1003–1007. Web of Science CrossRef CAS Google Scholar
Rao, C. N. R., Behera, J. N. & Dan, M. (2006). Chem. Soc. Rev. 35, 375–387. Web of Science CrossRef PubMed CAS Google Scholar
Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wickleder, M. S. (2002). Chem. Rev. 102, 2011–2087. Web of Science CrossRef PubMed CAS Google Scholar
Xing, Y., Shi, Z., Li, G. & Pang, W. (2003). Dalton Trans. pp. 940–943. Web of Science CSD CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Recently, a remarkable plenty of organically templated open-framework rare-earth metal sulfates have been obtained due to sulfate which gives the possibility of high framework dimensionalities and lanthanide with the high coordinated numbers (from 7-fold to 12-fold) according to larger ion diameters of rare-earth elements and in the sequel the complicated topologies (Wickleder, 2002; Rao, et al., 2006). As SO4 group is able to adopt monodentate (S—O—Ln of -140°) and bidentate (S—O—Ln of -100°) to coordinate the lanthanide elements, the lanthanide sulfates are increasingly expanded with regard to the framework structures. Associated with reported two-dimensional lanthanide sulfates - [C2N2H10].[Nd2(SO4)4](Dan, et al., 2004), [C2N2H10].[La2(H2O)4.(SO4)4].2H2O (Xing, et al., 2003), [C6H14N2]2.[La2(H2O)4.(SO4)5].5H2O (Bataille, et al., 2004), [C2N2H10].[Nd2(H2O)2(SO4)6].4H2O (Liu, et al., 2005) and [C6N2H14].[C2N2H10].SO4. [La2(H2O)2.(SO4)6].4H2O (Dan, et al., 2004), (I) keeps the distinct structure in which bridged µ2-SO4 afford one monodentate and one bidentate and grafted SO4 give the bidentate to the La cations.
The asymmetric unit of (I) comprises of twenty-four non-hydrogen atoms, 17 of which belong to the inorganic framework, including one La cation, three SO4 groups, one coordination water and one the organic template (four carbon atoms and three nitrogen atoms), as shown in Fig. 1. The two-dimensional layer of (I) is constructed from LaO9 and SO4 polyhedra. Three crystallographic independent S atoms, which are tetrahedrally coordinated by four O atoms with the S—O distances 1.458 (12) Å to 1.508 (4) Å, can be divided into two modes: S(1) and S(3) consist of three S—O—La linkages and links two La atoms through one bidentate and one monodentate; S(2) makes two S—O—La linkages as a ligand of one La atom through bidentate. The O—S—O angles are within the expected range for tetrahedral geometry. La ion is 9-coordinated by one monodentate and bidentate of µ2-S(1)O4 and µ2-S(3)O4, bidentate of S(2)O4 and one water molecule. The bond distances of La—O vary from 2.445 (4) to 2.617 (25) Å, whereas the angles of O—La—O are between 54.18 (10)° and 149.13 (10)°, which were found in other reported La compounds (Dan, et al., 2004). The bond angles of S—O—La of bidentate coordination range from 99.27 (13)° to 101.15 (16)°, and the S—O—La of monodentate coordination is at 143.04 (13)° and 144.35 (19)°.
As shown in Fig.2, the layer of (I) is accomplished by connect the La by µ2-S(1)O4 along (100) direction and µ2-S(3)O4 along (010) direction. The S(2)O4 do not take part in the formation of layer and graft to the La ions by the bidentate coordination. The protonated H3DETA interact with the layer by the H-bond of N—H···O, which intergrate the Ow—H···O to hold togerther the adjacent layer to the supermolecular network (Fig.3).