organic compounds
1,4-Bis(iodomethyl)benzene
aDepartment of Chemistry, University of Otago, PO Box 56, Dunedin, New Zealand
*Correspondence e-mail: jsimpson@alkali.otago.ac.nz
The centrosymmetric title compound, C8H8I2, was prepared by metathesis from the dibromo analogue. In the weak C—H⋯I interactions link the molecules into stacks down the b axis. The structure is further stabilized by short I⋯I contacts [3.8433 (2) Å], forming undulating sheets in the (101) plane.
Related literature
For the synthesis, see: Moore & Stupp (1986); Kida et al. (2005). For related structures, see: Basaran et al. (1992); Fun et al. (2009); Jones & Kus (2007); Zhang et al. (2007). For applications of dihalo-p-xylenes in living processes, see: Samakande et al., (2007); Asandei et al. (2008). For other polymer applications, see: Leir & Stark (1989); Hochberg & Schulz (1993). For additional applications of dihalo-p-xylenes, see: Le Baccon et al. (2001); Sobransingh & Kaifer (2006); Song et al. (2008); Au et al. (2009). For details of halogen⋯halogen interactions, see: Pedireddi et al. (1994) and for reference structural data, see: Allen et al. (1987).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker 2006); cell APEX2 and SAINT (Bruker 2006); data reduction: SAINT; program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) and TITAN (Hunter & Simpson, 1999); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97, enCIFer (Allen et al., 2004), PLATON (Spek, 2009) and publCIF (Westrip, 2009).
Supporting information
10.1107/S1600536809021151/hb2998sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809021151/hb2998Isup2.hkl
The title compound was prepared by a combination of the methods of Moore & Stupp (1986) and Kida et al. (2005). Thus α,α'-dibromo-p-xylene (1.32 g, 5 mmol) was refluxed for 7 h with sodium iodide (2.25 g, 15 mmol) in acetone (25 ml). The solution was allowed to cool overnight, and the resulting yellow plates of (I) that developed were rinsed gently with water to remove sodium bromide and air dried. Confirmation of the metathesized (iodo) product was by microanalysis, and diagnostic tests. 1H and 13C NMR spectra are distinct from those of the dibromo precursor.
Data collection: APEX2 (Bruker 2006); cell
APEX2 (Bruker 2006) and SAINT (Bruker 2006); data reduction: SAINT (Bruker 2006); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) and TITAN (Hunter & Simpson, 1999); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), enCIFer (Allen et al., 2004), PLATON (Spek, 2009) and publCIF (Westrip, 2009).C8H8I2 | F(000) = 324 |
Mr = 357.94 | Dx = 2.557 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 5590 reflections |
a = 9.0978 (3) Å | θ = 2.3–33.0° |
b = 4.5982 (2) Å | µ = 6.69 mm−1 |
c = 11.2793 (3) Å | T = 89 K |
β = 99.808 (1)° | Rectangular plate, pale yellow |
V = 464.96 (3) Å3 | 0.21 × 0.15 × 0.03 mm |
Z = 2 |
Bruker APEXII CCD area-detector diffractometer | 1674 independent reflections |
Radiation source: fine-focus sealed tube | 1538 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.026 |
ω scans | θmax = 33.4°, θmin = 3.7° |
Absorption correction: multi-scan (SADABS; Bruker, 2006) | h = −13→13 |
Tmin = 0.410, Tmax = 0.818 | k = −5→7 |
8198 measured reflections | l = −16→16 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.013 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.033 | All H-atom parameters refined |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0145P)2 + 0.1407P] where P = (Fo2 + 2Fc2)/3 |
1674 reflections | (Δ/σ)max = 0.001 |
62 parameters | Δρmax = 0.51 e Å−3 |
0 restraints | Δρmin = −0.51 e Å−3 |
C8H8I2 | V = 464.96 (3) Å3 |
Mr = 357.94 | Z = 2 |
Monoclinic, P21/c | Mo Kα radiation |
a = 9.0978 (3) Å | µ = 6.69 mm−1 |
b = 4.5982 (2) Å | T = 89 K |
c = 11.2793 (3) Å | 0.21 × 0.15 × 0.03 mm |
β = 99.808 (1)° |
Bruker APEXII CCD area-detector diffractometer | 1674 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2006) | 1538 reflections with I > 2σ(I) |
Tmin = 0.410, Tmax = 0.818 | Rint = 0.026 |
8198 measured reflections |
R[F2 > 2σ(F2)] = 0.013 | 0 restraints |
wR(F2) = 0.033 | All H-atom parameters refined |
S = 1.06 | Δρmax = 0.51 e Å−3 |
1674 reflections | Δρmin = −0.51 e Å−3 |
62 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.62504 (16) | 0.1521 (3) | 0.47504 (13) | 0.0138 (2) | |
C2 | 0.63784 (17) | −0.0405 (3) | 0.57245 (14) | 0.0154 (3) | |
C3 | 0.51429 (17) | −0.1903 (3) | 0.59710 (14) | 0.0154 (3) | |
C4 | 0.75717 (18) | 0.3189 (4) | 0.45106 (15) | 0.0190 (3) | |
I1 | 0.880515 (9) | 0.07951 (2) | 0.331669 (8) | 0.01438 (4) | |
H2 | 0.729 (3) | −0.073 (4) | 0.620 (2) | 0.021 (6)* | |
H41 | 0.841 (3) | 0.354 (5) | 0.524 (2) | 0.031 (6)* | |
H3 | 0.523 (2) | −0.330 (5) | 0.6678 (19) | 0.022 (5)* | |
H42 | 0.733 (3) | 0.509 (5) | 0.405 (2) | 0.021 (5)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0142 (6) | 0.0109 (6) | 0.0180 (6) | −0.0017 (5) | 0.0078 (5) | −0.0032 (5) |
C2 | 0.0133 (6) | 0.0159 (7) | 0.0174 (7) | 0.0007 (5) | 0.0038 (5) | −0.0010 (5) |
C3 | 0.0175 (6) | 0.0126 (6) | 0.0175 (6) | 0.0006 (5) | 0.0070 (5) | 0.0012 (5) |
C4 | 0.0191 (7) | 0.0150 (7) | 0.0258 (8) | −0.0039 (5) | 0.0124 (6) | −0.0051 (6) |
I1 | 0.01367 (5) | 0.01628 (6) | 0.01473 (5) | −0.00037 (3) | 0.00680 (3) | 0.00092 (3) |
C1—C3i | 1.396 (2) | C3—C1i | 1.396 (2) |
C1—C2 | 1.401 (2) | C3—H3 | 1.01 (2) |
C1—C4 | 1.489 (2) | C4—I1 | 2.1907 (15) |
C2—C3 | 1.386 (2) | C4—H41 | 1.04 (2) |
C2—H2 | 0.92 (2) | C4—H42 | 1.02 (2) |
C3i—C1—C2 | 118.88 (13) | C1i—C3—H3 | 118.7 (12) |
C3i—C1—C4 | 120.68 (14) | C1—C4—I1 | 111.52 (10) |
C2—C1—C4 | 120.42 (14) | C1—C4—H41 | 116.4 (13) |
C3—C2—C1 | 120.64 (14) | I1—C4—H41 | 100.5 (13) |
C3—C2—H2 | 119.1 (14) | C1—C4—H42 | 114.9 (13) |
C1—C2—H2 | 120.3 (14) | I1—C4—H42 | 101.8 (13) |
C2—C3—C1i | 120.48 (14) | H41—C4—H42 | 109.8 (19) |
C2—C3—H3 | 120.9 (12) | ||
C3i—C1—C2—C3 | −0.1 (2) | C3i—C1—C4—I1 | −91.95 (15) |
C4—C1—C2—C3 | 178.24 (14) | C2—C1—C4—I1 | 89.71 (15) |
C1—C2—C3—C1i | 0.1 (2) |
Symmetry code: (i) −x+1, −y, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
C4—H42···I1ii | 1.02 (2) | 3.12 (2) | 3.9774 (16) | 141.8 (16) |
Symmetry code: (ii) x, y+1, z. |
Experimental details
Crystal data | |
Chemical formula | C8H8I2 |
Mr | 357.94 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 89 |
a, b, c (Å) | 9.0978 (3), 4.5982 (2), 11.2793 (3) |
β (°) | 99.808 (1) |
V (Å3) | 464.96 (3) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 6.69 |
Crystal size (mm) | 0.21 × 0.15 × 0.03 |
Data collection | |
Diffractometer | Bruker APEXII CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2006) |
Tmin, Tmax | 0.410, 0.818 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 8198, 1674, 1538 |
Rint | 0.026 |
(sin θ/λ)max (Å−1) | 0.775 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.013, 0.033, 1.06 |
No. of reflections | 1674 |
No. of parameters | 62 |
H-atom treatment | All H-atom parameters refined |
Δρmax, Δρmin (e Å−3) | 0.51, −0.51 |
Computer programs: , APEX2 (Bruker 2006) and SAINT (Bruker 2006), SAINT (Bruker 2006), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008) and TITAN (Hunter & Simpson, 1999), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006), SHELXL97 (Sheldrick, 2008), enCIFer (Allen et al., 2004), PLATON (Spek, 2009) and publCIF (Westrip, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
C4—H42···I1i | 1.02 (2) | 3.12 (2) | 3.9774 (16) | 141.8 (16) |
Symmetry code: (i) x, y+1, z. |
Acknowledgements
We thank the New Economy Research Fund (grant No. UOO-X0808) for support of this work and the University of Otago for the purchase of the diffractometer.
References
Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338. Web of Science CrossRef CAS IUCr Journals Google Scholar
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CrossRef Web of Science Google Scholar
Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350. CrossRef Web of Science IUCr Journals Google Scholar
Asandei, A. D., Chen, Y., Simpson, C., Gilbert, M. & Moran, I. W. (2008). Polymer Preprints (Am. Chem. Soc. Div. Polym. Chem.), 49, 489–490. Google Scholar
Au, R. H. W., Fraser, C. S. A., Eisler, D. J., Jennings, M. C. & Puddephat, R. J. (2009). Organometallics, 28, 1719–1729. Web of Science CSD CrossRef CAS Google Scholar
Basaran, R., Dou, S.-Q. & Weiss, A. (1992). Ber. Bunsenges. Phys. Chem. 96, 1688–1690. CrossRef CAS Google Scholar
Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Fun, H.-K., Kia, R., Patil, P. S. & Dharmaprakash, S. M. (2009). Acta Cryst. E65, o459. Web of Science CSD CrossRef IUCr Journals Google Scholar
Hochberg, G. C. & Schulz, R. C. (1993). Polym. Int. 32, 309–317. CrossRef CAS Web of Science Google Scholar
Hunter, K. A. & Simpson, J. (1999). TITAN2000. University of Otago, New Zealand. Google Scholar
Jones, P. G. & Kus, P. (2007). Z. Naturforsch. Teil B, 62, 725–731. CAS Google Scholar
Kida, T., Kikuzawa, A., Higashimoto, H., Nakatsuji, Y. & Akashi, M. (2005). Tetrahedron, 61, 5763–5768. Web of Science CrossRef CAS Google Scholar
Le Baccon, M., Chuburu, F., Toupet, L., Handel, H., Soibinet, M., Dechamps-Olivier, I., Barbier, J.-P. & Aplincourt, M. (2001). New J. Chem. 25, 1168–1174. Web of Science CSD CrossRef CAS Google Scholar
Leir, C. M. & Stark, J. E. (1989). J. Appl. Polym. Sci. 38, 1535–1547. CrossRef CAS Web of Science Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CrossRef CAS IUCr Journals Google Scholar
Moore, J. S. & Stupp, S. I. (1986). Macromolecules, 19, 1815–1824. CrossRef CAS Web of Science Google Scholar
Pedireddi, V. R., Reddy, D. S., Goud, B. S., Craig, D. C., Rae, A. D. & Desiraju, G. R. (1994). J. Chem. Soc. Perkin Trans. 2, pp. 2353–2360. CSD CrossRef Web of Science Google Scholar
Samakande, A., Sanderson, R. D. & Hartmann, P. C. (2007). Synth. Commun. 37, 3861–3872. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sobransingh, D. & Kaifer, A. E. (2006). Org. Lett. 8, 3247–3250. Web of Science CrossRef PubMed CAS Google Scholar
Song, Z., Weng, X., Weng, L., Huang, J., Wang, X., Bai, M., Zhou, Y., Yang, G. & Zhou, X. (2008). Chem. Eur. J. 14, 5751–5754. Web of Science CrossRef PubMed CAS Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Westrip, S. P. (2009). publCIF. In preparation. Google Scholar
Zhang, M., Su, P., Meng, X.-G. & Xu, X.-M. (2007). Acta Cryst. E63, o951–o952. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Dihalo-p-xylenes are extensively used in polymer science (Leir & Stark, 1989; Hochberg & Schulz, 1993; Samakande et al., 2007) and as a versatile synthon for –CH2—C6H4—CH2– connective units in other areas of chemistry (Le Baccon et al., 2001; Song et al., 2008; Au et al., 2009). The bulk of this work utilizes the commercially available α,α'-dibromo-p-xylene, but the diiodo- derivative offers additional reactivity (Moore & Stupp, 1986; Sobransingh & Kaifer, 2006; Asandei et al., 2008). Our interest in the title compound, (I), Fig. 1, is as one of the components in xylene bridged electroactive gels. In these, the chemical links are quaternary amines formed by reaction of the alkylhalogen termini with amine residues in the other gel component.
The molecule lies about an inversion centre located at the centroid of the benzene ring. The C1···C4 atoms lie in a plane (r.m.s. deviation 0.01 Å) and the C—C and C—I distances in the molecule are unremarkable (Allen et al., 1987). This structure is the fourth in a series of XCH2C6H4CH2X molecules; X = F, II (Fun et al., 2009); Cl, III (Basaran et al., (1992); Br, IV (Jones & Kus, 2007; Zhang et al., 2007). All four molecules are closely isostructural with only the C—halogen bond distance distinguishing them. Indeed the CH2C6H4CH2 fragment of the title compound overlays with corresponding portions of the related molecules with r.m.s. deviations, 0.032 Å for II, 0.013 Å for III and 0.007 Å for IV respectively (Macrae et al., 2006).
In the crystal structure, weak C—H···I interactions and short I···I contacts, 3.8433 (2) Å, form undulating sheets in the 101 plane, Fig. 2. Each I atom interacts with two adjacent iodine atoms (symmetry operations 2 - x, -1/2 + y, 1/2 - z and 2 - x, 1/2 + y, 1/2 - z). The I···I contacts observed here fit with the type II designation of halogen···halogen interactions proposed previously (Pedireddi et al. 1994). The packing arrangement for I is closely similar to that observed for IV, (Jones & Kus, 2007; Zhang et al., 2007). I, III and IV all crystallize in the space group P21/c with unit cells that differ only in a small but significant increase in volume as the size of the halogen increases.