organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-N′-(3,5-Di­bromo-2-hy­droxy­benzyl­­idene)-2-meth­oxy­benzohydrazide

aDepartment of Chemistry, Ankang University, Ankang Shanxi 725000, People's Republic of China
*Correspondence e-mail: guobiao_cao@126.com

(Received 10 June 2009; accepted 10 June 2009; online 17 June 2009)

The title compound, C15H12Br2N2O3, was synthesized by the reaction of 3,5-dibromo-2-hydroxy­benzaldehyde with an equimolar quantity of 2-methoxy­benzohydrazide in methanol. The dihedral angle between the two benzene rings is 3.4 (2)° and intra­molecular O—H⋯N and N—H⋯O hydrogen bonds are observed in the mol­ecule. The crystal studied was an inversion twin with a 0.513 (19):0.487 (19) domain ratio.

Related literature

For related structures, see: Mohd Lair et al. (2009[Mohd Lair, N., Mohd Ali, H. & Ng, S. W. (2009). Acta Cryst. E65, o189.]); Fun et al. (2008[Fun, H.-K., Patil, P. S., Rao, J. N., Kalluraya, B. & Chantrapromma, S. (2008). Acta Cryst. E64, o1707.]); Li & Ban (2009[Li, C.-M. & Ban, H.-Y. (2009). Acta Cryst. E65, o1466.]); Zhu et al. (2009[Zhu, C.-G., Wei, Y.-J. & Zhu, Q.-Y. (2009). Acta Cryst. E65, o85.]); Yang (2007[Yang, D.-S. (2007). J. Chem. Crystallogr. 37, 343-348.]); You et al. (2008[You, Z.-L., Dai, W.-M., Xu, X.-Q. & Hu, Y.-Q. (2008). Pol. J. Chem. 82, 2215-2219.]). For our previous work in this area, see: Qu et al. (2008[Qu, L.-Z., Yang, T., Cao, G.-B. & Wang, X.-Y. (2008). Acta Cryst. E64, o2061.]); Yang et al. (2008[Yang, T., Cao, G.-B., Xiang, J.-M. & Zhang, L.-H. (2008). Acta Cryst. E64, o1186.]). For reference structural data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C15H12Br2N2O3

  • Mr = 428.09

  • Monoclinic, C c

  • a = 10.886 (1) Å

  • b = 12.956 (2) Å

  • c = 10.965 (2) Å

  • β = 96.476 (3)°

  • V = 1536.6 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 5.29 mm−1

  • T = 298 K

  • 0.30 × 0.30 × 0.27 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.300, Tmax = 0.329 (expected range = 0.219–0.240)

  • 4623 measured reflections

  • 2208 independent reflections

  • 1992 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.125

  • S = 1.05

  • 2208 reflections

  • 204 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.62 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 531 Friedel pairs

  • Flack parameter: 0.513 (19)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O3 0.90 (5) 1.97 (9) 2.617 (8) 128 (9)
O1—H1⋯N1 0.82 1.93 2.535 (7) 130

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Study on the crystal structures of hydrazone derivatives is a hot topic in structural chemistry. In the last few years, the crystal structures of a large number of hydrazone compounds have been reported (Mohd Lair et al., 2009; Fun et al., 2008; Li & Ban, 2009; Zhu et al., 2009; Yang, 2007; You et al., 2008). As a continuation of our work in this area (Qu et al., 2008; Yang et al., 2008), the title new hydrazone compound, (I), derived from the reaction of 3,5-dibromo-2-hydroxybenzaldehyde with an equimolar quantity of 2-methoxybenzohydrazide is reported.

In compound (I), Fig. 1, the dihedral angle between the two benzene rings is 3.4 (2)°. Intramolecular N2—H2···O3 and O1—H1···N1 hydrogen bonds, (Table 1) are observed in the molecule. All the bond lengths are within normal values (Allen et al., 1987).

Related literature top

For related structures, see: Mohd Lair et al. (2009); Fun et al. (2008); Li & Ban (2009); Zhu et al. (2009); Yang (2007); You et al. (2008). For our previous work in this area, see: Qu et al. (2008); Yang et al. (2008). For reference structural data, see: Allen et al. (1987).

Experimental top

The title compound was prepared by refluxing equimolar quantities of 3,5-dibromo-2-hydroxybenzaldehyde with 2-methoxybenzohydrazide in methanol. Colorless blocks of (I) were formed by slow evaporation of the solution in air.

Refinement top

Atom H2 was located in a difference Fourier map and refined isotropically, with the N–H distance restrained to 0.90 (1) Å. The other H atoms were placed in idealized positions (C–H = 0.93-0.96 Å, O–H = 0.82 Å) and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(O and methyl C). The crystal studied was an inversion twin with a 0.513 (19):0.487 (19) domain ratio.

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with ellipsoids drawn at the 30% probability level and hydrogen bonds indicated by dashed lines.
(E)-N'-(3,5-Dibromo-2-hydroxybenzylidene)-2-methoxybenzohydrazide top
Crystal data top
C15H12Br2N2O3F(000) = 840
Mr = 428.09Dx = 1.850 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 2250 reflections
a = 10.886 (1) Åθ = 2.4–25.9°
b = 12.956 (2) ŵ = 5.29 mm1
c = 10.965 (2) ÅT = 298 K
β = 96.476 (3)°Block, colorless
V = 1536.6 (4) Å30.30 × 0.30 × 0.27 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
2208 independent reflections
Radiation source: fine-focus sealed tube1992 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ω scansθmax = 27.0°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 913
Tmin = 0.300, Tmax = 0.329k = 1616
4623 measured reflectionsl = 1313
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.125 w = 1/[σ2(Fo2) + (0.0877P)2 + 0.6851P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
2208 reflectionsΔρmax = 0.35 e Å3
204 parametersΔρmin = 0.62 e Å3
3 restraintsAbsolute structure: Flack (1983), 531 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.513 (19)
Crystal data top
C15H12Br2N2O3V = 1536.6 (4) Å3
Mr = 428.09Z = 4
Monoclinic, CcMo Kα radiation
a = 10.886 (1) ŵ = 5.29 mm1
b = 12.956 (2) ÅT = 298 K
c = 10.965 (2) Å0.30 × 0.30 × 0.27 mm
β = 96.476 (3)°
Data collection top
Bruker SMART CCD
diffractometer
2208 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
1992 reflections with I > 2σ(I)
Tmin = 0.300, Tmax = 0.329Rint = 0.030
4623 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.043H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.125Δρmax = 0.35 e Å3
S = 1.05Δρmin = 0.62 e Å3
2208 reflectionsAbsolute structure: Flack (1983), 531 Friedel pairs
204 parametersAbsolute structure parameter: 0.513 (19)
3 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.39963 (8)0.26669 (6)0.15520 (7)0.0501 (2)
Br20.48191 (8)0.46448 (6)0.30371 (8)0.0556 (3)
O10.5231 (5)0.0896 (4)0.0108 (4)0.0388 (11)
H10.57970.05140.01660.058*
O20.6295 (7)0.1701 (5)0.0431 (5)0.0548 (16)
O30.7666 (6)0.2128 (4)0.4081 (5)0.0466 (14)
N10.6150 (6)0.0066 (5)0.1793 (5)0.0341 (12)
N20.6578 (6)0.0982 (4)0.2312 (5)0.0360 (12)
C10.5608 (6)0.1684 (5)0.1883 (6)0.0300 (13)
C20.5188 (6)0.1713 (5)0.0627 (6)0.0306 (13)
C30.4675 (7)0.2629 (5)0.0147 (7)0.0351 (14)
C40.4612 (7)0.3510 (5)0.0854 (8)0.0389 (15)
H40.42960.41220.05040.047*
C50.5026 (7)0.3458 (5)0.2081 (7)0.0369 (15)
C60.5533 (7)0.2572 (5)0.2625 (8)0.0360 (16)
H60.58180.25590.34560.043*
C70.6101 (7)0.0736 (5)0.2472 (6)0.0343 (14)
H70.63690.07140.33070.041*
C80.6631 (7)0.1797 (6)0.1527 (6)0.0332 (14)
C90.7136 (7)0.2793 (5)0.2082 (7)0.0354 (15)
C100.7100 (8)0.3626 (6)0.1268 (8)0.0458 (18)
H100.67640.35350.04580.055*
C110.7548 (10)0.4567 (7)0.1642 (12)0.063 (3)
H110.75030.51150.10900.076*
C120.8069 (9)0.4715 (7)0.2835 (11)0.059 (2)
H120.83800.53580.30880.071*
C130.8126 (8)0.3906 (7)0.3647 (9)0.052 (2)
H130.84860.40030.44490.062*
C140.7652 (7)0.2940 (6)0.3286 (7)0.0386 (15)
C150.8276 (10)0.2211 (8)0.5282 (8)0.062 (3)
H15A0.91010.24620.52480.093*
H15B0.83090.15450.56680.093*
H15C0.78330.26820.57480.093*
H20.692 (9)0.097 (9)0.310 (3)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0682 (5)0.0405 (4)0.0380 (4)0.0037 (4)0.0105 (3)0.0106 (3)
Br20.0651 (5)0.0333 (4)0.0706 (6)0.0050 (4)0.0171 (4)0.0194 (4)
O10.059 (3)0.029 (2)0.027 (2)0.007 (2)0.006 (2)0.0006 (18)
O20.079 (4)0.043 (3)0.039 (3)0.015 (3)0.011 (3)0.005 (3)
O30.060 (4)0.044 (3)0.033 (3)0.015 (3)0.007 (2)0.007 (2)
N10.042 (3)0.030 (3)0.030 (3)0.006 (2)0.001 (2)0.005 (2)
N20.050 (3)0.028 (3)0.029 (3)0.010 (3)0.003 (2)0.003 (2)
C10.034 (3)0.026 (3)0.030 (3)0.001 (2)0.002 (2)0.002 (2)
C20.036 (3)0.024 (3)0.031 (3)0.002 (2)0.000 (3)0.000 (2)
C30.036 (4)0.034 (3)0.033 (4)0.003 (3)0.004 (3)0.003 (3)
C40.038 (4)0.028 (3)0.050 (4)0.002 (3)0.004 (3)0.007 (3)
C50.040 (4)0.028 (3)0.044 (4)0.005 (3)0.010 (3)0.006 (3)
C60.039 (4)0.026 (3)0.042 (4)0.000 (3)0.002 (3)0.005 (3)
C70.044 (4)0.029 (3)0.029 (3)0.001 (3)0.001 (3)0.001 (2)
C80.035 (3)0.038 (4)0.025 (3)0.004 (3)0.000 (3)0.004 (3)
C90.038 (4)0.032 (4)0.038 (4)0.005 (3)0.011 (3)0.008 (3)
C100.051 (5)0.040 (4)0.048 (4)0.000 (3)0.010 (3)0.000 (3)
C110.063 (6)0.034 (4)0.096 (8)0.003 (4)0.026 (6)0.005 (5)
C120.056 (5)0.036 (4)0.088 (7)0.013 (4)0.018 (5)0.020 (4)
C130.046 (4)0.046 (5)0.065 (5)0.016 (4)0.012 (4)0.030 (4)
C140.035 (4)0.037 (3)0.045 (4)0.007 (3)0.008 (3)0.013 (3)
C150.061 (6)0.086 (7)0.037 (4)0.011 (5)0.005 (4)0.007 (4)
Geometric parameters (Å, º) top
Br1—C31.925 (7)C5—C61.379 (10)
Br2—C51.889 (7)C6—H60.9300
O1—C21.335 (8)C7—H70.9300
O1—H10.8200C8—C91.504 (10)
O2—C81.222 (8)C9—C141.388 (11)
O3—C141.366 (10)C9—C101.398 (11)
O3—C151.411 (11)C10—C111.359 (13)
N1—C71.282 (9)C10—H100.9300
N1—N21.375 (8)C11—C121.380 (17)
N2—C81.367 (9)C11—H110.9300
N2—H20.90 (5)C12—C131.372 (14)
C1—C21.401 (9)C12—H120.9300
C1—C61.417 (9)C13—C141.394 (10)
C1—C71.461 (9)C13—H130.9300
C2—C31.389 (10)C15—H15A0.9600
C3—C41.386 (11)C15—H15B0.9600
C4—C51.372 (11)C15—H15C0.9600
C4—H40.9300
C2—O1—H1109.5O2—C8—N2120.7 (6)
C14—O3—C15120.5 (7)O2—C8—C9122.7 (6)
C7—N1—N2119.5 (6)N2—C8—C9116.6 (6)
C8—N2—N1116.3 (5)C14—C9—C10118.7 (7)
C8—N2—H2125 (7)C14—C9—C8126.3 (7)
N1—N2—H2118 (7)C10—C9—C8114.9 (7)
C2—C1—C6120.5 (6)C11—C10—C9121.1 (9)
C2—C1—C7121.3 (6)C11—C10—H10119.4
C6—C1—C7118.1 (6)C9—C10—H10119.4
O1—C2—C3119.2 (6)C10—C11—C12120.3 (9)
O1—C2—C1122.8 (6)C10—C11—H11119.8
C3—C2—C1117.9 (6)C12—C11—H11119.8
C4—C3—C2122.3 (7)C13—C12—C11119.6 (8)
C4—C3—Br1118.8 (5)C13—C12—H12120.2
C2—C3—Br1118.9 (5)C11—C12—H12120.2
C5—C4—C3118.5 (6)C12—C13—C14120.9 (9)
C5—C4—H4120.8C12—C13—H13119.6
C3—C4—H4120.8C14—C13—H13119.6
C4—C5—C6122.4 (6)O3—C14—C9118.4 (6)
C4—C5—Br2117.3 (5)O3—C14—C13122.2 (7)
C6—C5—Br2120.3 (6)C9—C14—C13119.4 (8)
C5—C6—C1118.3 (7)O3—C15—H15A109.5
C5—C6—H6120.9O3—C15—H15B109.5
C1—C6—H6120.9H15A—C15—H15B109.5
N1—C7—C1117.5 (6)O3—C15—H15C109.5
N1—C7—H7121.3H15A—C15—H15C109.5
C1—C7—H7121.3H15B—C15—H15C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O30.90 (5)1.97 (9)2.617 (8)128 (9)
O1—H1···N10.821.932.535 (7)130

Experimental details

Crystal data
Chemical formulaC15H12Br2N2O3
Mr428.09
Crystal system, space groupMonoclinic, Cc
Temperature (K)298
a, b, c (Å)10.886 (1), 12.956 (2), 10.965 (2)
β (°) 96.476 (3)
V3)1536.6 (4)
Z4
Radiation typeMo Kα
µ (mm1)5.29
Crystal size (mm)0.30 × 0.30 × 0.27
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.300, 0.329
No. of measured, independent and
observed [I > 2σ(I)] reflections
4623, 2208, 1992
Rint0.030
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.125, 1.05
No. of reflections2208
No. of parameters204
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.35, 0.62
Absolute structureFlack (1983), 531 Friedel pairs
Absolute structure parameter0.513 (19)

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O30.90 (5)1.97 (9)2.617 (8)128 (9)
O1—H1···N10.821.932.535 (7)130
 

Acknowledgements

The Vital Foundation of Ankang University (project No. 2008AKXY012), and the Special Scientific Research Foundation of the Education Office of Shanxi Province (Project No. 02JK202) are gratefully acknowledged.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFun, H.-K., Patil, P. S., Rao, J. N., Kalluraya, B. & Chantrapromma, S. (2008). Acta Cryst. E64, o1707.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMohd Lair, N., Mohd Ali, H. & Ng, S. W. (2009). Acta Cryst. E65, o189.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, C.-M. & Ban, H.-Y. (2009). Acta Cryst. E65, o1466.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationQu, L.-Z., Yang, T., Cao, G.-B. & Wang, X.-Y. (2008). Acta Cryst. E64, o2061.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, D.-S. (2007). J. Chem. Crystallogr. 37, 343–348.  Web of Science CSD CrossRef CAS Google Scholar
First citationYang, T., Cao, G.-B., Xiang, J.-M. & Zhang, L.-H. (2008). Acta Cryst. E64, o1186.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYou, Z.-L., Dai, W.-M., Xu, X.-Q. & Hu, Y.-Q. (2008). Pol. J. Chem. 82, 2215–2219.  CAS Google Scholar
First citationZhu, C.-G., Wei, Y.-J. & Zhu, Q.-Y. (2009). Acta Cryst. E65, o85.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds