organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Phenyl N-(2-methyl­phen­yl)carbamate

aDepartment of Chemistry, Government College University, Lahore, Pakistan, and bDepartment of Physics, University of Sargodha, Sargodha, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 13 June 2009; accepted 13 June 2009; online 20 June 2009)

In the title compound, C14H13NO2, the aromatic rings attached to the O and N atoms make dihedral angles of 62.65 (9) and 38.28 (11)°, respectively, with the central carbamate group. The benzene rings are oriented at a dihedral angle of 39.22 (10)°. In the crystal, a very weak C—H⋯π inter­action occurs.

Related literature

For a related structure, see: Shahwar et al. (2009[Shahwar, D., Tahir, M. N., Mughal, M. S., Khan, M. A. & Ahmad, N. (2009). Acta Cryst. E65, o1363.]).

[Scheme 1]

Experimental

Crystal data
  • C14H13NO2

  • Mr = 227.25

  • Orthorhombic, P n a 21

  • a = 10.5736 (9) Å

  • b = 18.5414 (14) Å

  • c = 5.9681 (4) Å

  • V = 1170.04 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.25 × 0.14 × 0.14 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.984, Tmax = 0.989

  • 6929 measured reflections

  • 1585 independent reflections

  • 997 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.083

  • S = 1.01

  • 1585 reflections

  • 158 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯CgBi 0.93 2.95 3.714 (3) 140
Symmetry code: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z+{\script{1\over 2}}]. CgB is the centroid of benzene ring (C8–C13).

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

We have recently published the crystal structure of (II), phenyl N-phenylcarbamate (Shahwar et al., 2009), which differs from the title compound, (I), due to an attachement of CH3 at ortho-position of benzene ring attached with N-atom.

In (I), the benzene rings A (C1—C6) and B (C8—C13) are of course planar. The central portion containing carbamate group C (C7/O1/O2/N1) is also planar. The benzene rings A & B are oriented at a dihedral angle of 39.22 (10)°. The dihedral angles between A/C and B/C have values of of 62.65 (9)° and 38.28 (11)°, respectively. The H-atom attached with N-atom does not form any intera or inter-molecular H-bonding due to the attachement of methyl group. There exists a weak C–H···π interaction (Table 1).

Related literature top

For a related structure, see: Shahwar et al. (2009). CgB is the centroid of benzene ring (C8—C13).

Experimental top

A solution of o-toluidine (1.08 ml, 0.01 mol) in dichloromethane (20 ml) was prepared. Phenylchloroformate (1.26 ml, 0.01 mol) was added drop-wise to the magnetically stirring solution. The mixture turned to suspension after one hour. To get complete product, n-hexane (30 ml) was added and the precipitate were obtained. The precipitate were filtered out and recrystalized from ethylacetate and methanol (9:1) to yield colourless blocks of (I).

Refinement top

In the absence of significant anomalous scattering effects, Friedel pairs were merged before refinement.

The coordinates of the N-bound H atom were refined. The C-bound H atoms were positioned geometrically (C—H = 0.93–0.96 Å) and refined as riding with Uiso(H) = 1.2Ueq(C, N) or 1.5Ueq(methyl C).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of (I) with displacement ellipsoids drawn at the 50% probability level. H-atoms are shown by small spheres of arbitrary radius.
Phenyl N</>-(2-methylphenyl)carbamate top
Crystal data top
C14H13NO2F(000) = 480
Mr = 227.25Dx = 1.290 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 2241 reflections
a = 10.5736 (9) Åθ = 3.0–28.6°
b = 18.5414 (14) ŵ = 0.09 mm1
c = 5.9681 (4) ÅT = 296 K
V = 1170.04 (15) Å3Block, colourless
Z = 40.25 × 0.14 × 0.14 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
1585 independent reflections
Radiation source: fine-focus sealed tube997 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
Detector resolution: 7.40 pixels mm-1θmax = 28.3°, θmin = 2.9°
ω scansh = 1413
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 1724
Tmin = 0.984, Tmax = 0.989l = 77
6929 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.083H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0377P)2]
where P = (Fo2 + 2Fc2)/3
1585 reflections(Δ/σ)max < 0.001
158 parametersΔρmax = 0.13 e Å3
1 restraintΔρmin = 0.15 e Å3
Crystal data top
C14H13NO2V = 1170.04 (15) Å3
Mr = 227.25Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 10.5736 (9) ŵ = 0.09 mm1
b = 18.5414 (14) ÅT = 296 K
c = 5.9681 (4) Å0.25 × 0.14 × 0.14 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
1585 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
997 reflections with I > 2σ(I)
Tmin = 0.984, Tmax = 0.989Rint = 0.037
6929 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0391 restraint
wR(F2) = 0.083H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.13 e Å3
1585 reflectionsΔρmin = 0.15 e Å3
158 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.27882 (15)0.33744 (9)0.6965 (3)0.0594 (6)
O20.48038 (14)0.30458 (9)0.6133 (3)0.0585 (6)
N10.30983 (19)0.24161 (11)0.4867 (3)0.0547 (7)
C10.31727 (19)0.39161 (13)0.8463 (4)0.0459 (8)
C20.3813 (2)0.37450 (12)1.0394 (4)0.0492 (8)
C30.4089 (2)0.42831 (13)1.1897 (4)0.0550 (9)
C40.3718 (2)0.49827 (14)1.1487 (5)0.0610 (9)
C50.3068 (2)0.51391 (15)0.9561 (4)0.0657 (10)
C60.2797 (2)0.46077 (14)0.8027 (4)0.0580 (9)
C70.3691 (2)0.29463 (12)0.6005 (4)0.0472 (8)
C80.3694 (2)0.19088 (12)0.3442 (4)0.0479 (7)
C90.3097 (2)0.17293 (13)0.1431 (4)0.0508 (8)
C100.3682 (3)0.12288 (15)0.0089 (4)0.0683 (10)
C110.4814 (3)0.09134 (15)0.0662 (6)0.0783 (12)
C120.5378 (3)0.10948 (16)0.2643 (6)0.0746 (11)
C130.4824 (2)0.15870 (14)0.4054 (5)0.0599 (9)
C140.1842 (2)0.20522 (15)0.0812 (5)0.0670 (10)
H10.233 (2)0.2453 (13)0.486 (5)0.0657*
H20.405700.327181.067870.0590*
H30.452900.417431.320270.0660*
H40.390620.534591.250890.0732*
H50.280800.561010.928700.0787*
H60.236410.471700.671390.0696*
H100.330000.109870.125450.0820*
H110.519130.057970.029010.0938*
H120.614320.088300.303940.0895*
H130.520510.170340.541110.0718*
H14A0.123020.193690.194470.1006*
H14B0.156950.185960.060110.1006*
H14C0.192490.256650.069560.1006*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0456 (10)0.0665 (11)0.0662 (11)0.0037 (8)0.0135 (9)0.0153 (10)
O20.0448 (10)0.0669 (11)0.0638 (10)0.0087 (8)0.0047 (9)0.0083 (9)
N10.0419 (11)0.0632 (13)0.0591 (12)0.0031 (11)0.0084 (12)0.0090 (11)
C10.0369 (12)0.0511 (14)0.0497 (14)0.0005 (10)0.0010 (11)0.0007 (12)
C20.0439 (13)0.0417 (13)0.0620 (15)0.0029 (11)0.0062 (11)0.0052 (12)
C30.0509 (15)0.0604 (16)0.0538 (14)0.0063 (12)0.0084 (12)0.0008 (14)
C40.0625 (15)0.0521 (15)0.0683 (18)0.0070 (12)0.0069 (14)0.0096 (14)
C50.0692 (19)0.0490 (15)0.079 (2)0.0116 (13)0.0064 (15)0.0095 (15)
C60.0577 (16)0.0621 (17)0.0541 (16)0.0100 (13)0.0013 (13)0.0092 (14)
C70.0484 (14)0.0513 (14)0.0418 (11)0.0019 (12)0.0080 (12)0.0035 (11)
C80.0445 (13)0.0489 (13)0.0503 (12)0.0100 (12)0.0001 (12)0.0023 (12)
C90.0479 (14)0.0562 (14)0.0484 (14)0.0180 (11)0.0020 (11)0.0013 (13)
C100.0679 (19)0.0809 (19)0.0562 (16)0.0237 (16)0.0076 (15)0.0113 (15)
C110.070 (2)0.072 (2)0.093 (2)0.0072 (16)0.0194 (18)0.0196 (17)
C120.0536 (17)0.0682 (19)0.102 (2)0.0007 (15)0.0057 (17)0.0014 (18)
C130.0509 (16)0.0598 (17)0.0689 (16)0.0023 (12)0.0067 (13)0.0042 (14)
C140.0568 (15)0.084 (2)0.0601 (14)0.0133 (14)0.0147 (13)0.0003 (15)
Geometric parameters (Å, º) top
O1—C11.405 (3)C10—C111.375 (4)
O1—C71.367 (3)C11—C121.366 (5)
O2—C71.194 (3)C12—C131.373 (4)
N1—C71.349 (3)C2—H20.9300
N1—C81.416 (3)C3—H30.9300
N1—H10.82 (2)C4—H40.9300
C1—C61.367 (3)C5—H50.9300
C1—C21.374 (3)C6—H60.9300
C2—C31.373 (3)C10—H100.9300
C3—C41.377 (4)C11—H110.9300
C4—C51.370 (4)C12—H120.9300
C5—C61.375 (4)C13—H130.9300
C8—C131.385 (3)C14—H14A0.9600
C8—C91.396 (3)C14—H14B0.9600
C9—C101.373 (4)C14—H14C0.9600
C9—C141.502 (3)
C1—O1—C7118.67 (17)C1—C2—H2121.00
C7—N1—C8125.43 (19)C3—C2—H2120.00
C8—N1—H1119.7 (19)C2—C3—H3120.00
C7—N1—H1113.9 (18)C4—C3—H3120.00
O1—C1—C6117.7 (2)C3—C4—H4120.00
C2—C1—C6121.3 (2)C5—C4—H4120.00
O1—C1—C2120.8 (2)C4—C5—H5120.00
C1—C2—C3119.0 (2)C6—C5—H5120.00
C2—C3—C4120.5 (2)C1—C6—H6121.00
C3—C4—C5119.4 (2)C5—C6—H6120.00
C4—C5—C6120.8 (2)C9—C10—H10119.00
C1—C6—C5119.0 (2)C11—C10—H10119.00
O1—C7—N1108.04 (18)C10—C11—H11120.00
O2—C7—N1127.1 (2)C12—C11—H11120.00
O1—C7—O2124.9 (2)C11—C12—H12120.00
C9—C8—C13120.9 (2)C13—C12—H12120.00
N1—C8—C9118.26 (19)C8—C13—H13120.00
N1—C8—C13120.8 (2)C12—C13—H13120.00
C10—C9—C14121.6 (2)C9—C14—H14A109.00
C8—C9—C10117.3 (2)C9—C14—H14B109.00
C8—C9—C14121.1 (2)C9—C14—H14C109.00
C9—C10—C11122.3 (3)H14A—C14—H14B109.00
C10—C11—C12119.4 (3)H14A—C14—H14C109.00
C11—C12—C13120.5 (3)H14B—C14—H14C109.00
C8—C13—C12119.5 (3)
C7—O1—C1—C260.4 (3)C3—C4—C5—C60.8 (3)
C7—O1—C1—C6124.9 (2)C4—C5—C6—C10.8 (3)
C1—O1—C7—O29.1 (3)N1—C8—C9—C10179.1 (2)
C1—O1—C7—N1172.51 (19)N1—C8—C9—C141.3 (3)
C8—N1—C7—O1172.7 (2)C13—C8—C9—C100.6 (4)
C8—N1—C7—O25.7 (4)C13—C8—C9—C14177.2 (2)
C7—N1—C8—C9139.0 (2)N1—C8—C13—C12179.8 (2)
C7—N1—C8—C1342.5 (3)C9—C8—C13—C121.3 (4)
O1—C1—C2—C3175.14 (19)C8—C9—C10—C110.4 (4)
C6—C1—C2—C30.7 (3)C14—C9—C10—C11178.2 (3)
O1—C1—C6—C5174.57 (19)C9—C10—C11—C120.7 (5)
C2—C1—C6—C50.1 (3)C10—C11—C12—C130.0 (5)
C1—C2—C3—C40.7 (3)C11—C12—C13—C81.0 (4)
C2—C3—C4—C50.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···CgBi0.932.953.714 (3)140
Symmetry code: (i) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC14H13NO2
Mr227.25
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)296
a, b, c (Å)10.5736 (9), 18.5414 (14), 5.9681 (4)
V3)1170.04 (15)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.25 × 0.14 × 0.14
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.984, 0.989
No. of measured, independent and
observed [I > 2σ(I)] reflections
6929, 1585, 997
Rint0.037
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.083, 1.01
No. of reflections1585
No. of parameters158
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.13, 0.15

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···CgBi0.932.953.714 (3)140
Symmetry code: (i) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

NA greatfully acknowledges the Higher Education Commission, Islamabad, Pakistan, for providing a Scholarship under the Indigenous PhD Program (PIN 042–120599-PS2–156).

References

First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationShahwar, D., Tahir, M. N., Mughal, M. S., Khan, M. A. & Ahmad, N. (2009). Acta Cryst. E65, o1363.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds