organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Hydr­­oxy-3-nitro­benzamide

aDepartment of Chemistry, University of Sargodha, Sargodha, Pakistan, bDepartment of Physics, University of Sargodha, Sargodha, Pakistan, and cDepartment of Chemistry, Government College University, Lahore, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 13 June 2009; accepted 14 June 2009; online 20 June 2009)

The asymmetric unit of title compound, C7H6N2O4, contains two mol­ecules, one of which has a disordered nitro group with an occupancy ratio of 0.517 (9):0.483 (9) for the O atoms. Both mol­ecules contain an intra­molecular O—H⋯O hydrogen bond. In the crystal, both mol­ecules form inversion dimers linked by pairs of N—H⋯O hydrogen bonds, resulting in R22(8) ring motifs. The dimers are connected by further N—H⋯O links and weak C—H⋯O inter­actions, resulting in a layered motif.

Related literature

For related structures, see: Liu & Zhu (2007[Liu, T. & Zhu, J. Y. (2007). Acta Cryst. E63, o3830.]); Pertlik (1990[Pertlik, F. (1990). Monatsh. Chem. 121, 129-139.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C7H6N2O4

  • Mr = 182.14

  • Triclinic, [P \overline 1]

  • a = 3.8390 (2) Å

  • b = 13.0347 (8) Å

  • c = 16.0409 (9) Å

  • α = 98.207 (3)°

  • β = 95.658 (2)°

  • γ = 98.365 (3)°

  • V = 780.16 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 296 K

  • 0.25 × 0.22 × 0.18 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.966, Tmax = 0.979

  • 15183 measured reflections

  • 3658 independent reflections

  • 1932 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.139

  • S = 1.00

  • 3658 reflections

  • 287 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O⋯O4 0.82 1.77 2.500 (2) 148
N2—H2A⋯O6Ai 0.80 (3) 2.38 (3) 3.142 (5) 161 (3)
N2—H2B⋯O4ii 0.93 (3) 2.03 (3) 2.966 (3) 177 (2)
N4—H4A⋯O8iii 0.87 (3) 2.07 (3) 2.929 (3) 172 (2)
N4—H4B⋯O2iv 0.91 (3) 2.18 (3) 3.084 (3) 174 (2)
O5—H5O⋯O8 0.82 1.76 2.496 (2) 148
C6—H6⋯O6Ai 0.91 (2) 2.40 (2) 3.285 (6) 163 (2)
C11—H11⋯O7Av 0.92 (2) 2.41 (2) 3.221 (6) 147 (2)
C11—H11⋯O7Avi 0.92 (2) 2.55 (2) 2.997 (6) 110.5 (17)
C13—H13⋯O2iv 0.92 (2) 2.39 (2) 3.289 (3) 165 (2)
Symmetry codes: (i) x-1, y, z; (ii) -x+1, -y+1, -z; (iii) -x+3, -y, -z+1; (iv) x-1, y-1, z; (v) -x+1, -y, -z; (vi) -x+2, -y, -z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

The title compound (I), (Fig. 1), has been prepared as an intermediate for derivatization. The purpose of structure determination was to investigate the amount and position of nitration on the 2-hydroxybenzamide.

The crystal structures of (II) 2-Hydroxybenzamide (Pertlik, 1990) and (III) 2-Hydroxy-3,5-dinitrobenzamide monohydrate (Liu & Zhu, 2007) have been published which contain the common group of hydroxybenzamide as in (I).

The title compound consists of two molecules in the asymmetric unit. The O-atoms of nitro group in one of the molecules are disordered over two sites with occupancy ratio of 0.517 (9):0.483 (9). In both molecules the hydroxy group form intramolecular H-bonding with the O-atom of amide group, thus completing ring motifs R11(6) (Bernstein et al., 1995). The H-atoms of NH2 groups behave differently. One H-atom forms dimer, whereas the other is used in linkage of the dimers. It is intersting that both molecules form dimers among themselves through the intermolecular H-bonds of N—H···O type with ring motifs R22(8). The dimers of both molecules are connected to each other through the same type of intermolecular H-bonding (Fig. 2). The molecules are stabilized in the form of two dimensional polymeric sheets due to intera as well as intermolecular H-bonding (Table 1).

Related literature top

For related structures, see: Liu & Zhu (2007); Pertlik (1990). For graph-set notation, see: Bernstein et al. (1995).

Experimental top

A solution of 2-hydroxybenzamide (1.37 g, 0.01 mol) in ethylacetate (EtOAc) (25 ml) was added dropwise to a nitrating mixture of HNO3 (1.89 g, 0.03 mol) and H2SO4 (1.96 g, 0.02 mol) with constant stirring while the temperature was kept below 278 K. Then reaction mixture was stirred at room temperature for 4–5 h. The resulting mixture was refluxed for 1 h, cooled, neutralized with aq. NaHCO3 (10%) and extracted with EtOAc (3 × 25 ml). The organic layers were combined, dried over anhydrous Na2SO4, filtered and concentrated under reduced pressure to afford a reddish brown solid. The column chromatographic purification with 0, 2.5, 5 and 7.5% EtOAc in petrol (0.5 L each) over a silica gel packed column (25.5 cm) afforded brown prisms of (I).

Refinement top

The H-atoms were positioned geometrically, with O—H = 0.82 Å for hydroxy groups. The coordinates of all other H-atoms were refined with Uiso(H) = 1.2Ueq(carrier).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of (I) with displacement ellipsoids drawn at the 50% probability level. H-atoms are shown by small spheres of arbitrary radius. Hydrogen bonds are symbolized by dashed lines.
[Figure 2] Fig. 2. The partial packing of (I) which shows that molecules form dimers and the dimers are interlinked forming two dimensional polymeric sheets.
2-Hydroxy-3-nitrobenzamide top
Crystal data top
C7H6N2O4Z = 4
Mr = 182.14F(000) = 376
Triclinic, P1Dx = 1.551 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 3.8390 (2) ÅCell parameters from 3658 reflections
b = 13.0347 (8) Åθ = 1.3–27.9°
c = 16.0409 (9) ŵ = 0.13 mm1
α = 98.207 (3)°T = 296 K
β = 95.658 (2)°Prism, brown
γ = 98.365 (3)°0.25 × 0.22 × 0.18 mm
V = 780.16 (8) Å3
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3658 independent reflections
Radiation source: fine-focus sealed tube1932 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
Detector resolution: 7.40 pixels mm-1θmax = 27.9°, θmin = 1.3°
ω scansh = 55
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 1716
Tmin = 0.966, Tmax = 0.979l = 2020
15183 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.139H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0563P)2 + 0.1478P]
where P = (Fo2 + 2Fc2)/3
3658 reflections(Δ/σ)max < 0.001
287 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C7H6N2O4γ = 98.365 (3)°
Mr = 182.14V = 780.16 (8) Å3
Triclinic, P1Z = 4
a = 3.8390 (2) ÅMo Kα radiation
b = 13.0347 (8) ŵ = 0.13 mm1
c = 16.0409 (9) ÅT = 296 K
α = 98.207 (3)°0.25 × 0.22 × 0.18 mm
β = 95.658 (2)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3658 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1932 reflections with I > 2σ(I)
Tmin = 0.966, Tmax = 0.979Rint = 0.039
15183 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.139H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.19 e Å3
3658 reflectionsΔρmin = 0.18 e Å3
287 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O51.3003 (4)0.14269 (11)0.28007 (10)0.0574 (6)
O6A1.0846 (17)0.2123 (3)0.1437 (3)0.0622 (16)0.517 (9)
O7A0.9012 (16)0.0976 (4)0.0315 (3)0.0726 (16)0.517 (9)
O81.4309 (4)0.06126 (12)0.40897 (9)0.0602 (6)
N30.9800 (5)0.12260 (17)0.11120 (12)0.0517 (8)
N41.1499 (6)0.09612 (17)0.42380 (13)0.0584 (7)
C81.0438 (5)0.03373 (16)0.28965 (12)0.0398 (6)
C91.1008 (5)0.05167 (16)0.24507 (12)0.0390 (6)
C100.9365 (5)0.03748 (17)0.16144 (13)0.0416 (7)
C110.7300 (6)0.05660 (19)0.12321 (14)0.0488 (8)
C120.6838 (6)0.1393 (2)0.16654 (14)0.0522 (8)
C130.8391 (6)0.12754 (18)0.24892 (14)0.0476 (8)
C141.2174 (5)0.02094 (17)0.37827 (13)0.0442 (7)
O7B1.2731 (16)0.1761 (5)0.1186 (3)0.0686 (17)0.483 (9)
O6B0.7212 (15)0.1376 (4)0.0676 (4)0.0765 (19)0.483 (9)
O11.1680 (4)0.64772 (12)0.23085 (10)0.0576 (6)
O21.6092 (5)0.69953 (13)0.37229 (11)0.0717 (7)
O31.3820 (6)0.64564 (16)0.47695 (12)0.0965 (9)
O40.7934 (4)0.56454 (13)0.09498 (10)0.0650 (6)
N11.4064 (5)0.63841 (15)0.40149 (12)0.0521 (7)
N20.5075 (6)0.40043 (18)0.07421 (14)0.0632 (8)
C10.8539 (5)0.47141 (16)0.21067 (13)0.0412 (7)
C21.0752 (5)0.55872 (16)0.26058 (13)0.0409 (7)
C31.1871 (5)0.54999 (16)0.34496 (13)0.0418 (7)
C41.0917 (6)0.45937 (19)0.37779 (15)0.0492 (8)
C50.8859 (6)0.37445 (19)0.32808 (15)0.0543 (8)
C60.7662 (6)0.38048 (18)0.24564 (14)0.0482 (8)
C70.7143 (6)0.48026 (19)0.12263 (14)0.0475 (8)
H4B0.984 (7)0.1544 (19)0.4054 (15)0.0701*
H5O1.387390.138130.327900.0689*
H120.533 (7)0.208 (2)0.1414 (15)0.075 (7)*
H130.808 (6)0.1821 (18)0.2792 (14)0.0571*
H110.632 (6)0.0653 (17)0.0674 (15)0.0586*
H4A1.260 (7)0.0911 (19)0.4746 (17)0.0701*
H1O1.077850.641780.181530.0692*
H2A0.444 (7)0.347 (2)0.0911 (17)0.0758*
H2B0.420 (6)0.4100 (19)0.0199 (17)0.0758*
H41.161 (6)0.4557 (17)0.4324 (15)0.0589*
H50.820 (6)0.3154 (19)0.3482 (15)0.0651*
H60.614 (6)0.3254 (18)0.2137 (14)0.0578*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O50.0718 (10)0.0450 (10)0.0451 (9)0.0112 (8)0.0179 (8)0.0107 (7)
O6A0.079 (3)0.052 (3)0.053 (2)0.000 (2)0.002 (2)0.0178 (19)
O7A0.075 (3)0.097 (3)0.038 (2)0.010 (2)0.011 (2)0.021 (2)
O80.0729 (10)0.0528 (10)0.0431 (9)0.0137 (8)0.0177 (8)0.0098 (8)
N30.0482 (12)0.0617 (15)0.0429 (12)0.0011 (10)0.0054 (9)0.0157 (11)
N40.0716 (14)0.0557 (13)0.0403 (11)0.0074 (10)0.0156 (10)0.0154 (10)
C80.0405 (10)0.0413 (12)0.0345 (11)0.0025 (9)0.0022 (9)0.0042 (10)
C90.0362 (10)0.0402 (12)0.0362 (11)0.0001 (9)0.0040 (8)0.0032 (9)
C100.0379 (10)0.0486 (14)0.0373 (12)0.0035 (9)0.0005 (9)0.0108 (10)
C110.0467 (12)0.0599 (16)0.0330 (12)0.0004 (11)0.0075 (10)0.0023 (11)
C120.0548 (13)0.0498 (15)0.0428 (14)0.0073 (11)0.0062 (10)0.0011 (12)
C130.0542 (13)0.0437 (14)0.0406 (13)0.0031 (10)0.0013 (10)0.0086 (10)
C140.0482 (12)0.0459 (13)0.0353 (12)0.0034 (10)0.0036 (9)0.0062 (10)
O7B0.060 (3)0.071 (3)0.070 (3)0.016 (2)0.008 (2)0.033 (2)
O6B0.064 (3)0.092 (3)0.074 (4)0.010 (2)0.020 (3)0.037 (3)
O10.0725 (11)0.0494 (10)0.0490 (10)0.0047 (8)0.0044 (8)0.0242 (8)
O20.0808 (12)0.0613 (12)0.0630 (11)0.0209 (9)0.0007 (9)0.0152 (9)
O30.1297 (18)0.0999 (16)0.0415 (11)0.0298 (13)0.0012 (11)0.0073 (10)
O40.0848 (11)0.0577 (11)0.0489 (10)0.0052 (9)0.0095 (8)0.0257 (8)
N10.0565 (11)0.0520 (12)0.0454 (12)0.0023 (9)0.0024 (9)0.0127 (10)
N20.0773 (14)0.0598 (15)0.0466 (12)0.0077 (12)0.0122 (10)0.0217 (11)
C10.0417 (11)0.0458 (13)0.0385 (12)0.0082 (9)0.0049 (9)0.0141 (10)
C20.0428 (11)0.0416 (12)0.0412 (12)0.0061 (9)0.0066 (9)0.0160 (10)
C30.0416 (11)0.0439 (13)0.0406 (12)0.0054 (9)0.0041 (9)0.0117 (10)
C40.0521 (12)0.0568 (15)0.0406 (13)0.0065 (11)0.0005 (10)0.0206 (12)
C50.0604 (14)0.0493 (15)0.0530 (15)0.0013 (12)0.0022 (11)0.0242 (12)
C60.0495 (13)0.0465 (14)0.0468 (14)0.0007 (10)0.0010 (10)0.0137 (11)
C70.0494 (12)0.0520 (14)0.0424 (13)0.0063 (11)0.0028 (10)0.0158 (11)
Geometric parameters (Å, º) top
O5—C91.330 (3)C8—C131.390 (3)
O6A—N31.203 (5)C8—C141.485 (3)
O6B—N31.214 (6)C8—C91.409 (3)
O7A—N31.268 (5)C9—C101.400 (3)
O7B—N31.220 (7)C10—C111.384 (3)
O8—C141.256 (3)C11—C121.364 (3)
O5—H5O0.8200C12—C131.373 (3)
O1—C21.331 (3)C11—H110.92 (2)
O2—N11.208 (3)C12—H121.00 (3)
O3—N11.215 (3)C13—H130.92 (2)
O4—C71.251 (3)C1—C71.487 (3)
O1—H1O0.8200C1—C21.408 (3)
N3—C101.462 (3)C1—C61.394 (3)
N4—C141.315 (3)C2—C31.405 (3)
N4—H4B0.91 (3)C3—C41.377 (3)
N4—H4A0.87 (3)C4—C51.362 (3)
N1—C31.459 (3)C5—C61.374 (3)
N2—C71.313 (3)C4—H40.90 (2)
N2—H2B0.93 (3)C5—H50.89 (2)
N2—H2A0.80 (3)C6—H60.91 (2)
C9—O5—H5O109.00O8—C14—N4120.4 (2)
C2—O1—H1O109.00O8—C14—C8119.73 (19)
O6A—N3—C10121.8 (3)C10—C11—H11120.5 (14)
O7A—N3—C10116.8 (3)C12—C11—H11119.2 (14)
O7B—N3—C10117.3 (3)C11—C12—H12122.5 (14)
O6B—N3—O7B124.6 (4)C13—C12—H12118.2 (14)
O6A—N3—O7A121.4 (4)C8—C13—H13117.7 (14)
O6B—N3—C10118.1 (3)C12—C13—H13120.4 (14)
C14—N4—H4A120.6 (17)C6—C1—C7122.08 (19)
H4A—N4—H4B116 (2)C2—C1—C6119.27 (19)
C14—N4—H4B123.0 (15)C2—C1—C7118.64 (19)
O2—N1—C3119.37 (18)O1—C2—C3120.55 (18)
O3—N1—C3117.86 (19)C1—C2—C3117.33 (19)
O2—N1—O3122.7 (2)O1—C2—C1122.09 (18)
H2A—N2—H2B120 (2)N1—C3—C2120.54 (18)
C7—N2—H2B117.6 (15)N1—C3—C4117.60 (19)
C7—N2—H2A122.1 (19)C2—C3—C4121.9 (2)
C9—C8—C13119.43 (18)C3—C4—C5120.2 (2)
C13—C8—C14122.27 (19)C4—C5—C6119.7 (2)
C9—C8—C14118.26 (18)C1—C6—C5121.6 (2)
O5—C9—C10120.59 (19)O4—C7—C1119.6 (2)
C8—C9—C10117.21 (19)N2—C7—C1120.3 (2)
O5—C9—C8122.19 (17)O4—C7—N2120.1 (2)
N3—C10—C11117.63 (19)C3—C4—H4120.7 (15)
N3—C10—C9120.55 (19)C5—C4—H4119.1 (14)
C9—C10—C11121.8 (2)C4—C5—H5121.6 (15)
C10—C11—C12120.3 (2)C6—C5—H5118.7 (15)
C11—C12—C13119.3 (2)C1—C6—H6118.7 (15)
C8—C13—C12122.0 (2)C5—C6—H6119.6 (15)
N4—C14—C8119.9 (2)
O6A—N3—C10—C917.2 (5)C9—C10—C11—C120.6 (3)
O6A—N3—C10—C11163.1 (4)N3—C10—C11—C12179.1 (2)
O7A—N3—C10—C9163.0 (4)C10—C11—C12—C131.2 (4)
O7A—N3—C10—C1116.7 (4)C11—C12—C13—C80.2 (4)
O2—N1—C3—C230.7 (3)C6—C1—C2—O1179.93 (18)
O2—N1—C3—C4150.2 (2)C6—C1—C2—C32.0 (3)
O3—N1—C3—C2151.1 (2)C7—C1—C2—O11.3 (3)
O3—N1—C3—C428.0 (3)C7—C1—C2—C3176.59 (19)
C13—C8—C9—C101.7 (3)C2—C1—C6—C51.0 (3)
C14—C8—C9—O50.7 (3)C7—C1—C6—C5177.5 (2)
C13—C8—C9—O5178.57 (19)C2—C1—C7—O40.5 (3)
C9—C8—C14—N4175.1 (2)C2—C1—C7—N2179.9 (2)
C13—C8—C14—O8172.1 (2)C6—C1—C7—O4178.1 (2)
C13—C8—C14—N47.1 (3)C6—C1—C7—N21.5 (3)
C14—C8—C13—C12179.0 (2)O1—C2—C3—N10.1 (3)
C14—C8—C9—C10179.55 (18)O1—C2—C3—C4179.2 (2)
C9—C8—C13—C121.3 (3)C1—C2—C3—N1177.82 (18)
C9—C8—C14—O85.6 (3)C1—C2—C3—C41.3 (3)
O5—C9—C10—N30.3 (3)N1—C3—C4—C5179.7 (2)
O5—C9—C10—C11179.5 (2)C2—C3—C4—C50.6 (3)
C8—C9—C10—N3179.46 (18)C3—C4—C5—C61.7 (4)
C8—C9—C10—C110.8 (3)C4—C5—C6—C10.9 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···O40.821.772.500 (2)148
N2—H2A···O6Ai0.80 (3)2.38 (3)3.142 (5)161 (3)
N2—H2B···O4ii0.93 (3)2.03 (3)2.966 (3)177 (2)
N4—H4A···O8iii0.87 (3)2.07 (3)2.929 (3)172 (2)
N4—H4B···O2iv0.91 (3)2.18 (3)3.084 (3)174 (2)
O5—H5O···O80.821.762.496 (2)148
C6—H6···O6Ai0.91 (2)2.40 (2)3.285 (6)163 (2)
C11—H11···O7Av0.92 (2)2.41 (2)3.221 (6)147 (2)
C11—H11···O7Avi0.92 (2)2.55 (2)2.997 (6)110.5 (17)
C13—H13···O2iv0.92 (2)2.39 (2)3.289 (3)165 (2)
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1, z; (iii) x+3, y, z+1; (iv) x1, y1, z; (v) x+1, y, z; (vi) x+2, y, z.

Experimental details

Crystal data
Chemical formulaC7H6N2O4
Mr182.14
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)3.8390 (2), 13.0347 (8), 16.0409 (9)
α, β, γ (°)98.207 (3), 95.658 (2), 98.365 (3)
V3)780.16 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.13
Crystal size (mm)0.25 × 0.22 × 0.18
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.966, 0.979
No. of measured, independent and
observed [I > 2σ(I)] reflections
15183, 3658, 1932
Rint0.039
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.139, 1.00
No. of reflections3658
No. of parameters287
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.19, 0.18

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···O40.821.772.500 (2)148
N2—H2A···O6Ai0.80 (3)2.38 (3)3.142 (5)161 (3)
N2—H2B···O4ii0.93 (3)2.03 (3)2.966 (3)177 (2)
N4—H4A···O8iii0.87 (3)2.07 (3)2.929 (3)172 (2)
N4—H4B···O2iv0.91 (3)2.18 (3)3.084 (3)174 (2)
O5—H5O···O80.821.762.496 (2)148
C6—H6···O6Ai0.91 (2)2.40 (2)3.285 (6)163 (2)
C11—H11···O7Av0.92 (2)2.41 (2)3.221 (6)147 (2)
C11—H11···O7Avi0.92 (2)2.55 (2)2.997 (6)110.5 (17)
C13—H13···O2iv0.92 (2)2.39 (2)3.289 (3)165 (2)
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1, z; (iii) x+3, y, z+1; (iv) x1, y1, z; (v) x+1, y, z; (vi) x+2, y, z.
 

Acknowledgements

The authors acknowledge the Higher Education Commission, Islamabad, Pakistan, and Bana International, Karachi, Pakistan, for funding the purchase of the diffractometer at GCU, Lahore and for technical support, respectively.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationLiu, T. & Zhu, J. Y. (2007). Acta Cryst. E63, o3830.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPertlik, F. (1990). Monatsh. Chem. 121, 129–139.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds