metal-organic compounds
Diaquabis(ethylenediamine-κ2N,N′)copper(II) 2,2′-dithiodinicotinate sesquihydrate
aOndokuz May˙is University, Art and Science Faculty, Department of Chemistry, 55139 Samsun, Turkey, and bOndokuz May˙is University, Art and Science Faculty, Department of Physics, 55139 Samsun, Turkey
*Correspondence e-mail: iucar@omu.edu.tr
In the title compound, [Cu(C2H8N2)2](C12H6N2O4S2)·1.5H2O, there are two half-molecules of the cationic complex in the The Cu2+ ions lie on inversion centres and are octahedrally coordinated by two ethylenediamine (en) and two aqua ligands in a typical Jahn–Teller distorted environment with the water O atoms in the axial positions. Two 2-mercaptonicotinate units (mnic) are linked by a disulfide bridge. All the ethylenediamine N—H and O—H groups form intermolecular hydrogen bonds with acceptor O and N atoms, giving rise to a three-dimensional network. One of the uncoordinated water molecules has a site occupation factor of 0.5.
Related literature
For the oxidation of ); Chowdhury et al. (1994); Yamamoto & Sekine (1984). For metal-organic disulfide salts, see: Briansó et al. (1981); Casals et al. (1987). For related structures, see: Kazak et al. (2004); Harrison et al. (2007). Cargill Thompson et al. (1997).
to disulfides, see: Yiannos & Karaninos (1963Experimental
Crystal data
|
Refinement
|
|
Data collection: X-AREA (Stoe & Cie, 2002); cell X-AREA; data reduction: X-RED (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).
Supporting information
10.1107/S1600536809022612/hg2515sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809022612/hg2515Isup2.hkl
2-mercaptonicotinic acid (0.31 g, 2 mmol) (HMNA) was added into a solution of Cu(II)Cl2.2H2O (0.17 g, 1 mmol) in ethanol (40 ml). After stirring for 30 min, ethylenediamine (0.12 g, 2 mm l) was added into solutions of these compounds, under stirring, and mixtures were allowed to stand at room temperature. After a few days, well formed purple crystals were selected for X-ray studies.
H atoms attached to C and ethylenediamine N atoms were placed at calculated positions (C—H=0.93, 0.97 Å; N—H= 0.90 Å) and were allowed to ride on the parent atom [Uiso(H)=1.2eq(C) and Uiso(H)=1.2eq(N)]. The remaining H atoms were located in a difference map. At this stage, the maximum difference density of 3.76 e Å-3 indicated the presence of a possible atom site. A check of the solvent-accessible volume using PLATON (Spek, 2009) showed a total potential volume of 14.6 Å3. Attempts to refine this peak as a water O atom (O4W) resulted in a partial occupancy of 0.5. H atoms attached to O4W were not located.
Data collection: X-AREA (Stoe & Cie, 2002); cell
X-AREA (Stoe & Cie, 2002); data reduction: X-RED (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).Fig. 1. : ORTEPIII (Burnett & Johnson, 1996) plot of the copper(II) complex. Non-H atoms are drawn with displacement ellipsoids at the 30% probability level and H atoms are shown as small spheres of arbitrary radii. Water molecules are omitted for the clarity. [Symmetry codes: (i) -x, -y, 1 - z; (ii) 1 - x, -y, -z] | |
Fig. 2. : Showing of intermolecular hydrogen bonding interactions (dashed lines) in the unitcell. |
[Cu(C2H8N2)2](C12H6N2O4S2)·1.5H2O | Z = 2 |
Mr = 552.14 | F(000) = 574.0 |
Triclinic, P1 | Dx = 1.575 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71069 Å |
a = 8.8302 (9) Å | Cell parameters from 12659 reflections |
b = 11.5975 (11) Å | θ = 1.8–27.0° |
c = 11.7132 (11) Å | µ = 1.17 mm−1 |
α = 95.800 (8)° | T = 297 K |
β = 101.703 (8)° | Prism, blue |
γ = 93.493 (8)° | 0.35 × 0.20 × 0.15 mm |
V = 1164.5 (2) Å3 |
Stoe IPDS-2 diffractometer | 4964 independent reflections |
Radiation source: fine-focus sealed tube | 4034 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.082 |
Detector resolution: 6.67 pixels mm-1 | θmax = 26.8°, θmin = 1.8° |
ω scans | h = −11→11 |
Absorption correction: integration (X-RED; Stoe & Cie, 2002) | k = −14→14 |
Tmin = 0.540, Tmax = 0.751 | l = −14→14 |
17957 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.034 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.088 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.02 | w = 1/[σ2(Fo2) + (0.052P)2] where P = (Fo2 + 2Fc2)/3 |
4964 reflections | (Δ/σ)max < 0.001 |
333 parameters | Δρmax = 0.51 e Å−3 |
6 restraints | Δρmin = −0.69 e Å−3 |
[Cu(C2H8N2)2](C12H6N2O4S2)·1.5H2O | γ = 93.493 (8)° |
Mr = 552.14 | V = 1164.5 (2) Å3 |
Triclinic, P1 | Z = 2 |
a = 8.8302 (9) Å | Mo Kα radiation |
b = 11.5975 (11) Å | µ = 1.17 mm−1 |
c = 11.7132 (11) Å | T = 297 K |
α = 95.800 (8)° | 0.35 × 0.20 × 0.15 mm |
β = 101.703 (8)° |
Stoe IPDS-2 diffractometer | 4964 independent reflections |
Absorption correction: integration (X-RED; Stoe & Cie, 2002) | 4034 reflections with I > 2σ(I) |
Tmin = 0.540, Tmax = 0.751 | Rint = 0.082 |
17957 measured reflections |
R[F2 > 2σ(F2)] = 0.034 | 6 restraints |
wR(F2) = 0.088 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.02 | Δρmax = 0.51 e Å−3 |
4964 reflections | Δρmin = −0.69 e Å−3 |
333 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Cu1 | 0.0000 | 0.0000 | 0.5000 | 0.04125 (11) | |
Cu2 | 0.5000 | 0.0000 | 0.0000 | 0.03352 (10) | |
C1 | 0.1188 (3) | 0.2239 (2) | 0.4661 (2) | 0.0450 (5) | |
H1C | 0.2207 | 0.2211 | 0.5155 | 0.054* | |
H1D | 0.1026 | 0.3042 | 0.4548 | 0.054* | |
C2 | 0.1061 (3) | 0.1519 (2) | 0.3502 (2) | 0.0423 (5) | |
H2C | 0.0080 | 0.1608 | 0.2982 | 0.051* | |
H2D | 0.1896 | 0.1764 | 0.3132 | 0.051* | |
C3 | 0.4528 (3) | 0.2196 (2) | −0.0834 (3) | 0.0594 (7) | |
H3C | 0.3833 | 0.2806 | −0.0981 | 0.071* | |
H3D | 0.5142 | 0.2150 | −0.1433 | 0.071* | |
C4 | 0.4437 (4) | −0.2470 (2) | −0.0345 (3) | 0.0633 (7) | |
H4C | 0.5049 | −0.2639 | −0.0933 | 0.076* | |
H4D | 0.3731 | −0.3147 | −0.0356 | 0.076* | |
C5 | 0.4242 (2) | 0.61714 (17) | 0.65562 (17) | 0.0306 (4) | |
C6 | 0.3127 (2) | 0.53935 (17) | 0.68329 (17) | 0.0311 (4) | |
C7 | 0.4656 (3) | 0.3882 (2) | 0.6739 (2) | 0.0415 (5) | |
H7 | 0.4796 | 0.3101 | 0.6798 | 0.050* | |
C8 | 0.5823 (2) | 0.4564 (2) | 0.6463 (2) | 0.0418 (5) | |
H8 | 0.6735 | 0.4257 | 0.6346 | 0.050* | |
C9 | 0.5602 (2) | 0.5710 (2) | 0.63653 (18) | 0.0366 (4) | |
H9 | 0.6371 | 0.6189 | 0.6169 | 0.044* | |
C10 | 0.4048 (2) | 0.74330 (18) | 0.64540 (18) | 0.0343 (4) | |
C11 | 0.0755 (2) | 0.40673 (18) | 0.86336 (18) | 0.0331 (4) | |
C12 | 0.0124 (2) | 0.30855 (19) | 0.90351 (18) | 0.0358 (4) | |
C13 | 0.0685 (3) | 0.2922 (2) | 1.0193 (2) | 0.0470 (5) | |
H13 | 0.0294 | 0.2284 | 1.0496 | 0.056* | |
C14 | 0.1820 (3) | 0.3696 (2) | 1.0903 (2) | 0.0544 (6) | |
H14 | 0.2197 | 0.3598 | 1.1685 | 0.065* | |
C15 | 0.2366 (3) | 0.4609 (2) | 1.0415 (2) | 0.0538 (6) | |
H15 | 0.3140 | 0.5130 | 1.0886 | 0.065* | |
C16 | −0.1116 (3) | 0.2227 (2) | 0.8278 (2) | 0.0442 (5) | |
N1 | −0.0025 (2) | 0.17358 (16) | 0.52101 (17) | 0.0433 (4) | |
H1A | −0.0961 | 0.1943 | 0.4869 | 0.052* | |
H1B | 0.0163 | 0.2000 | 0.5979 | 0.052* | |
N2 | 0.1161 (2) | 0.02998 (17) | 0.37308 (17) | 0.0422 (4) | |
H2A | 0.2162 | 0.0158 | 0.3960 | 0.051* | |
H2B | 0.0746 | −0.0176 | 0.3071 | 0.051* | |
N3 | 0.3630 (2) | 0.10872 (18) | −0.08804 (19) | 0.0421 (4) | |
N4 | 0.3548 (2) | −0.14487 (17) | −0.06077 (17) | 0.0417 (4) | |
H4A | 0.2733 | −0.1449 | −0.0254 | 0.050* | |
H4B | 0.3189 | −0.1473 | −0.1387 | 0.050* | |
N5 | 0.3322 (2) | 0.42816 (16) | 0.69298 (18) | 0.0401 (4) | |
N6 | 0.1866 (2) | 0.48064 (17) | 0.93068 (18) | 0.0454 (4) | |
O1 | 0.51047 (19) | 0.80272 (15) | 0.61677 (16) | 0.0499 (4) | |
O2 | 0.28373 (18) | 0.78292 (14) | 0.66900 (16) | 0.0470 (4) | |
O1W | 0.2788 (2) | 0.01895 (16) | 0.65012 (16) | 0.0467 (4) | |
O3 | −0.16845 (19) | 0.24297 (16) | 0.72768 (16) | 0.0533 (4) | |
O2W | 0.3687 (2) | 0.04649 (18) | 0.16705 (16) | 0.0535 (4) | |
O4 | −0.1483 (3) | 0.1345 (2) | 0.8711 (2) | 0.1045 (11) | |
O3W | 0.5707 (2) | 0.10145 (16) | 0.59883 (17) | 0.0509 (4) | |
S1 | 0.13210 (6) | 0.58824 (5) | 0.70793 (5) | 0.03837 (13) | |
S2 | 0.00794 (5) | 0.43656 (5) | 0.71566 (5) | 0.03637 (13) | |
O4W | 0.0516 (5) | −0.0045 (4) | −0.0659 (4) | 0.0690 (11) | 0.50 |
H1W | 0.361 (2) | 0.047 (2) | 0.642 (2) | 0.044 (7)* | |
H2W | 0.286 (3) | −0.0529 (16) | 0.656 (3) | 0.054 (8)* | |
H3W | 0.317 (4) | −0.012 (2) | 0.176 (3) | 0.088 (12)* | |
H4W | 0.403 (3) | 0.081 (2) | 0.2339 (17) | 0.048 (7)* | |
H5W | 0.547 (3) | 0.119 (3) | 0.5309 (18) | 0.062 (9)* | |
H6W | 0.641 (3) | 0.149 (2) | 0.640 (3) | 0.069 (10)* | |
H3B | 0.323 (3) | 0.081 (2) | −0.162 (3) | 0.048 (7)* | |
H3A | 0.284 (4) | 0.121 (3) | −0.056 (3) | 0.081 (11)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0621 (2) | 0.02856 (19) | 0.0401 (2) | 0.00822 (16) | 0.02562 (18) | 0.00415 (15) |
Cu2 | 0.03532 (18) | 0.02982 (18) | 0.03488 (19) | −0.00104 (13) | 0.00566 (14) | 0.00699 (14) |
C1 | 0.0421 (11) | 0.0343 (11) | 0.0562 (14) | 0.0004 (9) | 0.0045 (10) | 0.0070 (10) |
C2 | 0.0387 (11) | 0.0446 (13) | 0.0486 (13) | 0.0060 (9) | 0.0162 (9) | 0.0139 (10) |
C3 | 0.0743 (17) | 0.0412 (14) | 0.0640 (17) | 0.0082 (12) | 0.0107 (14) | 0.0180 (12) |
C4 | 0.0822 (19) | 0.0350 (13) | 0.0671 (18) | −0.0033 (12) | 0.0051 (15) | 0.0062 (12) |
C5 | 0.0314 (9) | 0.0326 (10) | 0.0256 (9) | −0.0009 (7) | 0.0020 (7) | 0.0026 (7) |
C6 | 0.0297 (9) | 0.0316 (10) | 0.0314 (10) | 0.0019 (7) | 0.0052 (7) | 0.0042 (8) |
C7 | 0.0451 (11) | 0.0346 (11) | 0.0446 (12) | 0.0138 (9) | 0.0059 (9) | 0.0044 (9) |
C8 | 0.0324 (10) | 0.0526 (13) | 0.0391 (11) | 0.0126 (9) | 0.0043 (8) | 0.0000 (10) |
C9 | 0.0287 (9) | 0.0478 (12) | 0.0310 (10) | −0.0022 (8) | 0.0045 (7) | 0.0006 (9) |
C10 | 0.0369 (10) | 0.0329 (10) | 0.0305 (10) | −0.0030 (8) | 0.0027 (8) | 0.0043 (8) |
C11 | 0.0290 (9) | 0.0314 (10) | 0.0378 (11) | −0.0007 (7) | 0.0081 (8) | −0.0014 (8) |
C12 | 0.0360 (10) | 0.0352 (11) | 0.0348 (10) | −0.0062 (8) | 0.0094 (8) | −0.0016 (8) |
C13 | 0.0566 (13) | 0.0442 (13) | 0.0379 (12) | −0.0096 (10) | 0.0095 (10) | 0.0034 (10) |
C14 | 0.0611 (14) | 0.0569 (16) | 0.0374 (12) | −0.0071 (12) | −0.0023 (11) | 0.0015 (11) |
C15 | 0.0542 (13) | 0.0481 (14) | 0.0476 (14) | −0.0138 (11) | −0.0055 (11) | −0.0054 (11) |
C16 | 0.0495 (12) | 0.0442 (13) | 0.0366 (12) | −0.0186 (10) | 0.0123 (9) | −0.0001 (9) |
N1 | 0.0597 (11) | 0.0339 (10) | 0.0393 (10) | 0.0088 (8) | 0.0172 (8) | 0.0013 (8) |
N2 | 0.0476 (10) | 0.0399 (10) | 0.0429 (10) | 0.0075 (8) | 0.0186 (8) | 0.0027 (8) |
N3 | 0.0464 (10) | 0.0428 (11) | 0.0381 (11) | 0.0088 (8) | 0.0084 (9) | 0.0072 (8) |
N4 | 0.0453 (9) | 0.0402 (10) | 0.0384 (10) | −0.0057 (8) | 0.0095 (8) | 0.0035 (8) |
N5 | 0.0393 (9) | 0.0307 (9) | 0.0519 (11) | 0.0060 (7) | 0.0109 (8) | 0.0082 (8) |
N6 | 0.0446 (10) | 0.0380 (10) | 0.0469 (11) | −0.0096 (8) | 0.0008 (8) | −0.0016 (8) |
O1 | 0.0482 (9) | 0.0410 (9) | 0.0621 (11) | −0.0096 (7) | 0.0154 (8) | 0.0137 (8) |
O2 | 0.0450 (8) | 0.0341 (8) | 0.0657 (11) | 0.0056 (7) | 0.0161 (7) | 0.0133 (8) |
O1W | 0.0489 (10) | 0.0412 (10) | 0.0501 (10) | 0.0074 (8) | 0.0079 (8) | 0.0088 (8) |
O3 | 0.0520 (9) | 0.0542 (11) | 0.0454 (10) | −0.0206 (8) | −0.0011 (7) | 0.0047 (8) |
O2W | 0.0598 (10) | 0.0607 (12) | 0.0392 (9) | −0.0194 (9) | 0.0190 (8) | −0.0004 (8) |
O4 | 0.142 (2) | 0.0901 (18) | 0.0569 (13) | −0.0833 (17) | −0.0166 (13) | 0.0258 (12) |
O3W | 0.0565 (10) | 0.0467 (10) | 0.0447 (10) | −0.0127 (8) | 0.0032 (8) | 0.0080 (8) |
S1 | 0.0325 (2) | 0.0305 (3) | 0.0555 (3) | 0.00462 (19) | 0.0141 (2) | 0.0103 (2) |
S2 | 0.0304 (2) | 0.0362 (3) | 0.0411 (3) | −0.00393 (19) | 0.00569 (19) | 0.0055 (2) |
O4W | 0.060 (2) | 0.073 (3) | 0.076 (3) | 0.007 (2) | 0.016 (2) | 0.017 (2) |
Cu1—N1 | 2.0053 (19) | C10—O1 | 1.246 (2) |
Cu1—N2 | 2.0155 (18) | C10—O2 | 1.259 (3) |
Cu2—N3 | 2.0148 (19) | C11—N6 | 1.329 (3) |
Cu2—N4 | 2.0248 (18) | C11—C12 | 1.402 (3) |
Cu1—O1W | 2.702 (2) | C11—S2 | 1.788 (2) |
Cu2—O2W | 2.499 (2) | C12—C13 | 1.382 (3) |
C1—N1 | 1.476 (3) | C12—C16 | 1.508 (3) |
C1—C2 | 1.501 (4) | C13—C14 | 1.380 (3) |
C1—H1C | 0.9700 | C13—H13 | 0.9300 |
C1—H1D | 0.9700 | C14—C15 | 1.362 (4) |
C2—N2 | 1.470 (3) | C14—H14 | 0.9300 |
C2—H2C | 0.9700 | C15—N6 | 1.331 (3) |
C2—H2D | 0.9700 | C15—H15 | 0.9300 |
C3—N3 | 1.460 (3) | C16—O3 | 1.230 (3) |
C3—H3C | 0.9700 | C16—O4 | 1.240 (3) |
C3—H3D | 0.9700 | N1—H1A | 0.9000 |
C4—N4 | 1.485 (3) | N1—H1B | 0.9000 |
C4—H4C | 0.9700 | N2—H2A | 0.9000 |
C4—H4D | 0.9700 | N2—H2B | 0.9000 |
C5—C9 | 1.393 (3) | N3—H3B | 0.89 (3) |
C5—C6 | 1.403 (3) | N3—H3A | 0.87 (4) |
C5—C10 | 1.497 (3) | N4—H4A | 0.9000 |
C6—N5 | 1.324 (3) | N4—H4B | 0.9000 |
C6—S1 | 1.7922 (19) | O1W—H1W | 0.803 (17) |
C7—N5 | 1.343 (3) | O1W—H2W | 0.847 (17) |
C7—C8 | 1.371 (3) | O2W—H3W | 0.820 (18) |
C7—H7 | 0.9300 | O2W—H4W | 0.830 (17) |
C8—C9 | 1.368 (3) | O3W—H5W | 0.828 (18) |
C8—H8 | 0.9300 | O3W—H6W | 0.841 (18) |
C9—H9 | 0.9300 | S1—S2 | 2.0352 (8) |
N1—Cu1—N1i | 180.00 (12) | O1—C10—C5 | 118.17 (19) |
N1—Cu1—N2i | 96.00 (8) | O2—C10—C5 | 117.53 (17) |
N1i—Cu1—N2i | 84.00 (8) | N6—C11—C12 | 122.8 (2) |
N1—Cu1—N2 | 84.00 (8) | N6—C11—S2 | 117.04 (16) |
N1i—Cu1—N2 | 96.00 (8) | C12—C11—S2 | 120.17 (15) |
N2i—Cu1—N2 | 180.0 | C13—C12—C11 | 116.90 (19) |
N3ii—Cu2—N3 | 180.00 (16) | C13—C12—C16 | 119.6 (2) |
N3ii—Cu2—N4ii | 95.42 (8) | C11—C12—C16 | 123.50 (19) |
N3—Cu2—N4ii | 84.58 (8) | C14—C13—C12 | 120.7 (2) |
N3ii—Cu2—N4 | 84.58 (8) | C14—C13—H13 | 119.7 |
N3—Cu2—N4 | 95.42 (8) | C12—C13—H13 | 119.7 |
N4ii—Cu2—N4 | 180.00 (14) | C15—C14—C13 | 117.4 (2) |
N1—C1—C2 | 106.56 (18) | C15—C14—H14 | 121.3 |
N1—C1—H1C | 110.4 | C13—C14—H14 | 121.3 |
C2—C1—H1C | 110.4 | N6—C15—C14 | 124.3 (2) |
N1—C1—H1D | 110.4 | N6—C15—H15 | 117.8 |
C2—C1—H1D | 110.4 | C14—C15—H15 | 117.8 |
H1C—C1—H1D | 108.6 | O3—C16—O4 | 124.2 (2) |
N2—C2—C1 | 107.41 (19) | O3—C16—C12 | 118.8 (2) |
N2—C2—H2C | 110.2 | O4—C16—C12 | 117.0 (2) |
C1—C2—H2C | 110.2 | C1—N1—Cu1 | 108.14 (14) |
N2—C2—H2D | 110.2 | C1—N1—H1A | 110.1 |
C1—C2—H2D | 110.2 | Cu1—N1—H1A | 110.1 |
H2C—C2—H2D | 108.5 | C1—N1—H1B | 110.1 |
N3—C3—C4ii | 109.0 (2) | Cu1—N1—H1B | 110.1 |
N3—C3—H3C | 109.9 | H1A—N1—H1B | 108.4 |
C4ii—C3—H3C | 109.9 | C2—N2—Cu1 | 108.99 (13) |
N3—C3—H3D | 109.9 | C2—N2—H2A | 109.9 |
C4ii—C3—H3D | 109.9 | Cu1—N2—H2A | 109.9 |
H3C—C3—H3D | 108.3 | C2—N2—H2B | 109.9 |
N4—C4—C3ii | 108.4 (2) | Cu1—N2—H2B | 109.9 |
N4—C4—H4C | 110.0 | H2A—N2—H2B | 108.3 |
C3ii—C4—H4C | 110.0 | C3—N3—Cu2 | 108.78 (15) |
N4—C4—H4D | 110.0 | C3—N3—H3B | 109.8 (18) |
C3ii—C4—H4D | 110.0 | Cu2—N3—H3B | 113.5 (18) |
H4C—C4—H4D | 108.4 | C3—N3—H3A | 108 (2) |
C9—C5—C6 | 116.28 (19) | Cu2—N3—H3A | 110 (2) |
C9—C5—C10 | 119.46 (18) | H3B—N3—H3A | 106 (3) |
C6—C5—C10 | 124.26 (17) | C4—N4—Cu2 | 107.67 (15) |
N5—C6—C5 | 123.55 (18) | C4—N4—H4A | 110.2 |
N5—C6—S1 | 116.14 (15) | Cu2—N4—H4A | 110.2 |
C5—C6—S1 | 120.31 (15) | C4—N4—H4B | 110.2 |
N5—C7—C8 | 123.6 (2) | Cu2—N4—H4B | 110.2 |
N5—C7—H7 | 118.2 | H4A—N4—H4B | 108.5 |
C8—C7—H7 | 118.2 | C6—N5—C7 | 117.75 (19) |
C9—C8—C7 | 117.90 (19) | C11—N6—C15 | 117.9 (2) |
C9—C8—H8 | 121.0 | H1W—O1W—H2W | 109 (3) |
C7—C8—H8 | 121.0 | H3W—O2W—H4W | 106 (3) |
C8—C9—C5 | 120.92 (19) | H5W—O3W—H6W | 111 (3) |
C8—C9—H9 | 119.5 | C6—S1—S2 | 102.41 (7) |
C5—C9—H9 | 119.5 | C11—S2—S1 | 103.30 (7) |
O1—C10—O2 | 124.3 (2) | ||
N1—C1—C2—N2 | −54.5 (2) | C11—C12—C16—O4 | 174.2 (3) |
C9—C5—C6—N5 | 0.8 (3) | C2—C1—N1—Cu1 | 44.0 (2) |
C10—C5—C6—N5 | −179.42 (19) | N2i—Cu1—N1—C1 | 161.56 (15) |
C9—C5—C6—S1 | −179.23 (15) | N2—Cu1—N1—C1 | −18.44 (15) |
C10—C5—C6—S1 | 0.5 (3) | C1—C2—N2—Cu1 | 38.5 (2) |
N5—C7—C8—C9 | −0.7 (4) | N1—Cu1—N2—C2 | −11.41 (15) |
C7—C8—C9—C5 | 0.8 (3) | N1i—Cu1—N2—C2 | 168.59 (15) |
C6—C5—C9—C8 | −0.9 (3) | C4ii—C3—N3—Cu2 | −38.3 (3) |
C10—C5—C9—C8 | 179.36 (19) | N4ii—Cu2—N3—C3 | 12.94 (18) |
C9—C5—C10—O1 | 1.9 (3) | N4—Cu2—N3—C3 | −167.06 (18) |
C6—C5—C10—O1 | −177.85 (19) | C3ii—C4—N4—Cu2 | 39.1 (3) |
C9—C5—C10—O2 | −176.54 (19) | N3ii—Cu2—N4—C4 | −14.58 (18) |
C6—C5—C10—O2 | 3.7 (3) | N3—Cu2—N4—C4 | 165.42 (18) |
N6—C11—C12—C13 | 1.5 (3) | C5—C6—N5—C7 | −0.7 (3) |
S2—C11—C12—C13 | −178.95 (17) | S1—C6—N5—C7 | 179.35 (17) |
N6—C11—C12—C16 | −178.9 (2) | C8—C7—N5—C6 | 0.6 (3) |
S2—C11—C12—C16 | 0.7 (3) | C12—C11—N6—C15 | −1.5 (3) |
C11—C12—C13—C14 | −0.4 (4) | S2—C11—N6—C15 | 178.94 (19) |
C16—C12—C13—C14 | −180.0 (2) | C14—C15—N6—C11 | 0.4 (4) |
C12—C13—C14—C15 | −0.7 (4) | N5—C6—S1—S2 | −9.32 (17) |
C13—C14—C15—N6 | 0.7 (4) | C5—C6—S1—S2 | 170.74 (15) |
C13—C12—C16—O3 | 174.7 (2) | N6—C11—S2—S1 | −2.08 (18) |
C11—C12—C16—O3 | −4.9 (4) | C12—C11—S2—S1 | 178.35 (15) |
C13—C12—C16—O4 | −6.2 (4) | C6—S1—S2—C11 | 81.99 (10) |
Symmetry codes: (i) −x, −y, −z+1; (ii) −x+1, −y, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O2iii | 0.90 | 2.25 | 3.084 (3) | 154 |
N1—H1B···O3 | 0.90 | 2.48 | 3.138 (3) | 130 |
N2—H2A···O3Wiv | 0.90 | 2.38 | 3.213 (3) | 154 |
N2—H2B···O4i | 0.90 | 2.59 | 3.345 (4) | 142 |
N4—H4B···O2v | 0.90 | 2.27 | 3.116 (3) | 157 |
O1W—H2W···O2vi | 0.85 (2) | 1.93 (2) | 2.771 (2) | 175 (3) |
O1W—H1W···O3W | 0.80 (2) | 2.10 (2) | 2.892 (3) | 172 (3) |
O2W—H3W···O4i | 0.82 (2) | 1.95 (2) | 2.712 (3) | 154 (4) |
O2W—H4W···O1vii | 0.83 (2) | 2.08 (2) | 2.897 (3) | 168 (3) |
O3W—H5W···O1vii | 0.83 (2) | 2.03 (2) | 2.838 (3) | 167 (3) |
O3W—H6W···O3viii | 0.84 (2) | 1.98 (2) | 2.812 (2) | 170 (3) |
N3—H3A···O4W | 0.87 (4) | 2.42 (3) | 3.045 (4) | 129 (3) |
Symmetry codes: (i) −x, −y, −z+1; (iii) −x, −y+1, −z+1; (iv) −x+1, −y, −z+1; (v) x, y−1, z−1; (vi) x, y−1, z; (vii) −x+1, −y+1, −z+1; (viii) x+1, y, z. |
Experimental details
Crystal data | |
Chemical formula | [Cu(C2H8N2)2](C12H6N2O4S2)·1.5H2O |
Mr | 552.14 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 297 |
a, b, c (Å) | 8.8302 (9), 11.5975 (11), 11.7132 (11) |
α, β, γ (°) | 95.800 (8), 101.703 (8), 93.493 (8) |
V (Å3) | 1164.5 (2) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 1.17 |
Crystal size (mm) | 0.35 × 0.20 × 0.15 |
Data collection | |
Diffractometer | Stoe IPDS2 diffractometer |
Absorption correction | Integration (X-RED; Stoe & Cie, 2002) |
Tmin, Tmax | 0.540, 0.751 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 17957, 4964, 4034 |
Rint | 0.082 |
(sin θ/λ)max (Å−1) | 0.635 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.034, 0.088, 1.02 |
No. of reflections | 4964 |
No. of parameters | 333 |
No. of restraints | 6 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.51, −0.69 |
Computer programs: X-AREA (Stoe & Cie, 2002), X-RED (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).
Cu1—N1 | 2.0053 (19) | Cu2—N4 | 2.0248 (18) |
Cu1—N2 | 2.0155 (18) | Cu1—O1W | 2.702 (2) |
Cu2—N3 | 2.0148 (19) | Cu2—O2W | 2.499 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O2i | 0.90 | 2.25 | 3.084 (3) | 153.6 |
N1—H1B···O3 | 0.90 | 2.48 | 3.138 (3) | 129.8 |
N2—H2A···O3Wii | 0.90 | 2.38 | 3.213 (3) | 153.5 |
N2—H2B···O4iii | 0.90 | 2.59 | 3.345 (4) | 142.0 |
N4—H4B···O2iv | 0.90 | 2.27 | 3.116 (3) | 156.9 |
O1W—H2W···O2v | 0.847 (17) | 1.925 (18) | 2.771 (2) | 175 (3) |
O1W—H1W···O3W | 0.803 (17) | 2.095 (18) | 2.892 (3) | 172 (3) |
O2W—H3W···O4iii | 0.820 (18) | 1.95 (2) | 2.712 (3) | 154 (4) |
O2W—H4W···O1vi | 0.830 (17) | 2.079 (18) | 2.897 (3) | 168 (3) |
O3W—H5W···O1vi | 0.828 (18) | 2.025 (19) | 2.838 (3) | 167 (3) |
O3W—H6W···O3vii | 0.841 (18) | 1.980 (19) | 2.812 (2) | 170 (3) |
N3—H3A···O4W | 0.87 (4) | 2.42 (3) | 3.045 (4) | 129 (3) |
Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x+1, −y, −z+1; (iii) −x, −y, −z+1; (iv) x, y−1, z−1; (v) x, y−1, z; (vi) −x+1, −y+1, −z+1; (vii) x+1, y, z. |
Acknowledgements
The authors acknowledge the Ondokuz Mayis University Research Fund for financial support through project No. F-416.
References
Briansó, M. C., Briansó, J. L., Gaete, W. & Ros, J. (1981). Inorg. Chim. Acta, 49, 263–267. CSD CrossRef CAS Web of Science Google Scholar
Burnett, M. & Johnson, C. K. (1996). ORTEPIII. Report ORNN-6895. Oak Ridge National Laboratory, Tennessee, USA. Google Scholar
Cargill Thompson, A. M. W., Blandford, I., Redfearn, H., Jeffery, J. C. & Ward, M. D. (1997). J. Chem. Soc. Dalton Trans. pp. 2661–2665. Google Scholar
Casals, I., Gonzá laz-Duarte, P. & Sola, J. (1987). J. Chem. Soc. Dalton Trans. pp. 2391–2395. CSD CrossRef Web of Science Google Scholar
Chowdhury, S., Samuel, P. M., Das, I. & Roy, S. (1994). J. Chem. Soc. Chem. Commun. pp. 1993–1994. CrossRef Web of Science Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Harrison, W. T. A., Slawin, A. M. Z., Sharma, R. P., Sharma, B. & Bhama, S. (2007). Acta Cryst. E63, m178–m180. Web of Science CSD CrossRef IUCr Journals Google Scholar
Kazak, C., Yilmaz, V. T. & Yazicilar, T. K. (2004). Acta Cryst. E60, m593–m595. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany. Google Scholar
Yamamoto, T. & Sekine, Y. (1984). Can. J. Chem. 39, 1544–1547. CrossRef Web of Science Google Scholar
Yiannos, C. N. & Karaninos, J. V. (1963). J. Org. Chem. 28, 3246–3248. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
As is well known, many oxidizing agents, such as nitric acid, hydrogen peroxide, oxygen, dimethyl sulfoxide and potassium ferricyanide, can oxidize thiols to disulfides (Yiannos & Karaninos, 1963). In several cases, the thiol-to-disulfide conversion can also be quickly completed via oxygen in the presence of certain metal ions (Chowdhury et al., 1994; Yamamoto & Sekine, 1984). In the present case, the formation of the mnic-mnic (mnic: 2-mercaptonicotinate) dianion may be due to the oxidation of mnic via oxygen in the presence of Cu(II). It was of interest to determine the structure of the title compound, as there are a limited number of documented metal-organic disulfide salts (Briansó et al., 1981; Casals et al., 1987). Here, we report the crystal structure of the title compound, (I).
The asymmetric unit of compound (I) contains two crystallographically independent half-complexes in which the ethylenediamine (en) ligands, aqua ligands, 2-mercaptonicotinate anions and water molecules occupy general positions, whereas the Cu(II) ions are located on centres of inversion. In the crystal structure of the title compound, (I), the Cu(II) ions are coordinated by four N atoms of en ligands, forming a slightly distorted square plane. The Cu—N distances of 2.005 (2), 2.016 (2), 2.025 (2), and 2.015 (2)Å are comparable to those in other ethylenediamine-copper(II) complexes, such as trans-Bis(ethylenediamine)bis(p-nitrobenzoxasulfamato)copper(II) (Kazak et al., 2004), Diaquabis(ethylenediamine) copper(II) bis(4-nitrobenzoate) (Harrison et al., 2007), The coordination sphere of the Cu(II)ions is completed by two longer contacts to two symmetry equivalent aqua ligands located above and below the tetragonal plane. The Cu—Ow distances of 2.702 (2)Å (Cu1—O1) and 2.499 (2)Å (Cu2—O2) are strongly elongated due to Jahn-Teller distortion and the coordination polyhedra around the Cu(II) ions can be described as significantly distorted octahedral.
The mnic-mnic dianion acts as a counter anion in title compound. The torsion angle about the S—S bond [C6—S1—S2—C11] is 81.98 (9)°, which is larger than those reported in L—L (76.5°) [Ag(L—L)](PF6) {L—L= 2,2'-bis[6-(2,2'-bipyridyl)]diphenyldisulfide, (Cargill Thompson et al., 1997)}. The S—S bond length is 2.0352 (8) Å, which is comparable with those observed in [C5H9NH(CH3)S]2[CuCl4] [2.02 (2) Å; (Briansó et al., 1981)], [{(CH3)2NH(CH2)3S}2] [CdBr4] [2.013 (3) Å; (Casals et al., 1987)].
The crystal packing of (I) is formed via interesting intermolecular hydrogen bonding interactions. It can be seen from Fig. 2 that two complex cations and two dianions are joined to each other by N—H···O and O—H···O hydrogen bonds (Table 2), which lead to three dimensional extended network in the unitcell.