metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 7| July 2009| Pages m797-m798

Di­aqua­bis­(ethyl­enedi­amine-κ2N,N′)copper(II) 2,2′-di­thio­dinicotinate sesquihydrate

aOndokuz May˙is University, Art and Science Faculty, Department of Chemistry, 55139 Samsun, Turkey, and bOndokuz May˙is University, Art and Science Faculty, Department of Physics, 55139 Samsun, Turkey
*Correspondence e-mail: iucar@omu.edu.tr

(Received 11 May 2009; accepted 12 June 2009; online 20 June 2009)

In the title compound, [Cu(C2H8N2)2](C12H6N2O4S2)·1.5H2O, there are two half-molecules of the cationic complex in the asymmetric unit. The Cu2+ ions lie on inversion centres and are octa­hedrally coordinated by two ethyl­enediamine (en) and two aqua ligands in a typical Jahn–Teller distorted environment with the water O atoms in the axial positions. Two 2-mercaptonicotinate units (mnic) are linked by a disulfide bridge. All the ethyl­enediamine N—H and O—H groups form inter­molecular hydrogen bonds with acceptor O and N atoms, giving rise to a three-dimensional network. One of the uncoordinated water molecules has a site occupation factor of 0.5.

Related literature

For the oxidation of thiols to disulfides, see: Yiannos & Karaninos (1963[Yiannos, C. N. & Karaninos, J. V. (1963). J. Org. Chem. 28, 3246-3248.]); Chowdhury et al. (1994[Chowdhury, S., Samuel, P. M., Das, I. & Roy, S. (1994). J. Chem. Soc. Chem. Commun. pp. 1993-1994.]); Yamamoto & Sekine (1984[Yamamoto, T. & Sekine, Y. (1984). Can. J. Chem. 39, 1544-1547.]). For metal-organic disulfide salts, see: Briansó et al. (1981[Briansó, M. C., Briansó, J. L., Gaete, W. & Ros, J. (1981). Inorg. Chim. Acta, 49, 263-267.]); Casals et al. (1987[Casals, I., Gonzá laz-Duarte, P. & Sola, J. (1987). J. Chem. Soc. Dalton Trans. pp. 2391-2395.]). For related structures, see: Kazak et al. (2004[Kazak, C., Yilmaz, V. T. & Yazicilar, T. K. (2004). Acta Cryst. E60, m593-m595.]); Harrison et al. (2007[Harrison, W. T. A., Slawin, A. M. Z., Sharma, R. P., Sharma, B. & Bhama, S. (2007). Acta Cryst. E63, m178-m180.]). Cargill Thompson et al. (1997[Cargill Thompson, A. M. W., Blandford, I., Redfearn, H., Jeffery, J. C. & Ward, M. D. (1997). J. Chem. Soc. Dalton Trans. pp. 2661-2665.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C2H8N2)2](C12H6N2O4S2)·1.5H2O

  • Mr = 552.14

  • Triclinic, [P \overline 1]

  • a = 8.8302 (9) Å

  • b = 11.5975 (11) Å

  • c = 11.7132 (11) Å

  • α = 95.800 (8)°

  • β = 101.703 (8)°

  • γ = 93.493 (8)°

  • V = 1164.5 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.17 mm−1

  • T = 297 K

  • 0.35 × 0.20 × 0.15 mm

Data collection
  • Stoe IPDS-2 diffractometer

  • Absorption correction: integration (X-RED; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.540, Tmax = 0.751

  • 17957 measured reflections

  • 4964 independent reflections

  • 4034 reflections with I > 2σ(I)

  • Rint = 0.082

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.088

  • S = 1.02

  • 4964 reflections

  • 333 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.51 e Å−3

  • Δρmin = −0.69 e Å−3

Table 1
Selected bond lengths (Å)

Cu1—N1 2.0053 (19)
Cu1—N2 2.0155 (18)
Cu2—N3 2.0148 (19)
Cu2—N4 2.0248 (18)
Cu1—O1W 2.702 (2)
Cu2—O2W 2.499 (2)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O2i 0.90 2.25 3.084 (3) 154
N1—H1B⋯O3 0.90 2.48 3.138 (3) 130
N2—H2A⋯O3Wii 0.90 2.38 3.213 (3) 154
N2—H2B⋯O4iii 0.90 2.59 3.345 (4) 142
N4—H4B⋯O2iv 0.90 2.27 3.116 (3) 157
O1W—H2W⋯O2v 0.847 (17) 1.925 (18) 2.771 (2) 175 (3)
O1W—H1W⋯O3W 0.803 (17) 2.095 (18) 2.892 (3) 172 (3)
O2W—H3W⋯O4iii 0.820 (18) 1.95 (2) 2.712 (3) 154 (4)
O2W—H4W⋯O1vi 0.830 (17) 2.079 (18) 2.897 (3) 168 (3)
O3W—H5W⋯O1vi 0.828 (18) 2.025 (19) 2.838 (3) 167 (3)
O3W—H6W⋯O3vii 0.841 (18) 1.980 (19) 2.812 (2) 170 (3)
N3—H3A⋯O4W 0.87 (4) 2.42 (3) 3.045 (4) 129 (3)
Symmetry codes: (i) -x, -y+1, -z+1; (ii) -x+1, -y, -z+1; (iii) -x, -y, -z+1; (iv) x, y-1, z-1; (v) x, y-1, z; (vi) -x+1, -y+1, -z+1; (vii) x+1, y, z.

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. & Johnson, C. K. (1996). ORTEPIII. Report ORNN-6895. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

As is well known, many oxidizing agents, such as nitric acid, hydrogen peroxide, oxygen, dimethyl sulfoxide and potassium ferricyanide, can oxidize thiols to disulfides (Yiannos & Karaninos, 1963). In several cases, the thiol-to-disulfide conversion can also be quickly completed via oxygen in the presence of certain metal ions (Chowdhury et al., 1994; Yamamoto & Sekine, 1984). In the present case, the formation of the mnic-mnic (mnic: 2-mercaptonicotinate) dianion may be due to the oxidation of mnic via oxygen in the presence of Cu(II). It was of interest to determine the structure of the title compound, as there are a limited number of documented metal-organic disulfide salts (Briansó et al., 1981; Casals et al., 1987). Here, we report the crystal structure of the title compound, (I).

The asymmetric unit of compound (I) contains two crystallographically independent half-complexes in which the ethylenediamine (en) ligands, aqua ligands, 2-mercaptonicotinate anions and water molecules occupy general positions, whereas the Cu(II) ions are located on centres of inversion. In the crystal structure of the title compound, (I), the Cu(II) ions are coordinated by four N atoms of en ligands, forming a slightly distorted square plane. The Cu—N distances of 2.005 (2), 2.016 (2), 2.025 (2), and 2.015 (2)Å are comparable to those in other ethylenediamine-copper(II) complexes, such as trans-Bis(ethylenediamine)bis(p-nitrobenzoxasulfamato)copper(II) (Kazak et al., 2004), Diaquabis(ethylenediamine) copper(II) bis(4-nitrobenzoate) (Harrison et al., 2007), The coordination sphere of the Cu(II)ions is completed by two longer contacts to two symmetry equivalent aqua ligands located above and below the tetragonal plane. The Cu—Ow distances of 2.702 (2)Å (Cu1—O1) and 2.499 (2)Å (Cu2—O2) are strongly elongated due to Jahn-Teller distortion and the coordination polyhedra around the Cu(II) ions can be described as significantly distorted octahedral.

The mnic-mnic dianion acts as a counter anion in title compound. The torsion angle about the S—S bond [C6—S1—S2—C11] is 81.98 (9)°, which is larger than those reported in L—L (76.5°) [Ag(L—L)](PF6) {L—L= 2,2'-bis[6-(2,2'-bipyridyl)]diphenyldisulfide, (Cargill Thompson et al., 1997)}. The S—S bond length is 2.0352 (8) Å, which is comparable with those observed in [C5H9NH(CH3)S]2[CuCl4] [2.02 (2) Å; (Briansó et al., 1981)], [{(CH3)2NH(CH2)3S}2] [CdBr4] [2.013 (3) Å; (Casals et al., 1987)].

The crystal packing of (I) is formed via interesting intermolecular hydrogen bonding interactions. It can be seen from Fig. 2 that two complex cations and two dianions are joined to each other by N—H···O and O—H···O hydrogen bonds (Table 2), which lead to three dimensional extended network in the unitcell.

Related literature top

For the oxidation of thiols to disulfides, see: Yiannos & Karaninos (1963); Chowdhury et al. (1994); Yamamoto & Sekine (1984). For metal-organic disulfide salts, see: Briansó et al. (1981); Casals et al. (1987). For related structures, see: Kazak et al. (2004); Harrison et al. (2007). Cargill Thompson et al. (1997).

Experimental top

2-mercaptonicotinic acid (0.31 g, 2 mmol) (HMNA) was added into a solution of Cu(II)Cl2.2H2O (0.17 g, 1 mmol) in ethanol (40 ml). After stirring for 30 min, ethylenediamine (0.12 g, 2 mm l) was added into solutions of these compounds, under stirring, and mixtures were allowed to stand at room temperature. After a few days, well formed purple crystals were selected for X-ray studies.

Refinement top

H atoms attached to C and ethylenediamine N atoms were placed at calculated positions (C—H=0.93, 0.97 Å; N—H= 0.90 Å) and were allowed to ride on the parent atom [Uiso(H)=1.2eq(C) and Uiso(H)=1.2eq(N)]. The remaining H atoms were located in a difference map. At this stage, the maximum difference density of 3.76 e Å-3 indicated the presence of a possible atom site. A check of the solvent-accessible volume using PLATON (Spek, 2009) showed a total potential volume of 14.6 Å3. Attempts to refine this peak as a water O atom (O4W) resulted in a partial occupancy of 0.5. H atoms attached to O4W were not located.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. : ORTEPIII (Burnett & Johnson, 1996) plot of the copper(II) complex. Non-H atoms are drawn with displacement ellipsoids at the 30% probability level and H atoms are shown as small spheres of arbitrary radii. Water molecules are omitted for the clarity. [Symmetry codes: (i) -x, -y, 1 - z; (ii) 1 - x, -y, -z]
[Figure 2] Fig. 2. : Showing of intermolecular hydrogen bonding interactions (dashed lines) in the unitcell.
Diaquabis(ethylenediamine-κ2N,N')copper(II) 2,2'-dithiodinicotinate sesquihydrate top
Crystal data top
[Cu(C2H8N2)2](C12H6N2O4S2)·1.5H2OZ = 2
Mr = 552.14F(000) = 574.0
Triclinic, P1Dx = 1.575 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71069 Å
a = 8.8302 (9) ÅCell parameters from 12659 reflections
b = 11.5975 (11) Åθ = 1.8–27.0°
c = 11.7132 (11) ŵ = 1.17 mm1
α = 95.800 (8)°T = 297 K
β = 101.703 (8)°Prism, blue
γ = 93.493 (8)°0.35 × 0.20 × 0.15 mm
V = 1164.5 (2) Å3
Data collection top
Stoe IPDS-2
diffractometer
4964 independent reflections
Radiation source: fine-focus sealed tube4034 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.082
Detector resolution: 6.67 pixels mm-1θmax = 26.8°, θmin = 1.8°
ω scansh = 1111
Absorption correction: integration
(X-RED; Stoe & Cie, 2002)
k = 1414
Tmin = 0.540, Tmax = 0.751l = 1414
17957 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.088H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.052P)2]
where P = (Fo2 + 2Fc2)/3
4964 reflections(Δ/σ)max < 0.001
333 parametersΔρmax = 0.51 e Å3
6 restraintsΔρmin = 0.69 e Å3
Crystal data top
[Cu(C2H8N2)2](C12H6N2O4S2)·1.5H2Oγ = 93.493 (8)°
Mr = 552.14V = 1164.5 (2) Å3
Triclinic, P1Z = 2
a = 8.8302 (9) ÅMo Kα radiation
b = 11.5975 (11) ŵ = 1.17 mm1
c = 11.7132 (11) ÅT = 297 K
α = 95.800 (8)°0.35 × 0.20 × 0.15 mm
β = 101.703 (8)°
Data collection top
Stoe IPDS-2
diffractometer
4964 independent reflections
Absorption correction: integration
(X-RED; Stoe & Cie, 2002)
4034 reflections with I > 2σ(I)
Tmin = 0.540, Tmax = 0.751Rint = 0.082
17957 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0346 restraints
wR(F2) = 0.088H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.51 e Å3
4964 reflectionsΔρmin = 0.69 e Å3
333 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.00000.00000.50000.04125 (11)
Cu20.50000.00000.00000.03352 (10)
C10.1188 (3)0.2239 (2)0.4661 (2)0.0450 (5)
H1C0.22070.22110.51550.054*
H1D0.10260.30420.45480.054*
C20.1061 (3)0.1519 (2)0.3502 (2)0.0423 (5)
H2C0.00800.16080.29820.051*
H2D0.18960.17640.31320.051*
C30.4528 (3)0.2196 (2)0.0834 (3)0.0594 (7)
H3C0.38330.28060.09810.071*
H3D0.51420.21500.14330.071*
C40.4437 (4)0.2470 (2)0.0345 (3)0.0633 (7)
H4C0.50490.26390.09330.076*
H4D0.37310.31470.03560.076*
C50.4242 (2)0.61714 (17)0.65562 (17)0.0306 (4)
C60.3127 (2)0.53935 (17)0.68329 (17)0.0311 (4)
C70.4656 (3)0.3882 (2)0.6739 (2)0.0415 (5)
H70.47960.31010.67980.050*
C80.5823 (2)0.4564 (2)0.6463 (2)0.0418 (5)
H80.67350.42570.63460.050*
C90.5602 (2)0.5710 (2)0.63653 (18)0.0366 (4)
H90.63710.61890.61690.044*
C100.4048 (2)0.74330 (18)0.64540 (18)0.0343 (4)
C110.0755 (2)0.40673 (18)0.86336 (18)0.0331 (4)
C120.0124 (2)0.30855 (19)0.90351 (18)0.0358 (4)
C130.0685 (3)0.2922 (2)1.0193 (2)0.0470 (5)
H130.02940.22841.04960.056*
C140.1820 (3)0.3696 (2)1.0903 (2)0.0544 (6)
H140.21970.35981.16850.065*
C150.2366 (3)0.4609 (2)1.0415 (2)0.0538 (6)
H150.31400.51301.08860.065*
C160.1116 (3)0.2227 (2)0.8278 (2)0.0442 (5)
N10.0025 (2)0.17358 (16)0.52101 (17)0.0433 (4)
H1A0.09610.19430.48690.052*
H1B0.01630.20000.59790.052*
N20.1161 (2)0.02998 (17)0.37308 (17)0.0422 (4)
H2A0.21620.01580.39600.051*
H2B0.07460.01760.30710.051*
N30.3630 (2)0.10872 (18)0.08804 (19)0.0421 (4)
N40.3548 (2)0.14487 (17)0.06077 (17)0.0417 (4)
H4A0.27330.14490.02540.050*
H4B0.31890.14730.13870.050*
N50.3322 (2)0.42816 (16)0.69298 (18)0.0401 (4)
N60.1866 (2)0.48064 (17)0.93068 (18)0.0454 (4)
O10.51047 (19)0.80272 (15)0.61677 (16)0.0499 (4)
O20.28373 (18)0.78292 (14)0.66900 (16)0.0470 (4)
O1W0.2788 (2)0.01895 (16)0.65012 (16)0.0467 (4)
O30.16845 (19)0.24297 (16)0.72768 (16)0.0533 (4)
O2W0.3687 (2)0.04649 (18)0.16705 (16)0.0535 (4)
O40.1483 (3)0.1345 (2)0.8711 (2)0.1045 (11)
O3W0.5707 (2)0.10145 (16)0.59883 (17)0.0509 (4)
S10.13210 (6)0.58824 (5)0.70793 (5)0.03837 (13)
S20.00794 (5)0.43656 (5)0.71566 (5)0.03637 (13)
O4W0.0516 (5)0.0045 (4)0.0659 (4)0.0690 (11)0.50
H1W0.361 (2)0.047 (2)0.642 (2)0.044 (7)*
H2W0.286 (3)0.0529 (16)0.656 (3)0.054 (8)*
H3W0.317 (4)0.012 (2)0.176 (3)0.088 (12)*
H4W0.403 (3)0.081 (2)0.2339 (17)0.048 (7)*
H5W0.547 (3)0.119 (3)0.5309 (18)0.062 (9)*
H6W0.641 (3)0.149 (2)0.640 (3)0.069 (10)*
H3B0.323 (3)0.081 (2)0.162 (3)0.048 (7)*
H3A0.284 (4)0.121 (3)0.056 (3)0.081 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0621 (2)0.02856 (19)0.0401 (2)0.00822 (16)0.02562 (18)0.00415 (15)
Cu20.03532 (18)0.02982 (18)0.03488 (19)0.00104 (13)0.00566 (14)0.00699 (14)
C10.0421 (11)0.0343 (11)0.0562 (14)0.0004 (9)0.0045 (10)0.0070 (10)
C20.0387 (11)0.0446 (13)0.0486 (13)0.0060 (9)0.0162 (9)0.0139 (10)
C30.0743 (17)0.0412 (14)0.0640 (17)0.0082 (12)0.0107 (14)0.0180 (12)
C40.0822 (19)0.0350 (13)0.0671 (18)0.0033 (12)0.0051 (15)0.0062 (12)
C50.0314 (9)0.0326 (10)0.0256 (9)0.0009 (7)0.0020 (7)0.0026 (7)
C60.0297 (9)0.0316 (10)0.0314 (10)0.0019 (7)0.0052 (7)0.0042 (8)
C70.0451 (11)0.0346 (11)0.0446 (12)0.0138 (9)0.0059 (9)0.0044 (9)
C80.0324 (10)0.0526 (13)0.0391 (11)0.0126 (9)0.0043 (8)0.0000 (10)
C90.0287 (9)0.0478 (12)0.0310 (10)0.0022 (8)0.0045 (7)0.0006 (9)
C100.0369 (10)0.0329 (10)0.0305 (10)0.0030 (8)0.0027 (8)0.0043 (8)
C110.0290 (9)0.0314 (10)0.0378 (11)0.0007 (7)0.0081 (8)0.0014 (8)
C120.0360 (10)0.0352 (11)0.0348 (10)0.0062 (8)0.0094 (8)0.0016 (8)
C130.0566 (13)0.0442 (13)0.0379 (12)0.0096 (10)0.0095 (10)0.0034 (10)
C140.0611 (14)0.0569 (16)0.0374 (12)0.0071 (12)0.0023 (11)0.0015 (11)
C150.0542 (13)0.0481 (14)0.0476 (14)0.0138 (11)0.0055 (11)0.0054 (11)
C160.0495 (12)0.0442 (13)0.0366 (12)0.0186 (10)0.0123 (9)0.0001 (9)
N10.0597 (11)0.0339 (10)0.0393 (10)0.0088 (8)0.0172 (8)0.0013 (8)
N20.0476 (10)0.0399 (10)0.0429 (10)0.0075 (8)0.0186 (8)0.0027 (8)
N30.0464 (10)0.0428 (11)0.0381 (11)0.0088 (8)0.0084 (9)0.0072 (8)
N40.0453 (9)0.0402 (10)0.0384 (10)0.0057 (8)0.0095 (8)0.0035 (8)
N50.0393 (9)0.0307 (9)0.0519 (11)0.0060 (7)0.0109 (8)0.0082 (8)
N60.0446 (10)0.0380 (10)0.0469 (11)0.0096 (8)0.0008 (8)0.0016 (8)
O10.0482 (9)0.0410 (9)0.0621 (11)0.0096 (7)0.0154 (8)0.0137 (8)
O20.0450 (8)0.0341 (8)0.0657 (11)0.0056 (7)0.0161 (7)0.0133 (8)
O1W0.0489 (10)0.0412 (10)0.0501 (10)0.0074 (8)0.0079 (8)0.0088 (8)
O30.0520 (9)0.0542 (11)0.0454 (10)0.0206 (8)0.0011 (7)0.0047 (8)
O2W0.0598 (10)0.0607 (12)0.0392 (9)0.0194 (9)0.0190 (8)0.0004 (8)
O40.142 (2)0.0901 (18)0.0569 (13)0.0833 (17)0.0166 (13)0.0258 (12)
O3W0.0565 (10)0.0467 (10)0.0447 (10)0.0127 (8)0.0032 (8)0.0080 (8)
S10.0325 (2)0.0305 (3)0.0555 (3)0.00462 (19)0.0141 (2)0.0103 (2)
S20.0304 (2)0.0362 (3)0.0411 (3)0.00393 (19)0.00569 (19)0.0055 (2)
O4W0.060 (2)0.073 (3)0.076 (3)0.007 (2)0.016 (2)0.017 (2)
Geometric parameters (Å, º) top
Cu1—N12.0053 (19)C10—O11.246 (2)
Cu1—N22.0155 (18)C10—O21.259 (3)
Cu2—N32.0148 (19)C11—N61.329 (3)
Cu2—N42.0248 (18)C11—C121.402 (3)
Cu1—O1W2.702 (2)C11—S21.788 (2)
Cu2—O2W2.499 (2)C12—C131.382 (3)
C1—N11.476 (3)C12—C161.508 (3)
C1—C21.501 (4)C13—C141.380 (3)
C1—H1C0.9700C13—H130.9300
C1—H1D0.9700C14—C151.362 (4)
C2—N21.470 (3)C14—H140.9300
C2—H2C0.9700C15—N61.331 (3)
C2—H2D0.9700C15—H150.9300
C3—N31.460 (3)C16—O31.230 (3)
C3—H3C0.9700C16—O41.240 (3)
C3—H3D0.9700N1—H1A0.9000
C4—N41.485 (3)N1—H1B0.9000
C4—H4C0.9700N2—H2A0.9000
C4—H4D0.9700N2—H2B0.9000
C5—C91.393 (3)N3—H3B0.89 (3)
C5—C61.403 (3)N3—H3A0.87 (4)
C5—C101.497 (3)N4—H4A0.9000
C6—N51.324 (3)N4—H4B0.9000
C6—S11.7922 (19)O1W—H1W0.803 (17)
C7—N51.343 (3)O1W—H2W0.847 (17)
C7—C81.371 (3)O2W—H3W0.820 (18)
C7—H70.9300O2W—H4W0.830 (17)
C8—C91.368 (3)O3W—H5W0.828 (18)
C8—H80.9300O3W—H6W0.841 (18)
C9—H90.9300S1—S22.0352 (8)
N1—Cu1—N1i180.00 (12)O1—C10—C5118.17 (19)
N1—Cu1—N2i96.00 (8)O2—C10—C5117.53 (17)
N1i—Cu1—N2i84.00 (8)N6—C11—C12122.8 (2)
N1—Cu1—N284.00 (8)N6—C11—S2117.04 (16)
N1i—Cu1—N296.00 (8)C12—C11—S2120.17 (15)
N2i—Cu1—N2180.0C13—C12—C11116.90 (19)
N3ii—Cu2—N3180.00 (16)C13—C12—C16119.6 (2)
N3ii—Cu2—N4ii95.42 (8)C11—C12—C16123.50 (19)
N3—Cu2—N4ii84.58 (8)C14—C13—C12120.7 (2)
N3ii—Cu2—N484.58 (8)C14—C13—H13119.7
N3—Cu2—N495.42 (8)C12—C13—H13119.7
N4ii—Cu2—N4180.00 (14)C15—C14—C13117.4 (2)
N1—C1—C2106.56 (18)C15—C14—H14121.3
N1—C1—H1C110.4C13—C14—H14121.3
C2—C1—H1C110.4N6—C15—C14124.3 (2)
N1—C1—H1D110.4N6—C15—H15117.8
C2—C1—H1D110.4C14—C15—H15117.8
H1C—C1—H1D108.6O3—C16—O4124.2 (2)
N2—C2—C1107.41 (19)O3—C16—C12118.8 (2)
N2—C2—H2C110.2O4—C16—C12117.0 (2)
C1—C2—H2C110.2C1—N1—Cu1108.14 (14)
N2—C2—H2D110.2C1—N1—H1A110.1
C1—C2—H2D110.2Cu1—N1—H1A110.1
H2C—C2—H2D108.5C1—N1—H1B110.1
N3—C3—C4ii109.0 (2)Cu1—N1—H1B110.1
N3—C3—H3C109.9H1A—N1—H1B108.4
C4ii—C3—H3C109.9C2—N2—Cu1108.99 (13)
N3—C3—H3D109.9C2—N2—H2A109.9
C4ii—C3—H3D109.9Cu1—N2—H2A109.9
H3C—C3—H3D108.3C2—N2—H2B109.9
N4—C4—C3ii108.4 (2)Cu1—N2—H2B109.9
N4—C4—H4C110.0H2A—N2—H2B108.3
C3ii—C4—H4C110.0C3—N3—Cu2108.78 (15)
N4—C4—H4D110.0C3—N3—H3B109.8 (18)
C3ii—C4—H4D110.0Cu2—N3—H3B113.5 (18)
H4C—C4—H4D108.4C3—N3—H3A108 (2)
C9—C5—C6116.28 (19)Cu2—N3—H3A110 (2)
C9—C5—C10119.46 (18)H3B—N3—H3A106 (3)
C6—C5—C10124.26 (17)C4—N4—Cu2107.67 (15)
N5—C6—C5123.55 (18)C4—N4—H4A110.2
N5—C6—S1116.14 (15)Cu2—N4—H4A110.2
C5—C6—S1120.31 (15)C4—N4—H4B110.2
N5—C7—C8123.6 (2)Cu2—N4—H4B110.2
N5—C7—H7118.2H4A—N4—H4B108.5
C8—C7—H7118.2C6—N5—C7117.75 (19)
C9—C8—C7117.90 (19)C11—N6—C15117.9 (2)
C9—C8—H8121.0H1W—O1W—H2W109 (3)
C7—C8—H8121.0H3W—O2W—H4W106 (3)
C8—C9—C5120.92 (19)H5W—O3W—H6W111 (3)
C8—C9—H9119.5C6—S1—S2102.41 (7)
C5—C9—H9119.5C11—S2—S1103.30 (7)
O1—C10—O2124.3 (2)
N1—C1—C2—N254.5 (2)C11—C12—C16—O4174.2 (3)
C9—C5—C6—N50.8 (3)C2—C1—N1—Cu144.0 (2)
C10—C5—C6—N5179.42 (19)N2i—Cu1—N1—C1161.56 (15)
C9—C5—C6—S1179.23 (15)N2—Cu1—N1—C118.44 (15)
C10—C5—C6—S10.5 (3)C1—C2—N2—Cu138.5 (2)
N5—C7—C8—C90.7 (4)N1—Cu1—N2—C211.41 (15)
C7—C8—C9—C50.8 (3)N1i—Cu1—N2—C2168.59 (15)
C6—C5—C9—C80.9 (3)C4ii—C3—N3—Cu238.3 (3)
C10—C5—C9—C8179.36 (19)N4ii—Cu2—N3—C312.94 (18)
C9—C5—C10—O11.9 (3)N4—Cu2—N3—C3167.06 (18)
C6—C5—C10—O1177.85 (19)C3ii—C4—N4—Cu239.1 (3)
C9—C5—C10—O2176.54 (19)N3ii—Cu2—N4—C414.58 (18)
C6—C5—C10—O23.7 (3)N3—Cu2—N4—C4165.42 (18)
N6—C11—C12—C131.5 (3)C5—C6—N5—C70.7 (3)
S2—C11—C12—C13178.95 (17)S1—C6—N5—C7179.35 (17)
N6—C11—C12—C16178.9 (2)C8—C7—N5—C60.6 (3)
S2—C11—C12—C160.7 (3)C12—C11—N6—C151.5 (3)
C11—C12—C13—C140.4 (4)S2—C11—N6—C15178.94 (19)
C16—C12—C13—C14180.0 (2)C14—C15—N6—C110.4 (4)
C12—C13—C14—C150.7 (4)N5—C6—S1—S29.32 (17)
C13—C14—C15—N60.7 (4)C5—C6—S1—S2170.74 (15)
C13—C12—C16—O3174.7 (2)N6—C11—S2—S12.08 (18)
C11—C12—C16—O34.9 (4)C12—C11—S2—S1178.35 (15)
C13—C12—C16—O46.2 (4)C6—S1—S2—C1181.99 (10)
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2iii0.902.253.084 (3)154
N1—H1B···O30.902.483.138 (3)130
N2—H2A···O3Wiv0.902.383.213 (3)154
N2—H2B···O4i0.902.593.345 (4)142
N4—H4B···O2v0.902.273.116 (3)157
O1W—H2W···O2vi0.85 (2)1.93 (2)2.771 (2)175 (3)
O1W—H1W···O3W0.80 (2)2.10 (2)2.892 (3)172 (3)
O2W—H3W···O4i0.82 (2)1.95 (2)2.712 (3)154 (4)
O2W—H4W···O1vii0.83 (2)2.08 (2)2.897 (3)168 (3)
O3W—H5W···O1vii0.83 (2)2.03 (2)2.838 (3)167 (3)
O3W—H6W···O3viii0.84 (2)1.98 (2)2.812 (2)170 (3)
N3—H3A···O4W0.87 (4)2.42 (3)3.045 (4)129 (3)
Symmetry codes: (i) x, y, z+1; (iii) x, y+1, z+1; (iv) x+1, y, z+1; (v) x, y1, z1; (vi) x, y1, z; (vii) x+1, y+1, z+1; (viii) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Cu(C2H8N2)2](C12H6N2O4S2)·1.5H2O
Mr552.14
Crystal system, space groupTriclinic, P1
Temperature (K)297
a, b, c (Å)8.8302 (9), 11.5975 (11), 11.7132 (11)
α, β, γ (°)95.800 (8), 101.703 (8), 93.493 (8)
V3)1164.5 (2)
Z2
Radiation typeMo Kα
µ (mm1)1.17
Crystal size (mm)0.35 × 0.20 × 0.15
Data collection
DiffractometerStoe IPDS2
diffractometer
Absorption correctionIntegration
(X-RED; Stoe & Cie, 2002)
Tmin, Tmax0.540, 0.751
No. of measured, independent and
observed [I > 2σ(I)] reflections
17957, 4964, 4034
Rint0.082
(sin θ/λ)max1)0.635
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.088, 1.02
No. of reflections4964
No. of parameters333
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.51, 0.69

Computer programs: X-AREA (Stoe & Cie, 2002), X-RED (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Selected bond lengths (Å) top
Cu1—N12.0053 (19)Cu2—N42.0248 (18)
Cu1—N22.0155 (18)Cu1—O1W2.702 (2)
Cu2—N32.0148 (19)Cu2—O2W2.499 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2i0.902.253.084 (3)153.6
N1—H1B···O30.902.483.138 (3)129.8
N2—H2A···O3Wii0.902.383.213 (3)153.5
N2—H2B···O4iii0.902.593.345 (4)142.0
N4—H4B···O2iv0.902.273.116 (3)156.9
O1W—H2W···O2v0.847 (17)1.925 (18)2.771 (2)175 (3)
O1W—H1W···O3W0.803 (17)2.095 (18)2.892 (3)172 (3)
O2W—H3W···O4iii0.820 (18)1.95 (2)2.712 (3)154 (4)
O2W—H4W···O1vi0.830 (17)2.079 (18)2.897 (3)168 (3)
O3W—H5W···O1vi0.828 (18)2.025 (19)2.838 (3)167 (3)
O3W—H6W···O3vii0.841 (18)1.980 (19)2.812 (2)170 (3)
N3—H3A···O4W0.87 (4)2.42 (3)3.045 (4)129 (3)
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y, z+1; (iii) x, y, z+1; (iv) x, y1, z1; (v) x, y1, z; (vi) x+1, y+1, z+1; (vii) x+1, y, z.
 

Acknowledgements

The authors acknowledge the Ondokuz Mayis University Research Fund for financial support through project No. F-416.

References

First citationBriansó, M. C., Briansó, J. L., Gaete, W. & Ros, J. (1981). Inorg. Chim. Acta, 49, 263–267.  CSD CrossRef CAS Web of Science Google Scholar
First citationBurnett, M. & Johnson, C. K. (1996). ORTEPIII. Report ORNN-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationCargill Thompson, A. M. W., Blandford, I., Redfearn, H., Jeffery, J. C. & Ward, M. D. (1997). J. Chem. Soc. Dalton Trans. pp. 2661–2665.  Google Scholar
First citationCasals, I., Gonzá laz-Duarte, P. & Sola, J. (1987). J. Chem. Soc. Dalton Trans. pp. 2391–2395.  CSD CrossRef Web of Science Google Scholar
First citationChowdhury, S., Samuel, P. M., Das, I. & Roy, S. (1994). J. Chem. Soc. Chem. Commun. pp. 1993–1994.  CrossRef Web of Science Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHarrison, W. T. A., Slawin, A. M. Z., Sharma, R. P., Sharma, B. & Bhama, S. (2007). Acta Cryst. E63, m178–m180.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKazak, C., Yilmaz, V. T. & Yazicilar, T. K. (2004). Acta Cryst. E60, m593–m595.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationYamamoto, T. & Sekine, Y. (1984). Can. J. Chem. 39, 1544–1547.  CrossRef Web of Science Google Scholar
First citationYiannos, C. N. & Karaninos, J. V. (1963). J. Org. Chem. 28, 3246–3248.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 7| July 2009| Pages m797-m798
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds