organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(11R)-13-Di­methyl­ammonio-11,13-di­hydro-4,5-ep­oxy­costunolide semifumarate

aDepartment of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA, and bDepartment of Chemistry, University of Kentucky, Lexington, KY 40506, USA
*Correspondence e-mail: pcrooks@email.uky.edu

(Received 11 May 2009; accepted 9 June 2009; online 13 June 2009)

Crystals of the title salt, C17H28NO3+·C4H3O4, were obtained by reacting parthenolide with dimethyl­amine followed by conversion of the amine adduct into a water-soluble fumarate salt. Subsequent crystallization of the fumarate salt from water afforded colorless ortho­rhom­bic crystals. The amine addition is highly stereospecific yielding exclusively a single diastereomer with R-configuration at the newly formed C-11 chiral carbon. In the crystal, intermolecular O—H⋯O and N—H⋯O hydrogen bonds help to establish the packing.

Related literature

Parthenolide (PTL) is a naturally occurring sesquiterpene lactone used in the treatment of fever, migraine headaches, rheumatoid arthritis, and also as an anti-inflammatory agent (Heptinstall et al. (1988[Heptinstall, S., Groenewegen, W. A., Spangenberg, P. & Lösche, W. (1988). Folia Haematol. Int. Mag. Klin. Morphol. Blutforsch. 115, 447-449.]). For the potent anti-tumor and cytotoxic properties of PTL, see: Crooks et al. (2007[Crooks, P. A., Jordan, C. T. & Wei, X. (2007). US Patent No. 7 312 242.]). The absolute stereochemistry of the C-11 chiral carbon is typical of such amine adducts of parthenolide, see: Nasim et al. (2007a[Nasim, S., Parkin, S. & Crooks, P. A. (2007a). Acta Cryst. E63, o3922.],b[Nasim, S., Parkin, S. & Crooks, P. A. (2007b). Acta Cryst. E63, o4274.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C17H28NO3+·C4H3O4

  • Mr = 409.47

  • Orthorhombic, P 21 21 21

  • a = 6.3164 (1) Å

  • b = 15.1650 (2) Å

  • c = 22.0028 (3) Å

  • V = 2107.61 (5) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.80 mm−1

  • T = 90 K

  • 0.26 × 0.20 × 0.10 mm

Data collection
  • Bruker X8 Proteum diffractometer

  • Absorption correction: multi-scan (SADABS in APEX2; Bruker–Nonius, 2006[Bruker-Nonius (2006). APEX2 and SAINT. Bruker-Nonius AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.788, Tmax = 0.924

  • 16991 measured reflections

  • 3762 independent reflections

  • 3640 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.069

  • S = 1.04

  • 3762 reflections

  • 268 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.14 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1525 Friedel pairs

  • Flack parameter: −0.01 (4)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O6 0.93 1.83 2.7563 (14) 172
O4—H4⋯O6i 0.84 1.73 2.5544 (13) 169
Symmetry code: (i) x-1, y, z.

Data collection: APEX2 (Bruker–Nonius, 2006[Bruker-Nonius (2006). APEX2 and SAINT. Bruker-Nonius AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker–Nonius, 2006[Bruker-Nonius (2006). APEX2 and SAINT. Bruker-Nonius AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97 and local procedures.

Supporting information


Comment top

Parthenolide (PTL) isolated from Tanacetum parthenium (commonly referred as feverfew), is a naturally occurring sesquiterpene lactone used in the treatment of fever, migraine headaches, rheumatoid arthritis, and also as an anti-inflammatory agent (Heptinstall et al., 1988). The PTL molecule and several structurally related analogs have become topics of recent interest because of their potent anti-tumor and cytotoxic properties (Crooks et al., 2007). Despite promising in vitro activity, this potent natural product has a major limitation which precludes its further development as a therapeutic agent, i.e. its poor water-solubility, thus limiting its potential as a promising clinical agent. The title compound crystallized from water as orthorombic crystals. Bond angles and bond distances within the molecule were quite regular with average normal bond lengths (Allen et al., 1987). The absolute stereochemistry of the newly formed C-11 chiral carbon was found to be R, which is typical of such amine adducts of parthenolide (Nasim et al., 2007a, 2007b). Hydrogen bonding was observed between N1—H and O6 of the carbonyl oxygen of the fumarate moiety and between O4—H and O6 (Table 1). The title compound is more water soluble and more biologically potent than the parent compound, in both in vitro and in vivo anti-leukemic activity screens. T he title compound is currently in phase 1 clinical trials.

Related literature top

Parthenolide (PTL) is a naturally occurring sesquiterpene lactone used in the treatment of fever, migraine headaches, rheumatoid arthritis, and also as an anti-inflammatory agent (Heptinstall et al. (1988). For the potent anti-tumor and cytotoxic properties of PTL, see: Crooks et al. (2007). The absolute stereochemistry of the C-11 chiral carbon is typical of such amine adducts of parthenolide, see: Nasim et al. (2007a,b). For bond-length data, see: Allen et al. (1987).

Experimental top

The title compound (Systematic name: 13-(N,N-dimethyl)-amino-4 α,5 β- epoxy-4,10-dimethyl-6 α-hydroxy-12-oicacid-γ-lactone-germacra-1(10)-ene monofumarate) was synthesized by dissolving PTL (25 mg, 0.1 mmol) in 8 ml of methanol followed by addition of dimethylamine (0.15 mmol, 2.0M solution in methanol). The mixture stirred under ambient conditions for 6 hrs. The crude product was subjected to flash silica gel column chromatography to afford the pure dimethylamino analog free base. The free base was then converted to the fumarate salt by dissolving it in diethyl ether followed by addition of one equivalent of fumaric acid. The white solid that precipitated out of the diethyl ether solution was filtered, washed with diethyl ether and then dried under vacuum. Crystallization of the obtained white solid from water afforded colorless crystals that were suitable for X-ray analysis. 1H-NMR (D20, 300 MHz):δ 6.67 2H, s, (HOOC-CH)2–), 5.24 (1H, dd, J=2.1, 12.0 Hz, 1-CH), 4.30 (1H, t, J=9.0 Hz, 6-CH), 1.88–3.60 (13H, m, 2-CH2, 3-CH2, 8-CH2, 9-CH2, 13-CH2, 5-CH, 7-CH, 11-CH), 2.98 (6H, s, N-(CH3)2), 1.70 (3H, s, 14-CH3), 1.34 (3H, s, 15-CH3) p.p.m. 13C-NMR (DMSO-d6, 75 MHz): δ 179.8 ((HOOC-CH)2–), 173.8 (12-C=O), 138.2 ((HOOC-CH)2–),137.2 (10-C), 127.3 (1-C), 85.8 (6-C), 69.2 (N-(CH3)2), 67.1 (5-C), 58.3 (4-C), 49.6 (7-C), 44.9 (11-C), 42.5 (9-C), 38.1 (3-C), 30.9 (8-C), 26.1(2-C), 18.7 (15-C), 18.6 (14-C)p.p.m. Elemental analysis: calc. for C21H31NO7: C 61.60%, H 7.63%, N 3.42%. Found: C 61.81%, H 7.64%, N 3.47%.

Refinement top

H atoms were found in difference Fourier maps and subsequently placed in idealized positions with constrained distances of 0.98 Å (RCH3), 0.99 Å (R2CH2), 1.00 Å (R3CH), 0.95 Å (Csp2H), 0.84 Å (O—H), 0.93 Å (N—H), and with Uiso(H) values set to either 1.2Ueq or 1.5Ueq (RCH3, OH) of the attached atom.

Computing details top

Data collection: APEX2 (Bruker–Nonius, 2006); cell refinement: SAINT (Bruker–Nonius, 2006); data reduction: SAINT (Bruker–Nonius, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELX97 (Sheldrick, 2008) and local procedures.

Figures top
[Figure 1] Fig. 1. A view of the molecule (I), showing the molecule and the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Crystal packing of (I) viewed along the a axis. H atoms have been omitted for clarity.
(11R)-13-Dimethylammonio-11,13-dihydro-4,5-epoxycostunolide semifumarate top
Crystal data top
C17H28NO3+·C4H3O4F(000) = 880
Mr = 409.47Dx = 1.290 Mg m3
Orthorhombic, P212121Cu Kα radiation, λ = 1.54178 Å
Hall symbol: P 2ac 2abCell parameters from 5373 reflections
a = 6.3164 (1) Åθ = 3.5–68.0°
b = 15.1650 (2) ŵ = 0.80 mm1
c = 22.0028 (3) ÅT = 90 K
V = 2107.61 (5) Å3Block, colourless
Z = 40.26 × 0.20 × 0.10 mm
Data collection top
Bruker X8 Proteum
diffractometer
3762 independent reflections
Radiation source: fine-focus rotating anode3640 reflections with I > 2σ(I)
Graded multilayer optics monochromatorRint = 0.041
Detector resolution: 5.6 pixels mm-1θmax = 68.0°, θmin = 3.5°
ϕ and ω scansh = 77
Absorption correction: multi-scan
(SADABS in APEX2; Bruker–Nonius, 2006)
k = 1518
Tmin = 0.788, Tmax = 0.924l = 2626
16991 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.027 w = 1/[σ2(Fo2) + (0.0359P)2 + 0.3552P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.069(Δ/σ)max = 0.001
S = 1.04Δρmax = 0.20 e Å3
3762 reflectionsΔρmin = 0.14 e Å3
268 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.00093 (19)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 1525 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.01 (4)
Crystal data top
C17H28NO3+·C4H3O4V = 2107.61 (5) Å3
Mr = 409.47Z = 4
Orthorhombic, P212121Cu Kα radiation
a = 6.3164 (1) ŵ = 0.80 mm1
b = 15.1650 (2) ÅT = 90 K
c = 22.0028 (3) Å0.26 × 0.20 × 0.10 mm
Data collection top
Bruker X8 Proteum
diffractometer
3762 independent reflections
Absorption correction: multi-scan
(SADABS in APEX2; Bruker–Nonius, 2006)
3640 reflections with I > 2σ(I)
Tmin = 0.788, Tmax = 0.924Rint = 0.041
16991 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.027H-atom parameters constrained
wR(F2) = 0.069Δρmax = 0.20 e Å3
S = 1.04Δρmin = 0.14 e Å3
3762 reflectionsAbsolute structure: Flack (1983), 1525 Friedel pairs
268 parametersAbsolute structure parameter: 0.01 (4)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Flack x(u) obtained by Parsons quotient method, as implemented in XPREP.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.57684 (17)0.48961 (7)0.06421 (5)0.0150 (2)
H1N0.50700.45140.03790.018*
O10.50601 (15)0.85986 (6)0.14786 (4)0.0179 (2)
O20.47768 (14)0.76214 (6)0.03689 (4)0.0166 (2)
O30.50611 (14)0.73366 (6)0.06201 (4)0.0173 (2)
C10.7548 (2)0.65406 (9)0.23912 (6)0.0186 (3)
H10.88610.65730.21820.022*
C20.7092 (2)0.72736 (9)0.28283 (6)0.0200 (3)
H2A0.83390.73690.30930.024*
H2B0.58810.71070.30900.024*
C30.6567 (2)0.81361 (9)0.24889 (6)0.0187 (3)
H3A0.59970.85720.27810.022*
H3B0.78810.83820.23120.022*
C40.4967 (2)0.79867 (9)0.19886 (6)0.0161 (3)
C50.5848 (2)0.77075 (8)0.13995 (5)0.0150 (3)
H50.74270.76620.13940.018*
C60.4759 (2)0.71234 (9)0.09449 (5)0.0158 (3)
H60.32720.69990.10750.019*
C70.5921 (2)0.62571 (8)0.07898 (5)0.0151 (3)
H70.74810.63670.08060.018*
C80.5420 (2)0.54314 (9)0.11684 (6)0.0186 (3)
H8A0.55120.49110.08980.022*
H8B0.39370.54750.13110.022*
C90.6848 (2)0.52658 (9)0.17255 (6)0.0191 (3)
H9A0.67060.46420.18510.023*
H9B0.83410.53640.16070.023*
C100.6331 (2)0.58485 (9)0.22608 (6)0.0182 (3)
C110.52671 (19)0.61351 (9)0.01203 (5)0.0146 (3)
H110.38500.58410.01080.018*
C120.50272 (19)0.70680 (9)0.01048 (5)0.0152 (3)
C130.6820 (2)0.55958 (9)0.02661 (6)0.0155 (3)
H13A0.75980.60010.05400.019*
H13B0.78680.53130.00060.019*
C140.4359 (2)0.55947 (10)0.26023 (6)0.0238 (3)
H14A0.40910.60270.29240.036*
H14B0.45490.50090.27830.036*
H14C0.31540.55830.23220.036*
C150.2737 (2)0.77859 (10)0.21831 (6)0.0209 (3)
H15A0.21790.82810.24200.031*
H15B0.27270.72510.24330.031*
H15C0.18510.76950.18230.031*
C160.7432 (2)0.43816 (10)0.09703 (6)0.0211 (3)
H16A0.67620.39080.12040.032*
H16B0.84200.41270.06750.032*
H16C0.82040.47730.12470.032*
C170.4184 (2)0.52542 (10)0.10767 (6)0.0221 (3)
H17A0.48710.56800.13470.033*
H17B0.30470.55480.08510.033*
H17C0.35890.47710.13180.033*
O40.44376 (14)0.24575 (7)0.08148 (4)0.0203 (2)
H40.47610.28900.05950.030*
O50.15889 (15)0.19509 (7)0.12810 (4)0.0218 (2)
O60.40728 (13)0.37319 (6)0.01876 (4)0.0173 (2)
O70.12629 (15)0.46177 (7)0.01397 (5)0.0241 (2)
C180.2399 (2)0.24937 (9)0.09497 (5)0.0161 (3)
C190.1193 (2)0.32332 (9)0.06681 (6)0.0178 (3)
H190.19530.37240.05120.021*
C200.0892 (2)0.32310 (9)0.06284 (6)0.0183 (3)
H200.16500.27660.08200.022*
C210.21235 (19)0.39254 (9)0.02961 (6)0.0164 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0157 (5)0.0132 (6)0.0161 (5)0.0008 (4)0.0006 (4)0.0002 (4)
O10.0244 (5)0.0109 (5)0.0184 (4)0.0016 (4)0.0014 (4)0.0005 (3)
O20.0190 (4)0.0151 (5)0.0159 (4)0.0024 (4)0.0009 (3)0.0014 (4)
O30.0150 (4)0.0191 (5)0.0177 (4)0.0008 (4)0.0013 (4)0.0027 (4)
C10.0177 (6)0.0190 (8)0.0191 (6)0.0032 (5)0.0013 (5)0.0031 (5)
C20.0217 (7)0.0186 (7)0.0197 (6)0.0007 (5)0.0042 (5)0.0006 (5)
C30.0212 (6)0.0147 (8)0.0201 (6)0.0005 (5)0.0013 (5)0.0025 (5)
C40.0188 (6)0.0114 (7)0.0182 (6)0.0029 (5)0.0024 (5)0.0007 (5)
C50.0163 (6)0.0101 (7)0.0184 (6)0.0010 (5)0.0017 (5)0.0006 (5)
C60.0159 (6)0.0162 (7)0.0153 (5)0.0008 (5)0.0018 (5)0.0026 (5)
C70.0147 (6)0.0146 (7)0.0159 (6)0.0003 (5)0.0011 (5)0.0007 (5)
C80.0233 (7)0.0144 (7)0.0181 (6)0.0019 (5)0.0005 (5)0.0000 (5)
C90.0247 (7)0.0124 (7)0.0202 (6)0.0019 (5)0.0004 (5)0.0028 (5)
C100.0221 (7)0.0161 (7)0.0163 (6)0.0036 (5)0.0017 (5)0.0034 (5)
C110.0134 (6)0.0136 (7)0.0167 (6)0.0002 (5)0.0009 (5)0.0004 (5)
C120.0086 (5)0.0179 (7)0.0192 (6)0.0002 (5)0.0012 (5)0.0014 (5)
C130.0138 (6)0.0149 (7)0.0179 (6)0.0003 (5)0.0009 (5)0.0011 (5)
C140.0297 (8)0.0201 (8)0.0215 (6)0.0038 (6)0.0035 (6)0.0005 (5)
C150.0181 (6)0.0243 (8)0.0202 (6)0.0021 (6)0.0026 (5)0.0001 (6)
C160.0211 (7)0.0194 (8)0.0227 (6)0.0001 (6)0.0043 (6)0.0050 (5)
C170.0232 (7)0.0209 (8)0.0221 (6)0.0002 (6)0.0072 (5)0.0012 (6)
O40.0131 (4)0.0204 (5)0.0274 (5)0.0009 (4)0.0008 (4)0.0083 (4)
O50.0182 (5)0.0228 (6)0.0244 (5)0.0004 (4)0.0000 (4)0.0074 (4)
O60.0126 (4)0.0167 (5)0.0227 (5)0.0007 (4)0.0014 (4)0.0025 (4)
O70.0164 (5)0.0175 (6)0.0383 (5)0.0004 (4)0.0013 (4)0.0075 (4)
C180.0140 (6)0.0174 (7)0.0170 (6)0.0004 (5)0.0014 (5)0.0008 (5)
C190.0164 (6)0.0139 (7)0.0230 (7)0.0008 (5)0.0002 (5)0.0018 (5)
C200.0160 (6)0.0184 (8)0.0205 (6)0.0002 (5)0.0014 (5)0.0046 (5)
C210.0145 (6)0.0164 (7)0.0183 (6)0.0020 (5)0.0027 (5)0.0002 (5)
Geometric parameters (Å, º) top
N1—C171.4870 (17)C9—H9A0.9900
N1—C161.4948 (17)C9—H9B0.9900
N1—C131.5005 (16)C10—C141.505 (2)
N1—H1N0.9300C11—C121.5064 (19)
O1—C51.4507 (16)C11—C131.5344 (17)
O1—C41.4574 (15)C11—H111.0000
O2—C121.3474 (15)C13—H13A0.9900
O2—C61.4754 (14)C13—H13B0.9900
O3—C121.2050 (15)C14—H14A0.9800
C1—C101.332 (2)C14—H14B0.9800
C1—C21.4980 (19)C14—H14C0.9800
C1—H10.9500C15—H15A0.9800
C2—C31.5422 (19)C15—H15B0.9800
C2—H2A0.9900C15—H15C0.9800
C2—H2B0.9900C16—H16A0.9800
C3—C41.5114 (19)C16—H16B0.9800
C3—H3A0.9900C16—H16C0.9800
C3—H3B0.9900C17—H17A0.9800
C4—C51.4728 (17)C17—H17B0.9800
C4—C151.5032 (18)C17—H17C0.9800
C5—C61.5027 (18)O4—C181.3224 (15)
C5—H51.0000O4—H40.8400
C6—C71.5429 (18)O5—C181.2128 (16)
C6—H61.0000O6—C211.2880 (16)
C7—C81.5368 (18)O7—C211.2314 (17)
C7—C111.5411 (17)C18—C191.4905 (19)
C7—H71.0000C19—C201.3199 (19)
C8—C91.5427 (18)C19—H190.9500
C8—H8A0.9900C20—C211.4996 (18)
C8—H8B0.9900C20—H200.9500
C9—C101.5084 (18)
C17—N1—C16110.68 (10)C8—C9—H9B108.9
C17—N1—C13113.23 (10)H9A—C9—H9B107.7
C16—N1—C13108.92 (10)C1—C10—C14124.88 (12)
C17—N1—H1N108.0C1—C10—C9120.31 (12)
C16—N1—H1N108.0C14—C10—C9114.79 (12)
C13—N1—H1N108.0C12—C11—C13112.50 (10)
C5—O1—C460.85 (8)C12—C11—C7103.21 (10)
C12—O2—C6110.27 (10)C13—C11—C7114.98 (10)
C10—C1—C2127.72 (12)C12—C11—H11108.6
C10—C1—H1116.1C13—C11—H11108.6
C2—C1—H1116.1C7—C11—H11108.6
C1—C2—C3111.09 (10)O3—C12—O2121.29 (12)
C1—C2—H2A109.4O3—C12—C11128.68 (12)
C3—C2—H2A109.4O2—C12—C11110.03 (10)
C1—C2—H2B109.4N1—C13—C11113.53 (10)
C3—C2—H2B109.4N1—C13—H13A108.9
H2A—C2—H2B108.0C11—C13—H13A108.9
C4—C3—C2111.67 (11)N1—C13—H13B108.9
C4—C3—H3A109.3C11—C13—H13B108.9
C2—C3—H3A109.3H13A—C13—H13B107.7
C4—C3—H3B109.3C10—C14—H14A109.5
C2—C3—H3B109.3C10—C14—H14B109.5
H3A—C3—H3B107.9H14A—C14—H14B109.5
O1—C4—C559.35 (8)C10—C14—H14C109.5
O1—C4—C15112.71 (10)H14A—C14—H14C109.5
C5—C4—C15123.12 (12)H14B—C14—H14C109.5
O1—C4—C3115.99 (11)C4—C15—H15A109.5
C5—C4—C3115.55 (11)C4—C15—H15B109.5
C15—C4—C3116.71 (11)H15A—C15—H15B109.5
O1—C5—C459.80 (8)C4—C15—H15C109.5
O1—C5—C6118.16 (10)H15A—C15—H15C109.5
C4—C5—C6125.61 (11)H15B—C15—H15C109.5
O1—C5—H5114.1N1—C16—H16A109.5
C4—C5—H5114.1N1—C16—H16B109.5
C6—C5—H5114.1H16A—C16—H16B109.5
O2—C6—C5105.46 (10)N1—C16—H16C109.5
O2—C6—C7104.02 (9)H16A—C16—H16C109.5
C5—C6—C7115.56 (10)H16B—C16—H16C109.5
O2—C6—H6110.5N1—C17—H17A109.5
C5—C6—H6110.5N1—C17—H17B109.5
C7—C6—H6110.5H17A—C17—H17B109.5
C8—C7—C11111.41 (10)N1—C17—H17C109.5
C8—C7—C6118.42 (10)H17A—C17—H17C109.5
C11—C7—C6100.73 (10)H17B—C17—H17C109.5
C8—C7—H7108.6C18—O4—H4109.5
C11—C7—H7108.6O5—C18—O4121.16 (12)
C6—C7—H7108.6O5—C18—C19123.02 (12)
C7—C8—C9116.29 (11)O4—C18—C19115.82 (11)
C7—C8—H8A108.2C20—C19—C18122.38 (13)
C9—C8—H8A108.2C20—C19—H19118.8
C7—C8—H8B108.2C18—C19—H19118.8
C9—C8—H8B108.2C19—C20—C21123.24 (13)
H8A—C8—H8B107.4C19—C20—H20118.4
C10—C9—C8113.48 (11)C21—C20—H20118.4
C10—C9—H9A108.9O7—C21—O6124.37 (12)
C8—C9—H9A108.9O7—C21—C20120.40 (12)
C10—C9—H9B108.9O6—C21—C20115.23 (12)
C10—C1—C2—C3107.32 (15)C7—C8—C9—C1076.93 (14)
C1—C2—C3—C447.74 (15)C2—C1—C10—C149.6 (2)
C5—O1—C4—C15116.14 (13)C2—C1—C10—C9168.47 (12)
C5—O1—C4—C3105.60 (13)C8—C9—C10—C1103.08 (15)
C2—C3—C4—O1152.71 (11)C8—C9—C10—C1475.20 (15)
C2—C3—C4—C586.02 (14)C8—C7—C11—C12157.79 (10)
C2—C3—C4—C1570.72 (15)C6—C7—C11—C1231.31 (11)
C4—O1—C5—C6116.91 (12)C8—C7—C11—C1379.31 (13)
C15—C4—C5—O198.58 (13)C6—C7—C11—C13154.20 (11)
C3—C4—C5—O1106.34 (12)C6—O2—C12—O3179.12 (11)
O1—C4—C5—C6104.76 (14)C6—O2—C12—C111.67 (13)
C15—C4—C5—C66.2 (2)C13—C11—C12—O334.87 (18)
C3—C4—C5—C6148.90 (12)C7—C11—C12—O3159.39 (13)
C12—O2—C6—C5144.48 (10)C13—C11—C12—O2144.26 (10)
C12—O2—C6—C722.45 (12)C7—C11—C12—O219.74 (13)
O1—C5—C6—O254.19 (13)C17—N1—C13—C1159.61 (14)
C4—C5—C6—O2125.63 (13)C16—N1—C13—C11176.80 (10)
O1—C5—C6—C7168.46 (10)C12—C11—C13—N1109.70 (12)
C4—C5—C6—C7120.11 (13)C7—C11—C13—N1132.54 (11)
O2—C6—C7—C8154.30 (11)O5—C18—C19—C2017.7 (2)
C5—C6—C7—C890.61 (13)O4—C18—C19—C20162.07 (13)
O2—C6—C7—C1132.63 (11)C18—C19—C20—C21174.10 (11)
C5—C6—C7—C11147.72 (10)C19—C20—C21—O713.5 (2)
C11—C7—C8—C9151.72 (11)C19—C20—C21—O6165.65 (13)
C6—C7—C8—C992.20 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O60.931.832.7563 (14)172
O4—H4···O6i0.841.732.5544 (13)169
Symmetry code: (i) x1, y, z.

Experimental details

Crystal data
Chemical formulaC17H28NO3+·C4H3O4
Mr409.47
Crystal system, space groupOrthorhombic, P212121
Temperature (K)90
a, b, c (Å)6.3164 (1), 15.1650 (2), 22.0028 (3)
V3)2107.61 (5)
Z4
Radiation typeCu Kα
µ (mm1)0.80
Crystal size (mm)0.26 × 0.20 × 0.10
Data collection
DiffractometerBruker X8 Proteum
diffractometer
Absorption correctionMulti-scan
(SADABS in APEX2; Bruker–Nonius, 2006)
Tmin, Tmax0.788, 0.924
No. of measured, independent and
observed [I > 2σ(I)] reflections
16991, 3762, 3640
Rint0.041
(sin θ/λ)max1)0.601
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.069, 1.04
No. of reflections3762
No. of parameters268
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.14
Absolute structureFlack (1983), 1525 Friedel pairs
Absolute structure parameter0.01 (4)

Computer programs: APEX2 (Bruker–Nonius, 2006), SAINT (Bruker–Nonius, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008), SHELX97 (Sheldrick, 2008) and local procedures.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O60.931.832.7563 (14)171.7
O4—H4···O6i0.841.732.5544 (13)168.7
Symmetry code: (i) x1, y, z.
 

Acknowledgements

This research work was supported by the Kentucky Lung Cancer Research Program.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker–Nonius (2006). APEX2 and SAINT. Bruker–Nonius AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCrooks, P. A., Jordan, C. T. & Wei, X. (2007). US Patent No. 7 312 242.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHeptinstall, S., Groenewegen, W. A., Spangenberg, P. & Lösche, W. (1988). Folia Haematol. Int. Mag. Klin. Morphol. Blutforsch. 115, 447–449.  CAS PubMed Google Scholar
First citationNasim, S., Parkin, S. & Crooks, P. A. (2007a). Acta Cryst. E63, o3922.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNasim, S., Parkin, S. & Crooks, P. A. (2007b). Acta Cryst. E63, o4274.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds