organic compounds
4-Hydroxy-3-[(2E)-3-(3,4,5-trimethoxyphenyl)prop-2-enoyl]-2H-chromen-2-one
aUnité de Chimie des Matériaux, ISSBAT, Université de Tunis-ElManar, 9 Avenue Dr Zoheir SAFI, 1006 Tunis, Tunisia
*Correspondence e-mail: rached.benhassen@fss.rnu.tn
A new chalcone of the coumarin, C21H18O7, containing an annulated α-pyrone ring, was obtained by condensation of the borate complex of acyl(hydroxy)coumarin with trimethoxybenzaldehyde. The structure exhibits intramolecular hydrogen bonding between the hydroxyl oxygen and the ketonic oxygen in the coumarin group. The bicyclic coumarin fragment and the benzene ring form a dihedral angle of 17.1 (4)°. The crystal packing involves dimers interconnected by C—H⋯O hydrogen bonding.
Related literature
For organic non-linear optical materials (NLO) of aromatic compounds with delocalized electron systems, see: Marcy et al. (1995); Zhengdong et al. (1997). For their non-linear susceptibilities, which are larger than those of inorganic optical materials, see: Chemla & Zyss (1987) and Lakshmana Perumal et al. (2002), and for their optical properties, see: Sarojini et al. (2006). For bond-length data, see: Traven et al.(2000). For the exclusive of the α-pyrone ring, see Traven et al.(2007). For charge transfer from the phenyl ring to the coumarin system, see Indira et al. (2002); Sun & Cui (2008).
Experimental
Crystal data
|
Refinement
|
Data collection: CAD-4 EXPRESS (Duisenberg, 1992; Macíček & Yordanov, 1992); cell CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536809022569/hg2517sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809022569/hg2517Isup2.hkl
It was established that the condensation of the borate complexes of acyl(hydroxy)coumarins (Traven et al., 2007) with carboxylic acid α-pyrone ring. First, we prepare the borate complex of 4-hydroxycoumarin by the reaction of boron trifluoride etherate (1 g, 7.3 mmol) with the 3-acetyl-4-hydroxycoumarin (1.5 g, 7.3 mmol) in toluene (25 ml). Then the new chalcone of coumarin, containing annulated α-pyrone ring, was obtained by reaction of the borate complex of acyl(hydroxy) coumarin (1 g, 3.9 mmol) with 3, 4, 5 trimethoxyphenylaldehyde (0.78 g, 3.9 mmol) in presence of piperidine (Fig. 2). By recrystallizing the crude product in chloroform (30 ml) we tried to remove BF2OH from the complex and a pale yellow crystals with appropriate formula were appeared. Yield: 1.26 g (85%). mp= 466 K, IR: ν 3368 (–OH), 1716(s) (>C=O), 1577 (C=C), 1018(s) (sym) (C—O—C); 1H NMR: δ (p.p.m.): 3.74(s,3H,OCH3), 3.85(s,6H,OCH3), 7.4–8.1(m, 10H, Ar—H+ Hethyl). 13C NMR (ppm): 55.9(OCH3), 60.1(OCH3), 191.2(CO); 180.7 (C4); 159.5 (C2); 100.6 (C3), 126.2–136.5 (Carom); 129.6 (Cethyl1), 153.3 (Cethyl2),
led to exclusive of theThe hydrogen atoms are fixed geometrically with the exception of the H4 where it is located from electron density difference map and is refined isotropically. In the absence of significant
the could not be reliably determined and then the Friedel pairs were merged and any references to the were removed.Data collection: CAD-4 EXPRESS (Duisenberg, 1992; Macíček & Yordanov, 1992); cell
CAD-4 EXPRESS (Duisenberg, 1992; Macíček & Yordanov, 1992); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999).Fig. 1. View of the title compound with atomic numbering. All atoms are shown with displacement ellipsoids drawn at the 50% probability level. | |
Fig. 2. The synthesis steps of the title compund. |
C21H18O7 | Z = 1 |
Mr = 382.35 | F(000) = 200 |
Triclinic, P1 | Dx = 1.378 Mg m−3 |
Hall symbol: P 1 | Melting point: 466 K |
a = 4.1370 (2) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 8.1247 (2) Å | Cell parameters from 25 reflections |
c = 14.4101 (2) Å | θ = 10–15° |
α = 74.549 (10)° | µ = 0.10 mm−1 |
β = 85.166 (10)° | T = 293 K |
γ = 81.205 (10)° | Prism, pale yellow |
V = 460.87 (4) Å3 | 0.16 × 0.13 × 0.10 mm |
Enraf–Nonius CAD-4 diffractometer | 1200 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.038 |
Graphite monochromator | θmax = 27.0°, θmin = 2.6° |
ω/2θ scans | h = −5→5 |
Absorption correction: ψ scan (North et al., 1968) | k = −10→10 |
Tmin = 0.981, Tmax = 0.99 | l = −18→18 |
3575 measured reflections | 2 standard reflections every 120 min |
1974 independent reflections | intensity decay: 1.1% |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.045 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.136 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.09 | w = 1/[σ2(Fo2) + (0.0571P)2 + 0.0544P] where P = (Fo2 + 2Fc2)/3 |
1974 reflections | (Δ/σ)max < 0.001 |
257 parameters | Δρmax = 0.12 e Å−3 |
3 restraints | Δρmin = −0.19 e Å−3 |
C21H18O7 | γ = 81.205 (10)° |
Mr = 382.35 | V = 460.87 (4) Å3 |
Triclinic, P1 | Z = 1 |
a = 4.1370 (2) Å | Mo Kα radiation |
b = 8.1247 (2) Å | µ = 0.10 mm−1 |
c = 14.4101 (2) Å | T = 293 K |
α = 74.549 (10)° | 0.16 × 0.13 × 0.10 mm |
β = 85.166 (10)° |
Enraf–Nonius CAD-4 diffractometer | 1200 reflections with I > 2σ(I) |
Absorption correction: ψ scan (North et al., 1968) | Rint = 0.038 |
Tmin = 0.981, Tmax = 0.99 | 2 standard reflections every 120 min |
3575 measured reflections | intensity decay: 1.1% |
1974 independent reflections |
R[F2 > 2σ(F2)] = 0.045 | 3 restraints |
wR(F2) = 0.136 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.09 | Δρmax = 0.12 e Å−3 |
1974 reflections | Δρmin = −0.19 e Å−3 |
257 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.2654 (9) | −0.1096 (4) | 0.5125 (2) | 0.0645 (9) | |
C8 | 0.4138 (11) | 0.1778 (6) | 0.4904 (3) | 0.0540 (12) | |
O4 | 0.5686 (10) | 0.4521 (5) | 0.4679 (2) | 0.0763 (11) | |
C7 | 0.3170 (11) | 0.2208 (6) | 0.3944 (3) | 0.0540 (12) | |
C4 | 0.1785 (11) | 0.0992 (6) | 0.3577 (3) | 0.0529 (12) | |
O3 | 0.3412 (9) | 0.3741 (5) | 0.3374 (2) | 0.0727 (10) | |
O7 | 0.9754 (9) | 0.6931 (4) | 0.8955 (2) | 0.0676 (10) | |
C14 | 0.8343 (12) | 0.5498 (6) | 0.7785 (3) | 0.0574 (12) | |
H14 | 0.8904 | 0.6386 | 0.7268 | 0.069* | |
C15 | 0.8677 (11) | 0.5584 (6) | 0.8721 (3) | 0.0550 (12) | |
C5 | 0.1553 (11) | −0.0634 (6) | 0.4199 (3) | 0.0563 (12) | |
C11 | 0.5772 (13) | 0.2864 (7) | 0.6294 (3) | 0.0620 (13) | |
H11 | 0.5408 | 0.1837 | 0.6737 | 0.074* | |
C18 | 0.6315 (12) | 0.2749 (6) | 0.8389 (3) | 0.0550 (12) | |
H18 | 0.5527 | 0.1810 | 0.8277 | 0.066* | |
C17 | 0.6645 (11) | 0.2824 (6) | 0.9330 (3) | 0.0574 (13) | |
C10 | 0.5255 (12) | 0.3065 (6) | 0.5273 (3) | 0.0557 (12) | |
O6 | 0.8319 (9) | 0.4264 (5) | 1.0432 (2) | 0.0717 (10) | |
O2 | 0.5147 (10) | −0.0605 (5) | 0.6284 (2) | 0.0818 (12) | |
O5 | 0.5901 (9) | 0.1598 (4) | 1.0150 (2) | 0.0676 (10) | |
C16 | 0.7836 (12) | 0.4233 (7) | 0.9499 (3) | 0.0574 (12) | |
C13 | 0.7168 (11) | 0.4083 (6) | 0.7613 (3) | 0.0533 (12) | |
C12 | 0.6741 (12) | 0.4098 (6) | 0.6607 (3) | 0.0567 (12) | |
H12 | 0.7201 | 0.5080 | 0.6139 | 0.068* | |
C9 | 0.4048 (11) | 0.0011 (6) | 0.5495 (3) | 0.0561 (12) | |
C6 | 0.0243 (14) | −0.1878 (8) | 0.3905 (4) | 0.0703 (14) | |
H6 | 0.0077 | −0.2955 | 0.4324 | 0.084* | |
C3 | 0.0705 (12) | 0.1366 (7) | 0.2638 (3) | 0.0658 (14) | |
H3 | 0.0857 | 0.2442 | 0.2216 | 0.079* | |
C2 | −0.0584 (14) | 0.0129 (8) | 0.2341 (4) | 0.0771 (17) | |
H2 | −0.1300 | 0.0374 | 0.1718 | 0.093* | |
C19 | 1.0800 (14) | 0.8268 (7) | 0.8172 (4) | 0.0708 (14) | |
H19A | 1.1521 | 0.9128 | 0.8421 | 0.106* | |
H19B | 0.9008 | 0.8784 | 0.7762 | 0.106* | |
H19C | 1.2573 | 0.7788 | 0.7808 | 0.106* | |
C21 | 0.4581 (15) | 0.0164 (7) | 1.0030 (4) | 0.0723 (15) | |
H21A | 0.4186 | −0.0602 | 1.0649 | 0.108* | |
H21B | 0.6104 | −0.0433 | 0.9650 | 0.108* | |
H21C | 0.2559 | 0.0555 | 0.9708 | 0.108* | |
C1 | −0.0816 (14) | −0.1476 (9) | 0.2969 (4) | 0.0784 (16) | |
H1 | −0.1693 | −0.2298 | 0.2762 | 0.094* | |
C20 | 0.5788 (16) | 0.5207 (8) | 1.0864 (4) | 0.0821 (16) | |
H20A | 0.6344 | 0.5155 | 1.1506 | 0.123* | |
H20B | 0.3794 | 0.4724 | 1.0890 | 0.123* | |
H20C | 0.5495 | 0.6385 | 1.0492 | 0.123* | |
H4 | 0.478 (14) | 0.441 (7) | 0.387 (4) | 0.086 (17)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.080 (2) | 0.064 (2) | 0.0421 (17) | −0.0060 (18) | −0.0092 (15) | −0.0010 (15) |
C8 | 0.057 (3) | 0.063 (3) | 0.036 (2) | 0.003 (2) | −0.0032 (19) | −0.009 (2) |
O4 | 0.113 (3) | 0.070 (2) | 0.0431 (19) | −0.015 (2) | −0.0111 (19) | −0.0063 (17) |
C7 | 0.058 (3) | 0.063 (3) | 0.033 (2) | 0.001 (2) | 0.005 (2) | −0.005 (2) |
C4 | 0.054 (3) | 0.062 (3) | 0.037 (2) | 0.004 (2) | −0.006 (2) | −0.010 (2) |
O3 | 0.107 (3) | 0.069 (2) | 0.0371 (17) | −0.009 (2) | −0.0028 (17) | −0.0052 (16) |
O7 | 0.081 (3) | 0.067 (2) | 0.055 (2) | −0.0096 (18) | −0.0085 (17) | −0.0155 (17) |
C14 | 0.062 (3) | 0.055 (3) | 0.047 (2) | 0.005 (2) | −0.004 (2) | −0.006 (2) |
C15 | 0.052 (3) | 0.065 (3) | 0.047 (3) | 0.007 (2) | −0.013 (2) | −0.020 (2) |
C5 | 0.053 (3) | 0.069 (3) | 0.042 (2) | 0.002 (2) | 0.001 (2) | −0.013 (2) |
C11 | 0.073 (3) | 0.068 (3) | 0.039 (2) | 0.003 (3) | −0.006 (2) | −0.008 (2) |
C18 | 0.066 (3) | 0.051 (3) | 0.044 (2) | 0.001 (2) | −0.011 (2) | −0.009 (2) |
C17 | 0.064 (3) | 0.062 (3) | 0.046 (2) | 0.006 (2) | −0.007 (2) | −0.019 (2) |
C10 | 0.065 (3) | 0.065 (3) | 0.031 (2) | 0.002 (2) | −0.0040 (19) | −0.007 (2) |
O6 | 0.084 (2) | 0.086 (2) | 0.0477 (18) | 0.0038 (19) | −0.0186 (17) | −0.0248 (18) |
O2 | 0.119 (3) | 0.074 (2) | 0.0463 (19) | −0.012 (2) | −0.031 (2) | 0.0023 (16) |
O5 | 0.093 (3) | 0.069 (2) | 0.0383 (16) | −0.0153 (19) | −0.0088 (16) | −0.0046 (15) |
C16 | 0.063 (3) | 0.065 (3) | 0.040 (2) | 0.005 (2) | −0.013 (2) | −0.012 (2) |
C13 | 0.059 (3) | 0.054 (3) | 0.042 (2) | 0.010 (2) | −0.009 (2) | −0.012 (2) |
C12 | 0.069 (3) | 0.062 (3) | 0.035 (2) | 0.000 (2) | −0.009 (2) | −0.008 (2) |
C9 | 0.060 (3) | 0.062 (3) | 0.043 (3) | −0.007 (2) | −0.006 (2) | −0.008 (2) |
C6 | 0.072 (3) | 0.077 (3) | 0.062 (3) | −0.014 (3) | 0.008 (3) | −0.018 (3) |
C3 | 0.066 (3) | 0.090 (4) | 0.040 (2) | −0.003 (3) | −0.008 (2) | −0.016 (2) |
C2 | 0.071 (4) | 0.107 (5) | 0.048 (3) | 0.001 (3) | −0.011 (3) | −0.016 (3) |
C19 | 0.073 (4) | 0.073 (3) | 0.062 (3) | −0.006 (3) | −0.014 (3) | −0.010 (3) |
C21 | 0.094 (4) | 0.073 (3) | 0.051 (3) | −0.022 (3) | 0.002 (3) | −0.013 (3) |
C1 | 0.071 (4) | 0.102 (5) | 0.072 (4) | −0.013 (3) | −0.006 (3) | −0.039 (3) |
C20 | 0.097 (4) | 0.095 (4) | 0.054 (3) | −0.003 (3) | 0.000 (3) | −0.026 (3) |
O1—C9 | 1.375 (6) | C17—O5 | 1.375 (6) |
O1—C5 | 1.384 (5) | C17—C16 | 1.397 (6) |
C8—C7 | 1.410 (6) | O6—C16 | 1.383 (5) |
C8—C10 | 1.440 (7) | O6—C20 | 1.403 (6) |
C8—C9 | 1.466 (6) | O2—C9 | 1.210 (5) |
O4—C10 | 1.290 (6) | O5—C21 | 1.415 (6) |
O4—H4 | 1.28 (7) | C13—C12 | 1.471 (6) |
C7—O3 | 1.310 (5) | C12—H12 | 0.9300 |
C7—C4 | 1.445 (6) | C6—C1 | 1.392 (8) |
C4—C5 | 1.396 (6) | C6—H6 | 0.9300 |
C4—C3 | 1.402 (6) | C3—C2 | 1.381 (8) |
O3—H4 | 1.22 (7) | C3—H3 | 0.9300 |
O7—C15 | 1.372 (6) | C2—C1 | 1.387 (9) |
O7—C19 | 1.431 (6) | C2—H2 | 0.9300 |
C14—C15 | 1.389 (6) | C19—H19A | 0.9600 |
C14—C13 | 1.401 (7) | C19—H19B | 0.9600 |
C14—H14 | 0.9300 | C19—H19C | 0.9600 |
C15—C16 | 1.406 (6) | C21—H21A | 0.9600 |
C5—C6 | 1.388 (7) | C21—H21B | 0.9600 |
C11—C12 | 1.329 (7) | C21—H21C | 0.9600 |
C11—C10 | 1.467 (6) | C1—H1 | 0.9300 |
C11—H11 | 0.9300 | C20—H20A | 0.9600 |
C18—C17 | 1.392 (6) | C20—H20B | 0.9600 |
C18—C13 | 1.398 (6) | C20—H20C | 0.9600 |
C18—H18 | 0.9300 | ||
C9—O1—C5 | 122.3 (4) | C18—C13—C14 | 119.8 (4) |
C7—C8—C10 | 119.6 (4) | C18—C13—C12 | 122.2 (4) |
C7—C8—C9 | 118.8 (4) | C14—C13—C12 | 118.0 (4) |
C10—C8—C9 | 121.7 (4) | C11—C12—C13 | 127.2 (4) |
C10—O4—H4 | 104 (3) | C11—C12—H12 | 116.4 |
O3—C7—C8 | 120.7 (4) | C13—C12—H12 | 116.4 |
O3—C7—C4 | 118.4 (4) | O2—C9—O1 | 115.4 (4) |
C8—C7—C4 | 120.9 (4) | O2—C9—C8 | 126.4 (5) |
C5—C4—C3 | 119.3 (4) | O1—C9—C8 | 118.2 (4) |
C5—C4—C7 | 117.4 (4) | C5—C6—C1 | 118.5 (5) |
C3—C4—C7 | 123.3 (4) | C5—C6—H6 | 120.8 |
C7—O3—H4 | 102 (3) | C1—C6—H6 | 120.8 |
C15—O7—C19 | 116.8 (4) | C2—C3—C4 | 119.7 (5) |
C15—C14—C13 | 120.5 (4) | C2—C3—H3 | 120.1 |
C15—C14—H14 | 119.8 | C4—C3—H3 | 120.1 |
C13—C14—H14 | 119.8 | C3—C2—C1 | 120.3 (5) |
O7—C15—C14 | 124.4 (4) | C3—C2—H2 | 119.9 |
O7—C15—C16 | 116.2 (4) | C1—C2—H2 | 119.9 |
C14—C15—C16 | 119.4 (4) | O7—C19—H19A | 109.5 |
O1—C5—C6 | 116.8 (4) | O7—C19—H19B | 109.5 |
O1—C5—C4 | 122.1 (4) | H19A—C19—H19B | 109.5 |
C6—C5—C4 | 121.1 (4) | O7—C19—H19C | 109.5 |
C12—C11—C10 | 122.3 (5) | H19A—C19—H19C | 109.5 |
C12—C11—H11 | 118.9 | H19B—C19—H19C | 109.5 |
C10—C11—H11 | 118.9 | O5—C21—H21A | 109.5 |
C17—C18—C13 | 120.1 (4) | O5—C21—H21B | 109.5 |
C17—C18—H18 | 120.0 | H21A—C21—H21B | 109.5 |
C13—C18—H18 | 120.0 | O5—C21—H21C | 109.5 |
O5—C17—C18 | 125.6 (4) | H21A—C21—H21C | 109.5 |
O5—C17—C16 | 114.5 (4) | H21B—C21—H21C | 109.5 |
C18—C17—C16 | 120.0 (4) | C2—C1—C6 | 121.0 (5) |
O4—C10—C8 | 118.3 (4) | C2—C1—H1 | 119.5 |
O4—C10—C11 | 117.4 (5) | C6—C1—H1 | 119.5 |
C8—C10—C11 | 124.2 (4) | O6—C20—H20A | 109.5 |
C16—O6—C20 | 115.6 (4) | O6—C20—H20B | 109.5 |
C17—O5—C21 | 117.3 (4) | H20A—C20—H20B | 109.5 |
O6—C16—C17 | 119.9 (4) | O6—C20—H20C | 109.5 |
O6—C16—C15 | 119.9 (4) | H20A—C20—H20C | 109.5 |
C17—C16—C15 | 120.2 (4) | H20B—C20—H20C | 109.5 |
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H4···O4 | 1.22 (6) | 1.28 (6) | 2.437 (5) | 153 (5) |
C2—H2···O5i | 0.93 | 2.52 | 3.427 (6) | 167 |
C20—H20B···O6ii | 0.96 | 2.52 | 3.439 (8) | 160 |
C19—H19C···O2iii | 0.96 | 2.48 | 3.135 (7) | 125 |
C11—H11···O2 | 0.93 | 2.27 | 2.873 (7) | 122 |
C12—H12···O4 | 0.93 | 2.42 | 2.772 (5) | 102 |
Symmetry codes: (i) x−1, y, z−1; (ii) x−1, y, z; (iii) x+1, y+1, z. |
Experimental details
Crystal data | |
Chemical formula | C21H18O7 |
Mr | 382.35 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 293 |
a, b, c (Å) | 4.1370 (2), 8.1247 (2), 14.4101 (2) |
α, β, γ (°) | 74.549 (10), 85.166 (10), 81.205 (10) |
V (Å3) | 460.87 (4) |
Z | 1 |
Radiation type | Mo Kα |
µ (mm−1) | 0.10 |
Crystal size (mm) | 0.16 × 0.13 × 0.10 |
Data collection | |
Diffractometer | Enraf–Nonius CAD-4 diffractometer |
Absorption correction | ψ scan (North et al., 1968) |
Tmin, Tmax | 0.981, 0.99 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 3575, 1974, 1200 |
Rint | 0.038 |
(sin θ/λ)max (Å−1) | 0.638 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.045, 0.136, 1.09 |
No. of reflections | 1974 |
No. of parameters | 257 |
No. of restraints | 3 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.12, −0.19 |
Computer programs: CAD-4 EXPRESS (Duisenberg, 1992; Macíček & Yordanov, 1992), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009), WinGX (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H4···O4 | 1.22 (6) | 1.28 (6) | 2.437 (5) | 153 (5) |
C2—H2···O5i | 0.93 | 2.52 | 3.427 (6) | 166.6 |
C20—H20B···O6ii | 0.96 | 2.52 | 3.439 (8) | 160.3 |
C19—H19C···O2iii | 0.96 | 2.48 | 3.135 (7) | 125.1 |
C11—H11···O2 | 0.93 | 2.27 | 2.873 (7) | 122.2 |
C12—H12···O4 | 0.93 | 2.42 | 2.772 (5) | 102.4 |
Symmetry codes: (i) x−1, y, z−1; (ii) x−1, y, z; (iii) x+1, y+1, z. |
Acknowledgements
Professor A. Driss is acknowledged for his contribution to the X-ray diffraction data collection at the Laboratoire de cristallochimie-Université Tunis ElManar.
References
Chemla, D. S. & Zyss, J. (1987). Non-linear Optical Properties of Organic Molecules and Crystals, Vol. 1. London: Academic Press. Google Scholar
Duisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92–96. CrossRef CAS Web of Science IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Google Scholar
Indira, J., Karat, P. P. & Sarojini, B. K. (2002). J. Cryst. Growth, 242, 209–214. Web of Science CrossRef CAS Google Scholar
Lakshmana Perumal, C. K., Arulchakkaravarthi, A., Santhanaraghavan, P. & Ramaswami, P. (2002). J. Cryst. Growth, 240, 212–217. CrossRef CAS Google Scholar
Macíček, J. & Yordanov, A. (1992). J. Appl. Cryst. 25, 73–80. CrossRef Web of Science IUCr Journals Google Scholar
Marcy, H. O., Rosker, M. J., Warren, L. F., Cunningham, P. H., Thomas, C. A., Deloach, L. A., Ebbers, S. P., Liao, J. H. & Konatzidis, M. G. (1995). Opt. Lett. 20, 252–254. CrossRef PubMed CAS Web of Science Google Scholar
North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359. CrossRef IUCr Journals Web of Science Google Scholar
Sarojini, B. K., Narayana, B., Ashalatha, B. V., Indira, J. & Lobo, K. G. (2006). J. Cryst. Growth, 295, 54–59. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sun, Y.-F. & Cui, Y.-P. (2008). Dyes Pigments, 78, 65–76. Web of Science CSD CrossRef CAS Google Scholar
Traven, V. F., Manaev, A. V., Safronova, O. B., Chibisova, T. A., Lyssenko, K. A. & Antipin, M. Yu. (2000). Zh. Obshch. Khim. (Russ. J. Gen. Chem.), 70, 853–856. Google Scholar
Traven, V. F., Manaev, A. V., Voevodina, I. V. & Podkhalyuzina, N. Ya. (2007). Chem. Heterocycl. Compds, 43, 416–420. CrossRef CAS Google Scholar
Zhengdong, L., Baichang, W. & Genbo, S. (1997). J. Cryst. Growth, 178, 539–545. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The non-linear optical materials (NLO) effect in the organic molecules originates from a strong electron-donor-acceptor intermolecular interaction, delocalized π-electron system (Marcy et al., 1995; Zhengdong et al.,1997), and also due to the ability to crystallize in non-centrosymmetric structures. Among several organic compounds reported for NLO properties, chalcone derivatives are noticeable materials for their excellent blue light transmittance and good crystallizability. They provide a necessary configuration to show NLO property with two planar rings connected through a conjugated double bond (Indira et al., 2002). Substitution on either of the phenyl rings greatly influence noncentrosymmetric crystal packing. A variety of organic NLO materials, aromatic compounds with delocalized π-electron systems and a large dipole moment have been synthesized to improve the non-linear susceptibilities larger than the inorganic optical materials (Chemla et al., 1987; Lakshmana et al., 2002). Recently, new chalcones which can find use as promising materials in photonics industries, have been synthesized and their second-harmonic generation efficiency was studied (Sarojini et al., 2006). In the present paper, we report the synthesis and the crystal structure of the trimethoxyphenyl-4-hydroxycoumarin chalcone (see Scheme). The linkage between coumarin system and phenyl ring (C13) is quite conjugated with bond lengths of C10–C11: 1.467 (6) Å, C11–C12: 1.329 (7) Å, and C12–C13: 1.471 (6) Å, suggesting that all non-hydrogen atoms between electron-donor and acceptor are highly conjugated, leading to a π-bridge for the charge transfer from phenyl ring to coumarin system (Sun et al., 2008). Consequently,the C10–O4 bond (1.290 (6) Å) is elongated as compared with its mean value found in 3–Acetyl–4 hydroxycoumarin (1.253 Å) (Traven et al., 2000) owing to the localization of the hydroxyl hydrogen (H4) between the ketonic oxygen O4 and the hydroxyl oxygen O3 (O3–H4: 1.22 (7) Å, O4— H4: 1.28 (7) Å) (Fig. 1). It should be noted that the C9–O2 bond length (1.210 (5) Å) is equal to its mean value 1.210 Å observed in 3–Acetyl–4 hydroxycoumarin (Traven et al., 2000).
The structure study shows intramolecular and intermolecular hydrogen bonds of the type C–H···O contributing to the cohesion of the crystal.