organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 7| July 2009| Pages o1652-o1653

4-Hydr­­oxy-3-[(2E)-3-(3,4,5-tri­meth­oxy­phen­yl)prop-2-eno­yl]-2H-chromen-2-one

aUnité de Chimie des Matériaux, ISSBAT, Université de Tunis-ElManar, 9 Avenue Dr Zoheir SAFI, 1006 Tunis, Tunisia
*Correspondence e-mail: rached.benhassen@fss.rnu.tn

(Received 14 May 2009; accepted 12 June 2009; online 20 June 2009)

A new chalcone of the coumarin, C21H18O7, containing an annulated α-pyrone ring, was obtained by condensation of the borate complex of ac­yl(hydr­oxy)coumarin with trimethoxy­benzaldehyde. The structure exhibits intra­molecular hydrogen bonding between the hydroxyl oxygen and the ketonic oxygen in the coumarin group. The bicyclic coumarin fragment and the benzene ring form a dihedral angle of 17.1 (4)°. The crystal packing involves dimers inter­connected by C—H⋯O hydrogen bonding.

Related literature

For organic non-linear optical materials (NLO) of aromatic compounds with delocalized electron systems, see: Marcy et al. (1995[Marcy, H. O., Rosker, M. J., Warren, L. F., Cunningham, P. H., Thomas, C. A., Deloach, L. A., Ebbers, S. P., Liao, J. H. & Konatzidis, M. G. (1995). Opt. Lett. 20, 252-254.]); Zhengdong et al. (1997[Zhengdong, L., Baichang, W. & Genbo, S. (1997). J. Cryst. Growth, 178, 539-545.]). For their non-linear susceptibilities, which are larger than those of inorganic optical materials, see: Chemla & Zyss (1987[Chemla, D. S. & Zyss, J. (1987). Non-linear Optical Properties of Organic Molecules and Crystals, Vol. 1. London: Academic Press.]) and Lakshmana Perumal et al. (2002[Lakshmana Perumal, C. K., Arulchakkaravarthi, A., Santhanaraghavan, P. & Ramaswami, P. (2002). J. Cryst. Growth, 240, 212-217.]), and for their optical properties, see: Sarojini et al. (2006[Sarojini, B. K., Narayana, B., Ashalatha, B. V., Indira, J. & Lobo, K. G. (2006). J. Cryst. Growth, 295, 54-59.]). For bond-length data, see: Traven et al.(2000[Traven, V. F., Manaev, A. V., Safronova, O. B., Chibisova, T. A., Lyssenko, K. A. & Antipin, M. Yu. (2000). Zh. Obshch. Khim. (Russ. J. Gen. Chem.), 70, 853-856.]). For the exclusive annulation of the α-pyrone ring, see Traven et al.(2007[Traven, V. F., Manaev, A. V., Voevodina, I. V. & Podkhalyuzina, N. Ya. (2007). Chem. Heterocycl. Compds, 43, 416-420.]). For charge transfer from the phenyl ring to the coumarin system, see Indira et al. (2002[Indira, J., Karat, P. P. & Sarojini, B. K. (2002). J. Cryst. Growth, 242, 209-214.]); Sun & Cui (2008[Sun, Y.-F. & Cui, Y.-P. (2008). Dyes Pigments, 78, 65-76.]).

[Scheme 1]

Experimental

Crystal data
  • C21H18O7

  • Mr = 382.35

  • Triclinic, P 1

  • a = 4.1370 (2) Å

  • b = 8.1247 (2) Å

  • c = 14.4101 (2) Å

  • α = 74.549 (10)°

  • β = 85.166 (10)°

  • γ = 81.205 (10)°

  • V = 460.87 (4) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.16 × 0.13 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.981, Tmax = 0.99

  • 3575 measured reflections

  • 1974 independent reflections

  • 1200 reflections with I > 2σ(I)

  • Rint = 0.038

  • 2 standard reflections frequency: 120 min intensity decay: 1.1%

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.136

  • S = 1.09

  • 1974 reflections

  • 257 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.12 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H4⋯O4 1.22 (6) 1.28 (6) 2.437 (5) 153 (5)
C2—H2⋯O5i 0.93 2.52 3.427 (6) 167
C20—H20B⋯O6ii 0.96 2.52 3.439 (8) 160
C19—H19C⋯O2iii 0.96 2.48 3.135 (7) 125
C11—H11⋯O2 0.93 2.27 2.873 (7) 122
C12—H12⋯O4 0.93 2.42 2.772 (5) 102
Symmetry codes: (i) x-1, y, z-1; (ii) x-1, y, z; (iii) x+1, y+1, z.

Data collection: CAD-4 EXPRESS (Duisenberg, 1992[Duisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92-96.]; Macíček & Yordanov, 1992[Macíček, J. & Yordanov, A. (1992). J. Appl. Cryst. 25, 73-80.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The non-linear optical materials (NLO) effect in the organic molecules originates from a strong electron-donor-acceptor intermolecular interaction, delocalized π-electron system (Marcy et al., 1995; Zhengdong et al.,1997), and also due to the ability to crystallize in non-centrosymmetric structures. Among several organic compounds reported for NLO properties, chalcone derivatives are noticeable materials for their excellent blue light transmittance and good crystallizability. They provide a necessary configuration to show NLO property with two planar rings connected through a conjugated double bond (Indira et al., 2002). Substitution on either of the phenyl rings greatly influence noncentrosymmetric crystal packing. A variety of organic NLO materials, aromatic compounds with delocalized π-electron systems and a large dipole moment have been synthesized to improve the non-linear susceptibilities larger than the inorganic optical materials (Chemla et al., 1987; Lakshmana et al., 2002). Recently, new chalcones which can find use as promising materials in photonics industries, have been synthesized and their second-harmonic generation efficiency was studied (Sarojini et al., 2006). In the present paper, we report the synthesis and the crystal structure of the trimethoxyphenyl-4-hydroxycoumarin chalcone (see Scheme). The linkage between coumarin system and phenyl ring (C13) is quite conjugated with bond lengths of C10–C11: 1.467 (6) Å, C11–C12: 1.329 (7) Å, and C12–C13: 1.471 (6) Å, suggesting that all non-hydrogen atoms between electron-donor and acceptor are highly conjugated, leading to a π-bridge for the charge transfer from phenyl ring to coumarin system (Sun et al., 2008). Consequently,the C10–O4 bond (1.290 (6) Å) is elongated as compared with its mean value found in 3–Acetyl–4 hydroxycoumarin (1.253 Å) (Traven et al., 2000) owing to the localization of the hydroxyl hydrogen (H4) between the ketonic oxygen O4 and the hydroxyl oxygen O3 (O3–H4: 1.22 (7) Å, O4— H4: 1.28 (7) Å) (Fig. 1). It should be noted that the C9–O2 bond length (1.210 (5) Å) is equal to its mean value 1.210 Å observed in 3–Acetyl–4 hydroxycoumarin (Traven et al., 2000).

The structure study shows intramolecular and intermolecular hydrogen bonds of the type C–H···O contributing to the cohesion of the crystal.

Related literature top

For organic non-linear optical materials (NLO) of aromatic compounds with delocalized electron systems, see: Marcy et al. (1995); Zhengdong et al. (1997). For their non-linear susceptibilities larger than the inorganic optical materials, see: Chemla et al. (1987) and Lakshmana et al. (2002), and for their optical properties, see: Sarojini et al. (2006). For bond-length data, see: Traven et al.(2000). For the exclusive annulation of the α-pyrone ring, see Traven et al.(2007). For charge transfer from the phenyl ring to the coumarin system, see Indira et al. (2002); Sun & Cui (2008).

Experimental top

It was established that the condensation of the borate complexes of acyl(hydroxy)coumarins (Traven et al., 2007) with carboxylic acid anhydrides led to exclusive annulation of the α-pyrone ring. First, we prepare the borate complex of 4-hydroxycoumarin by the reaction of boron trifluoride etherate (1 g, 7.3 mmol) with the 3-acetyl-4-hydroxycoumarin (1.5 g, 7.3 mmol) in toluene (25 ml). Then the new chalcone of coumarin, containing annulated α-pyrone ring, was obtained by reaction of the borate complex of acyl(hydroxy) coumarin (1 g, 3.9 mmol) with 3, 4, 5 trimethoxyphenylaldehyde (0.78 g, 3.9 mmol) in presence of piperidine (Fig. 2). By recrystallizing the crude product in chloroform (30 ml) we tried to remove BF2OH from the complex and a pale yellow crystals with appropriate formula were appeared. Yield: 1.26 g (85%). mp= 466 K, IR: ν 3368 (–OH), 1716(s) (>C=O), 1577 (C=C), 1018(s) (sym) (C—O—C); 1H NMR: δ (p.p.m.): 3.74(s,3H,OCH3), 3.85(s,6H,OCH3), 7.4–8.1(m, 10H, Ar—H+ Hethyl). 13C NMR (ppm): 55.9(OCH3), 60.1(OCH3), 191.2(CO); 180.7 (C4); 159.5 (C2); 100.6 (C3), 126.2–136.5 (Carom); 129.6 (Cethyl1), 153.3 (Cethyl2),

Refinement top

The hydrogen atoms are fixed geometrically with the exception of the H4 where it is located from electron density difference map and is refined isotropically. In the absence of significant anomalous scattering, the absolute configuration could not be reliably determined and then the Friedel pairs were merged and any references to the Flack parameter were removed.

Computing details top

Data collection: CAD-4 EXPRESS (Duisenberg, 1992; Macíček & Yordanov, 1992); cell refinement: CAD-4 EXPRESS (Duisenberg, 1992; Macíček & Yordanov, 1992); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. View of the title compound with atomic numbering. All atoms are shown with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. The synthesis steps of the title compund.
4-Hydroxy-3-[(2E)-3-(3,4,5-trimethoxyphenyl)prop-2-enoyl]-2H- chromen-2-one top
Crystal data top
C21H18O7Z = 1
Mr = 382.35F(000) = 200
Triclinic, P1Dx = 1.378 Mg m3
Hall symbol: P 1Melting point: 466 K
a = 4.1370 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.1247 (2) ÅCell parameters from 25 reflections
c = 14.4101 (2) Åθ = 10–15°
α = 74.549 (10)°µ = 0.10 mm1
β = 85.166 (10)°T = 293 K
γ = 81.205 (10)°Prism, pale yellow
V = 460.87 (4) Å30.16 × 0.13 × 0.10 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
1200 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.038
Graphite monochromatorθmax = 27.0°, θmin = 2.6°
ω/2θ scansh = 55
Absorption correction: ψ scan
(North et al., 1968)
k = 1010
Tmin = 0.981, Tmax = 0.99l = 1818
3575 measured reflections2 standard reflections every 120 min
1974 independent reflections intensity decay: 1.1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.136H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.0571P)2 + 0.0544P]
where P = (Fo2 + 2Fc2)/3
1974 reflections(Δ/σ)max < 0.001
257 parametersΔρmax = 0.12 e Å3
3 restraintsΔρmin = 0.19 e Å3
Crystal data top
C21H18O7γ = 81.205 (10)°
Mr = 382.35V = 460.87 (4) Å3
Triclinic, P1Z = 1
a = 4.1370 (2) ÅMo Kα radiation
b = 8.1247 (2) ŵ = 0.10 mm1
c = 14.4101 (2) ÅT = 293 K
α = 74.549 (10)°0.16 × 0.13 × 0.10 mm
β = 85.166 (10)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1200 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.038
Tmin = 0.981, Tmax = 0.992 standard reflections every 120 min
3575 measured reflections intensity decay: 1.1%
1974 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0453 restraints
wR(F2) = 0.136H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 0.12 e Å3
1974 reflectionsΔρmin = 0.19 e Å3
257 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.2654 (9)0.1096 (4)0.5125 (2)0.0645 (9)
C80.4138 (11)0.1778 (6)0.4904 (3)0.0540 (12)
O40.5686 (10)0.4521 (5)0.4679 (2)0.0763 (11)
C70.3170 (11)0.2208 (6)0.3944 (3)0.0540 (12)
C40.1785 (11)0.0992 (6)0.3577 (3)0.0529 (12)
O30.3412 (9)0.3741 (5)0.3374 (2)0.0727 (10)
O70.9754 (9)0.6931 (4)0.8955 (2)0.0676 (10)
C140.8343 (12)0.5498 (6)0.7785 (3)0.0574 (12)
H140.89040.63860.72680.069*
C150.8677 (11)0.5584 (6)0.8721 (3)0.0550 (12)
C50.1553 (11)0.0634 (6)0.4199 (3)0.0563 (12)
C110.5772 (13)0.2864 (7)0.6294 (3)0.0620 (13)
H110.54080.18370.67370.074*
C180.6315 (12)0.2749 (6)0.8389 (3)0.0550 (12)
H180.55270.18100.82770.066*
C170.6645 (11)0.2824 (6)0.9330 (3)0.0574 (13)
C100.5255 (12)0.3065 (6)0.5273 (3)0.0557 (12)
O60.8319 (9)0.4264 (5)1.0432 (2)0.0717 (10)
O20.5147 (10)0.0605 (5)0.6284 (2)0.0818 (12)
O50.5901 (9)0.1598 (4)1.0150 (2)0.0676 (10)
C160.7836 (12)0.4233 (7)0.9499 (3)0.0574 (12)
C130.7168 (11)0.4083 (6)0.7613 (3)0.0533 (12)
C120.6741 (12)0.4098 (6)0.6607 (3)0.0567 (12)
H120.72010.50800.61390.068*
C90.4048 (11)0.0011 (6)0.5495 (3)0.0561 (12)
C60.0243 (14)0.1878 (8)0.3905 (4)0.0703 (14)
H60.00770.29550.43240.084*
C30.0705 (12)0.1366 (7)0.2638 (3)0.0658 (14)
H30.08570.24420.22160.079*
C20.0584 (14)0.0129 (8)0.2341 (4)0.0771 (17)
H20.13000.03740.17180.093*
C191.0800 (14)0.8268 (7)0.8172 (4)0.0708 (14)
H19A1.15210.91280.84210.106*
H19B0.90080.87840.77620.106*
H19C1.25730.77880.78080.106*
C210.4581 (15)0.0164 (7)1.0030 (4)0.0723 (15)
H21A0.41860.06021.06490.108*
H21B0.61040.04330.96500.108*
H21C0.25590.05550.97080.108*
C10.0816 (14)0.1476 (9)0.2969 (4)0.0784 (16)
H10.16930.22980.27620.094*
C200.5788 (16)0.5207 (8)1.0864 (4)0.0821 (16)
H20A0.63440.51551.15060.123*
H20B0.37940.47241.08900.123*
H20C0.54950.63851.04920.123*
H40.478 (14)0.441 (7)0.387 (4)0.086 (17)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.080 (2)0.064 (2)0.0421 (17)0.0060 (18)0.0092 (15)0.0010 (15)
C80.057 (3)0.063 (3)0.036 (2)0.003 (2)0.0032 (19)0.009 (2)
O40.113 (3)0.070 (2)0.0431 (19)0.015 (2)0.0111 (19)0.0063 (17)
C70.058 (3)0.063 (3)0.033 (2)0.001 (2)0.005 (2)0.005 (2)
C40.054 (3)0.062 (3)0.037 (2)0.004 (2)0.006 (2)0.010 (2)
O30.107 (3)0.069 (2)0.0371 (17)0.009 (2)0.0028 (17)0.0052 (16)
O70.081 (3)0.067 (2)0.055 (2)0.0096 (18)0.0085 (17)0.0155 (17)
C140.062 (3)0.055 (3)0.047 (2)0.005 (2)0.004 (2)0.006 (2)
C150.052 (3)0.065 (3)0.047 (3)0.007 (2)0.013 (2)0.020 (2)
C50.053 (3)0.069 (3)0.042 (2)0.002 (2)0.001 (2)0.013 (2)
C110.073 (3)0.068 (3)0.039 (2)0.003 (3)0.006 (2)0.008 (2)
C180.066 (3)0.051 (3)0.044 (2)0.001 (2)0.011 (2)0.009 (2)
C170.064 (3)0.062 (3)0.046 (2)0.006 (2)0.007 (2)0.019 (2)
C100.065 (3)0.065 (3)0.031 (2)0.002 (2)0.0040 (19)0.007 (2)
O60.084 (2)0.086 (2)0.0477 (18)0.0038 (19)0.0186 (17)0.0248 (18)
O20.119 (3)0.074 (2)0.0463 (19)0.012 (2)0.031 (2)0.0023 (16)
O50.093 (3)0.069 (2)0.0383 (16)0.0153 (19)0.0088 (16)0.0046 (15)
C160.063 (3)0.065 (3)0.040 (2)0.005 (2)0.013 (2)0.012 (2)
C130.059 (3)0.054 (3)0.042 (2)0.010 (2)0.009 (2)0.012 (2)
C120.069 (3)0.062 (3)0.035 (2)0.000 (2)0.009 (2)0.008 (2)
C90.060 (3)0.062 (3)0.043 (3)0.007 (2)0.006 (2)0.008 (2)
C60.072 (3)0.077 (3)0.062 (3)0.014 (3)0.008 (3)0.018 (3)
C30.066 (3)0.090 (4)0.040 (2)0.003 (3)0.008 (2)0.016 (2)
C20.071 (4)0.107 (5)0.048 (3)0.001 (3)0.011 (3)0.016 (3)
C190.073 (4)0.073 (3)0.062 (3)0.006 (3)0.014 (3)0.010 (3)
C210.094 (4)0.073 (3)0.051 (3)0.022 (3)0.002 (3)0.013 (3)
C10.071 (4)0.102 (5)0.072 (4)0.013 (3)0.006 (3)0.039 (3)
C200.097 (4)0.095 (4)0.054 (3)0.003 (3)0.000 (3)0.026 (3)
Geometric parameters (Å, º) top
O1—C91.375 (6)C17—O51.375 (6)
O1—C51.384 (5)C17—C161.397 (6)
C8—C71.410 (6)O6—C161.383 (5)
C8—C101.440 (7)O6—C201.403 (6)
C8—C91.466 (6)O2—C91.210 (5)
O4—C101.290 (6)O5—C211.415 (6)
O4—H41.28 (7)C13—C121.471 (6)
C7—O31.310 (5)C12—H120.9300
C7—C41.445 (6)C6—C11.392 (8)
C4—C51.396 (6)C6—H60.9300
C4—C31.402 (6)C3—C21.381 (8)
O3—H41.22 (7)C3—H30.9300
O7—C151.372 (6)C2—C11.387 (9)
O7—C191.431 (6)C2—H20.9300
C14—C151.389 (6)C19—H19A0.9600
C14—C131.401 (7)C19—H19B0.9600
C14—H140.9300C19—H19C0.9600
C15—C161.406 (6)C21—H21A0.9600
C5—C61.388 (7)C21—H21B0.9600
C11—C121.329 (7)C21—H21C0.9600
C11—C101.467 (6)C1—H10.9300
C11—H110.9300C20—H20A0.9600
C18—C171.392 (6)C20—H20B0.9600
C18—C131.398 (6)C20—H20C0.9600
C18—H180.9300
C9—O1—C5122.3 (4)C18—C13—C14119.8 (4)
C7—C8—C10119.6 (4)C18—C13—C12122.2 (4)
C7—C8—C9118.8 (4)C14—C13—C12118.0 (4)
C10—C8—C9121.7 (4)C11—C12—C13127.2 (4)
C10—O4—H4104 (3)C11—C12—H12116.4
O3—C7—C8120.7 (4)C13—C12—H12116.4
O3—C7—C4118.4 (4)O2—C9—O1115.4 (4)
C8—C7—C4120.9 (4)O2—C9—C8126.4 (5)
C5—C4—C3119.3 (4)O1—C9—C8118.2 (4)
C5—C4—C7117.4 (4)C5—C6—C1118.5 (5)
C3—C4—C7123.3 (4)C5—C6—H6120.8
C7—O3—H4102 (3)C1—C6—H6120.8
C15—O7—C19116.8 (4)C2—C3—C4119.7 (5)
C15—C14—C13120.5 (4)C2—C3—H3120.1
C15—C14—H14119.8C4—C3—H3120.1
C13—C14—H14119.8C3—C2—C1120.3 (5)
O7—C15—C14124.4 (4)C3—C2—H2119.9
O7—C15—C16116.2 (4)C1—C2—H2119.9
C14—C15—C16119.4 (4)O7—C19—H19A109.5
O1—C5—C6116.8 (4)O7—C19—H19B109.5
O1—C5—C4122.1 (4)H19A—C19—H19B109.5
C6—C5—C4121.1 (4)O7—C19—H19C109.5
C12—C11—C10122.3 (5)H19A—C19—H19C109.5
C12—C11—H11118.9H19B—C19—H19C109.5
C10—C11—H11118.9O5—C21—H21A109.5
C17—C18—C13120.1 (4)O5—C21—H21B109.5
C17—C18—H18120.0H21A—C21—H21B109.5
C13—C18—H18120.0O5—C21—H21C109.5
O5—C17—C18125.6 (4)H21A—C21—H21C109.5
O5—C17—C16114.5 (4)H21B—C21—H21C109.5
C18—C17—C16120.0 (4)C2—C1—C6121.0 (5)
O4—C10—C8118.3 (4)C2—C1—H1119.5
O4—C10—C11117.4 (5)C6—C1—H1119.5
C8—C10—C11124.2 (4)O6—C20—H20A109.5
C16—O6—C20115.6 (4)O6—C20—H20B109.5
C17—O5—C21117.3 (4)H20A—C20—H20B109.5
O6—C16—C17119.9 (4)O6—C20—H20C109.5
O6—C16—C15119.9 (4)H20A—C20—H20C109.5
C17—C16—C15120.2 (4)H20B—C20—H20C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H4···O41.22 (6)1.28 (6)2.437 (5)153 (5)
C2—H2···O5i0.932.523.427 (6)167
C20—H20B···O6ii0.962.523.439 (8)160
C19—H19C···O2iii0.962.483.135 (7)125
C11—H11···O20.932.272.873 (7)122
C12—H12···O40.932.422.772 (5)102
Symmetry codes: (i) x1, y, z1; (ii) x1, y, z; (iii) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC21H18O7
Mr382.35
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)4.1370 (2), 8.1247 (2), 14.4101 (2)
α, β, γ (°)74.549 (10), 85.166 (10), 81.205 (10)
V3)460.87 (4)
Z1
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.16 × 0.13 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.981, 0.99
No. of measured, independent and
observed [I > 2σ(I)] reflections
3575, 1974, 1200
Rint0.038
(sin θ/λ)max1)0.638
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.136, 1.09
No. of reflections1974
No. of parameters257
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.12, 0.19

Computer programs: CAD-4 EXPRESS (Duisenberg, 1992; Macíček & Yordanov, 1992), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H4···O41.22 (6)1.28 (6)2.437 (5)153 (5)
C2—H2···O5i0.932.523.427 (6)166.6
C20—H20B···O6ii0.962.523.439 (8)160.3
C19—H19C···O2iii0.962.483.135 (7)125.1
C11—H11···O20.932.272.873 (7)122.2
C12—H12···O40.932.422.772 (5)102.4
Symmetry codes: (i) x1, y, z1; (ii) x1, y, z; (iii) x+1, y+1, z.
 

Acknowledgements

Professor A. Driss is acknowledged for his contribution to the X-ray diffraction data collection at the Laboratoire de cristallochimie-Université Tunis ElManar.

References

First citationChemla, D. S. & Zyss, J. (1987). Non-linear Optical Properties of Organic Molecules and Crystals, Vol. 1. London: Academic Press.  Google Scholar
First citationDuisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92–96.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationIndira, J., Karat, P. P. & Sarojini, B. K. (2002). J. Cryst. Growth, 242, 209–214.  Web of Science CrossRef CAS Google Scholar
First citationLakshmana Perumal, C. K., Arulchakkaravarthi, A., Santhanaraghavan, P. & Ramaswami, P. (2002). J. Cryst. Growth, 240, 212–217.  CrossRef CAS Google Scholar
First citationMacíček, J. & Yordanov, A. (1992). J. Appl. Cryst. 25, 73–80.  CrossRef Web of Science IUCr Journals Google Scholar
First citationMarcy, H. O., Rosker, M. J., Warren, L. F., Cunningham, P. H., Thomas, C. A., Deloach, L. A., Ebbers, S. P., Liao, J. H. & Konatzidis, M. G. (1995). Opt. Lett. 20, 252–254.  CrossRef PubMed CAS Web of Science Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSarojini, B. K., Narayana, B., Ashalatha, B. V., Indira, J. & Lobo, K. G. (2006). J. Cryst. Growth, 295, 54–59.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, Y.-F. & Cui, Y.-P. (2008). Dyes Pigments, 78, 65–76.  Web of Science CSD CrossRef CAS Google Scholar
First citationTraven, V. F., Manaev, A. V., Safronova, O. B., Chibisova, T. A., Lyssenko, K. A. & Antipin, M. Yu. (2000). Zh. Obshch. Khim. (Russ. J. Gen. Chem.), 70, 853–856.  Google Scholar
First citationTraven, V. F., Manaev, A. V., Voevodina, I. V. & Podkhalyuzina, N. Ya. (2007). Chem. Heterocycl. Compds, 43, 416–420.  CrossRef CAS Google Scholar
First citationZhengdong, L., Baichang, W. & Genbo, S. (1997). J. Cryst. Growth, 178, 539–545.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 7| July 2009| Pages o1652-o1653
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds