organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-(4-Pentyl­phen­yl)-1,3,4-thia­diazol-2-amine

aDepartment of Applied Chemistry, College of Science, Nanjing University of Technology, No. 5 Xinmofan Road, Nanjing, Nanjing 210009, People's Republic of China
*Correspondence e-mail: rwan@njut.edu.cn

(Received 26 May 2009; accepted 12 June 2009; online 17 June 2009)

The title compound, C13H17N3S, was synthesized by the reaction of 4-pentyl­benzoic acid and thio­semicarbazide. The dihedral angle between the thia­diazole and phenyl rings is 29.9 (2)°. An intra­molecular C—H⋯S inter­action is observed. In the crystal, inter­molecular N—H⋯N hydrogen bonding links the mol­ecules into centrosymmetric dimers.

Related literature

For general background to the biological activity of 1,3,4-thia­diazole derivatives, see: Nakagawa et al. (1996[Nakagawa, Y., Nishimura, K., Izumi, K., Kinoshita, K., Kimura, T. & Kurihara, N. (1996). J. Pestic. Sci. 21, 195-201.]); Wang et al. (1999[Wang, Y. G., Cao, L., Yan, J., Ye, W. F., Zhou, Q. C. & Lu, B. X. (1999). Chem. J. Chin. Univ. 20, 1903-1905.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C13H17N3S

  • Mr = 247.36

  • Monoclinic, P 21 /c

  • a = 14.012 (3) Å

  • b = 9.1300 (18) Å

  • c = 10.938 (2) Å

  • β = 100.64 (3)°

  • V = 1375.2 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 293 K

  • 0.20 × 0.10 × 0.05 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.958, Tmax = 0.989

  • 2596 measured reflections

  • 2492 independent reflections

  • 1405 reflections with I > 2σ(I)

  • Rint = 0.023

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.066

  • wR(F2) = 0.179

  • S = 1.00

  • 2492 reflections

  • 148 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.52 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8A⋯S 0.93 2.81 3.177 (4) 104
N3—H3A⋯N2i 0.86 2.15 3.006 (4) 173
Symmetry code: (i) -x, -y+1, -z.

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

1,3,4-Thiadiazole derivatives represent an interesting class of compounds possessing broad spectrum biological activities (Nakagawa et al., 1996). These compounds are known to exhibit diverse biological effects, such as insecticidal, fungicidal activities (Wang et al., 1999). The structure of the title compound, (I), is shown in Fig. 1, in which the bond lengths (Allen et al., 1987) and angles are generally within normal ranges. The dihedral angle between the thiadiazole and phenyl ring is 29.90 (19)°. An intramolecular C—H···S interaction is observed (Fig. 1). There is intermolecular N—H···N hydrogen bond (Fig. 2), forming chains along the c axis. The intermolecular N—H···N hydrogen bond creates centrosymmetric dimers.

Related literature top

For general background to the biological activity of 1,3,4-thiadiazole derivatives, see: Nakagawa et al. (1996); Wang et al. (1999). For bond-length data, see: Allen et al. (1987).

Experimental top

4-Pentylbenzoic acid (5 mmol) and thiosemicarbazide (5 mmol) were mixed in a 25 ml flask, and kept in the oil bath at 90°C for 6 h. After cooling, the crude product (I) precipitated and was filtered. Pure compound (I) was obtained by crystallization from ethanol(20 ml). Crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of an acetone solution.

Refinement top

All H atoms bonded to the C atoms were placed geometrically at the distances of 0.93–0.97 Å and included in the refinement in riding motion approximation with Uiso(H) = 1.2 or 1.5Ueq of the carrier atom.

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1989); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo,1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of (I). Displacement ellipsoids are drawn at the 50% probability level. Dashed lines indicate C—H···S short contact distance.
[Figure 2] Fig. 2. Partial packing view showing the hydrogen-bonded network. Dashed lines indicate intermolecular N—H···N hydrogen bond.
5-(4-Pentylphenyl)-1,3,4-thiadiazol-2-amine top
Crystal data top
C13H17N3SF(000) = 528
Mr = 247.36Dx = 1.195 Mg m3
Monoclinic, P21/cMelting point: 563 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 14.012 (3) ÅCell parameters from 25 reflections
b = 9.1300 (18) Åθ = 8–12°
c = 10.938 (2) ŵ = 0.22 mm1
β = 100.64 (3)°T = 293 K
V = 1375.2 (5) Å3Block, colorless
Z = 40.20 × 0.10 × 0.05 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
1405 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.023
Graphite monochromatorθmax = 25.3°, θmin = 1.5°
ω/2θ scansh = 160
Absorption correction: ψ scan
(North et al., 1968)
k = 010
Tmin = 0.958, Tmax = 0.989l = 1213
2596 measured reflections3 standard reflections every 200 reflections
2492 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.066Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.179H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.09P)2]
where P = (Fo2 + 2Fc2)/3
2492 reflections(Δ/σ)max < 0.001
148 parametersΔρmax = 0.18 e Å3
1 restraintΔρmin = 0.52 e Å3
Crystal data top
C13H17N3SV = 1375.2 (5) Å3
Mr = 247.36Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.012 (3) ŵ = 0.22 mm1
b = 9.1300 (18) ÅT = 293 K
c = 10.938 (2) Å0.20 × 0.10 × 0.05 mm
β = 100.64 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1405 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.023
Tmin = 0.958, Tmax = 0.9893 standard reflections every 200 reflections
2596 measured reflections intensity decay: 1%
2492 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0661 restraint
wR(F2) = 0.179H-atom parameters constrained
S = 1.00Δρmax = 0.18 e Å3
2492 reflectionsΔρmin = 0.52 e Å3
148 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S0.10971 (8)0.15085 (11)0.16795 (8)0.0627 (4)
N10.0965 (2)0.1921 (3)0.0647 (2)0.0595 (9)
N20.0606 (2)0.3197 (3)0.0202 (2)0.0596 (9)
N30.0292 (3)0.4194 (3)0.1651 (2)0.0721 (10)
H3A0.00540.49850.12900.087*
H3B0.03210.40850.24380.087*
C10.4434 (5)0.9308 (7)0.1391 (6)0.143
H1B0.46640.97130.22010.214*
H1C0.49270.94090.08920.214*
H1D0.38600.98200.10010.214*
C20.4207 (5)0.7748 (8)0.1509 (7)0.165 (3)
H2B0.48000.72430.18750.198*
H2C0.37610.76600.20850.198*
C30.3778 (5)0.6986 (7)0.0342 (7)0.142 (2)
H3C0.32350.75610.00830.170*
H3D0.42590.69490.01910.170*
C40.3422 (5)0.5426 (6)0.0510 (5)0.135 (2)
H4A0.30030.54520.11230.162*
H4B0.39810.48280.08510.162*
C50.2901 (4)0.4706 (5)0.0597 (4)0.0891 (14)
H5A0.23780.53440.09830.107*
H5B0.33400.45910.11800.107*
C60.2473 (3)0.3212 (4)0.0391 (4)0.0714 (12)
C70.1937 (3)0.3008 (4)0.0533 (4)0.0773 (13)
H7A0.18310.37950.10310.093*
C80.1557 (3)0.1657 (4)0.0731 (4)0.0683 (11)
H8A0.12180.15440.13800.082*
C90.1665 (3)0.0480 (4)0.0002 (3)0.0555 (9)
C100.2190 (3)0.0673 (4)0.0951 (3)0.0708 (12)
H10A0.22750.01060.14670.085*
C110.2583 (3)0.2025 (5)0.1123 (4)0.0742 (12)
H11A0.29350.21380.17590.089*
C120.1252 (3)0.0956 (4)0.0207 (3)0.0548 (9)
C130.0617 (3)0.3139 (4)0.0991 (3)0.0552 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S0.0965 (8)0.0583 (6)0.0329 (5)0.0097 (6)0.0112 (4)0.0063 (4)
N10.084 (2)0.059 (2)0.0356 (14)0.0052 (17)0.0115 (14)0.0018 (14)
N20.087 (2)0.061 (2)0.0311 (14)0.0078 (17)0.0113 (14)0.0040 (13)
N30.125 (3)0.060 (2)0.0326 (15)0.023 (2)0.0179 (17)0.0032 (14)
C10.1430.1430.1430.0000.0240.000
C20.162 (7)0.139 (6)0.190 (8)0.050 (5)0.024 (6)0.014 (6)
C30.138 (6)0.117 (5)0.170 (7)0.033 (4)0.024 (5)0.002 (5)
C40.157 (6)0.103 (4)0.129 (5)0.064 (4)0.016 (4)0.027 (4)
C50.112 (4)0.073 (3)0.080 (3)0.014 (3)0.013 (3)0.015 (3)
C60.089 (3)0.066 (3)0.055 (2)0.008 (2)0.001 (2)0.009 (2)
C70.110 (4)0.059 (3)0.067 (3)0.003 (2)0.025 (3)0.002 (2)
C80.094 (3)0.055 (2)0.059 (2)0.005 (2)0.024 (2)0.0064 (19)
C90.065 (2)0.063 (2)0.0365 (17)0.002 (2)0.0058 (16)0.0017 (17)
C100.098 (3)0.068 (3)0.050 (2)0.007 (2)0.024 (2)0.003 (2)
C110.095 (3)0.078 (3)0.051 (2)0.015 (3)0.017 (2)0.004 (2)
C120.067 (2)0.059 (2)0.0358 (17)0.0042 (19)0.0041 (16)0.0006 (16)
C130.075 (3)0.054 (2)0.0349 (17)0.0020 (19)0.0045 (16)0.0047 (16)
Geometric parameters (Å, º) top
S—C121.739 (3)C4—C51.451 (6)
S—C131.746 (3)C4—H4A0.9700
N1—C121.293 (4)C4—H4B0.9700
N1—N21.392 (4)C5—C61.524 (5)
N2—C131.304 (4)C5—H5A0.9700
N3—C131.333 (4)C5—H5B0.9700
N3—H3A0.8600C6—C111.373 (5)
N3—H3B0.8600C6—C71.378 (6)
C1—C21.471 (6)C7—C81.377 (5)
C1—H1B0.9600C7—H7A0.9300
C1—H1C0.9600C8—C91.362 (5)
C1—H1D0.9600C8—H8A0.9300
C2—C31.480 (8)C9—C101.393 (5)
C2—H2B0.9700C9—C121.467 (5)
C2—H2C0.9700C10—C111.379 (5)
C3—C41.531 (7)C10—H10A0.9300
C3—H3C0.9700C11—H11A0.9300
C3—H3D0.9700
C12—S—C1387.26 (17)C4—C5—C6115.6 (4)
C12—N1—N2113.7 (3)C4—C5—H5A108.4
C13—N2—N1112.3 (3)C6—C5—H5A108.4
C13—N3—H3A120.0C4—C5—H5B108.4
C13—N3—H3B120.0C6—C5—H5B108.4
H3A—N3—H3B120.0H5A—C5—H5B107.4
C2—C1—H1B109.5C11—C6—C7117.2 (4)
C2—C1—H1C109.5C11—C6—C5122.0 (4)
H1B—C1—H1C109.5C7—C6—C5120.8 (4)
C2—C1—H1D109.5C8—C7—C6121.0 (4)
H1B—C1—H1D109.5C8—C7—H7A119.5
H1C—C1—H1D109.5C6—C7—H7A119.5
C1—C2—C3116.1 (6)C9—C8—C7121.8 (4)
C1—C2—H2B108.3C9—C8—H8A119.1
C3—C2—H2B108.3C7—C8—H8A119.1
C1—C2—H2C108.3C8—C9—C10118.0 (4)
C3—C2—H2C108.3C8—C9—C12121.7 (3)
H2B—C2—H2C107.4C10—C9—C12120.3 (3)
C2—C3—C4115.0 (6)C11—C10—C9119.7 (4)
C2—C3—H3C108.5C11—C10—H10A120.2
C4—C3—H3C108.5C9—C10—H10A120.2
C2—C3—H3D108.5C6—C11—C10122.4 (4)
C4—C3—H3D108.5C6—C11—H11A118.8
H3C—C3—H3D107.5C10—C11—H11A118.8
C5—C4—C3116.5 (5)N1—C12—C9125.3 (3)
C5—C4—H4A108.2N1—C12—S113.3 (3)
C3—C4—H4A108.2C9—C12—S121.4 (3)
C5—C4—H4B108.2N2—C13—N3124.8 (3)
C3—C4—H4B108.2N2—C13—S113.4 (3)
H4A—C4—H4B107.3N3—C13—S121.7 (2)
C12—N1—N2—C131.4 (5)C5—C6—C11—C10179.4 (4)
C1—C2—C3—C4172.2 (6)C9—C10—C11—C60.4 (7)
C2—C3—C4—C5173.4 (6)N2—N1—C12—C9179.7 (3)
C3—C4—C5—C6174.6 (5)N2—N1—C12—S0.8 (4)
C4—C5—C6—C11133.0 (5)C8—C9—C12—N1150.2 (4)
C4—C5—C6—C748.4 (7)C10—C9—C12—N130.3 (6)
C11—C6—C7—C82.0 (7)C8—C9—C12—S29.2 (5)
C5—C6—C7—C8179.4 (4)C10—C9—C12—S150.3 (3)
C6—C7—C8—C92.2 (7)C13—S—C12—N10.1 (3)
C7—C8—C9—C101.0 (6)C13—S—C12—C9179.6 (3)
C7—C8—C9—C12179.5 (4)N1—N2—C13—N3178.2 (4)
C8—C9—C10—C110.2 (6)N1—N2—C13—S1.3 (4)
C12—C9—C10—C11179.3 (4)C12—S—C13—N20.7 (3)
C7—C6—C11—C100.7 (7)C12—S—C13—N3178.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8A···S0.932.813.177 (4)104
N3—H3A···N2i0.862.153.006 (4)173
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC13H17N3S
Mr247.36
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)14.012 (3), 9.1300 (18), 10.938 (2)
β (°) 100.64 (3)
V3)1375.2 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.22
Crystal size (mm)0.20 × 0.10 × 0.05
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.958, 0.989
No. of measured, independent and
observed [I > 2σ(I)] reflections
2596, 2492, 1405
Rint0.023
(sin θ/λ)max1)0.601
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.066, 0.179, 1.00
No. of reflections2492
No. of parameters148
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.52

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo,1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8A···S0.932.813.177 (4)104
N3—H3A···N2i0.862.153.006 (4)173
Symmetry code: (i) x, y+1, z.
 

Acknowledgements

The authors gratefully acknowledge Professor Hua-Qin Wang of the Analysis Center, Nanjing University, for providing the Enraf–Nonius CAD-4 diffractometer for this research project.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationEnraf–Nonius (1989). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNakagawa, Y., Nishimura, K., Izumi, K., Kinoshita, K., Kimura, T. & Kurihara, N. (1996). J. Pestic. Sci. 21, 195–201.  CrossRef CAS Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, Y. G., Cao, L., Yan, J., Ye, W. F., Zhou, Q. C. & Lu, B. X. (1999). Chem. J. Chin. Univ. 20, 1903–1905.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds