organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(±)-syn-Iso­propyl 4-(1,1,1,3,3,3-hexa­fluoro­propan-2-yl­­oxy)-1-hydr­­oxy-3-methyl-2-(prop-1-yn­yl)cyclo­pent-2-ene­carboxyl­ate

aFakultät Chemie, Technische Universität Dortmund, Otto-Hahn-Strasse 6, 44221 Dortmund, Germany
*Correspondence e-mail: hans.preut@udo.edu

(Received 5 June 2009; accepted 16 June 2009; online 20 June 2009)

The title compound, C16H18F6O4, was obtained through an unprecedented one-pot reaction sequence involving a Gosteli–Claisen rearrangement and a cyclo­isomerization. The constitution and relative configuration were determined by single-crystal X-ray diffraction analysis. In the crystal, mol­ecules are connected via O—H ⋯ O hydrogen bonds.

Related literature

For the preparation, see: Neises & Steglich (1978[Neises, B. & Steglich, W. (1978). Angew. Chem. 90, 556-557.]); Hiersemann (2000[Hiersemann, M. (2000). Synthesis, pp. 1279-1290.]). For details of the Gosteli–Claisen rearrangement, see: Gosteli (1972[Gosteli, J. (1972). Helv. Chim. Acta, 55, 451-460.]); Landor & Black (1965[Landor, S. R. & Black, D. K. (1965). J. Chem. Soc. pp. 6784-6788.]).

[Scheme 1]

Experimental

Crystal data
  • C16H18F6O4

  • Mr = 388.30

  • Triclinic, [P \overline 1]

  • a = 6.0166 (4) Å

  • b = 11.9075 (6) Å

  • c = 13.2798 (8) Å

  • α = 104.600 (5)°

  • β = 91.775 (5)°

  • γ = 96.955 (5)°

  • V = 912.03 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.14 mm−1

  • T = 173 K

  • 0.42 × 0.20 × 0.18 mm

Data collection
  • Oxford Diffraction Xcalibur S CCD diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.944, Tmax = 0.975

  • 7349 measured reflections

  • 3175 independent reflections

  • 2089 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.106

  • S = 0.96

  • 3175 reflections

  • 240 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O3i 0.84 2.10 2.8431 (17) 148
Symmetry code: (i) -x, -y, -z.

Data collection: CrysAlis CCD (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL-Plus (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

For the preparation of the title compound (±)-(I) a propargyl vinyl ether (II) was synthesized from 2-butin-1-ol using an etherification with bromoacetic acid, an esterification under Steglich's conditions (Neises & Steglich, 1978) and an aldol condensation (Hiersemann, 2000). An unprecedented one-pot reaction sequence involving an uncatalyzed Gosteli-Claisen rearrangement (Gosteli, 1972) of the propargyl vinyl ether (II) (Landor & Black, 1965) and a cycloisomerization under incorporation of a solvent molecule provided (I) as a colourless solid. Fig. 1 depicts the constitution and relative configuration of the isolated diastereomer (I).

Related literature top

For related literature concerning the synthesis, see: Gosteli (1972); Hiersemann (2000); Landor & Black (1965); Neises & Steglich (1978).

Experimental top

The title compound (I) was synthesized according to the following procedure. A solution of (II) (0.044 g, 0.2 mmol) in dry hexafluoroisopropanol (0.6 ml) was stirred at 333 K for 23 h. The solvent was removed under reduced pressure. Flash chromatography (isohexane/ethyl acetate 100/1 to 50/1 to 20/1) afforded (I) as a single diastereomer (0.026 g, 0.07 mmol, 34%) and 37% of the starting material (II). Single crystals of (I) were obtained by vapor diffusion recrystallization technique from isohexane and ethyl acetate to yield colorless cuboids: mp 385 K; Rf 0.32 (cyclohexane/ethyl acetate 5/1); 1H NMR (CDCl3, 400 MHz, δ): 1.23 (d, J = 6.3 Hz, 3H, 8-H), 1.26 (d, J = 6.3 Hz, 3H, 8-H), 1.91 (s, 3H, 12-H), 2.01 (s, 3H, 11-H), 2.03 (dd, J = 13.6, 5.9 Hz, 1H, 5-H), 2.86 (dd, J = 13.6, 7.0 Hz, 1H, 5-H), 3.76 (br.s, 1H, –OH), 4.23 (sep, J = 5.9 Hz, 1H, 13-H), 4.67 (t, J = 5.9 Hz, 1H, 4-H), 5.06 (sep, J = 6.3 Hz, 1H, 7-H); 19F NMR (CDCl3, 282 MHz, δ): (-77.0)-(-76.7) (m, 6 F); 13C NMR (CDCl3, 101 MHz, δ): 4.8 (11-CH3), 13.3 (12-CH3), 21.7 (8-CH3), 21.8 (8-CH3), 42.7 (5-CH2), 70.6 (7-CH), 71.6 (9-C), 76.0 (sep, J = 32.6 Hz, 13-CH), 83.1 (1-C), 88.9 (4-CH), 94.5 (10-C), 121.2 (q, J = 283.0 Hz, 14-C), 121.8 (q, J = 283.0 Hz, 14-C), 126.5 (2-C), 146.9 (3-C), 173.6 (6-C); IR (cm-1): 3485(br,s) (ν O—H, OH in H-bridges), 2990(m) 2940(m) 2920(m) (νas,s C—H, CH2, CH3, CH), 2230(w) (ν CC), 1715(s) (ν C=O, ester), 1635(m) (ν C=C), 1380(m) (δs C—H, CH3), 1295(s) (ν C—O, ester), 1240(s) 1230(s) 1220(s) (ν C—F), 1185(s) 1120(s) 1105(s) (ν C—O, ether); Anal. Calcd. for C16H18F6O4: C,49.5; H, 4.7; Found: C, 49.1; H, 4.7; M = 388.30 g/mol.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL-Plus (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with displacement ellipsoids shown at the 30% probability level.
(±)-syn-Isopropyl 4-(1,1,1,3,3,3-hexafluoropropan-2-yloxy)-1-hydroxy- 3-methyl-2-(prop-1-ynyl)cyclopent-2-enecarboxylate top
Crystal data top
C16H18F6O4Z = 2
Mr = 388.30F(000) = 400
Triclinic, P1Dx = 1.414 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.0166 (4) ÅCell parameters from 3408 reflections
b = 11.9075 (6) Åθ = 2.7–25.0°
c = 13.2798 (8) ŵ = 0.14 mm1
α = 104.600 (5)°T = 173 K
β = 91.775 (5)°Block, colourless
γ = 96.955 (5)°0.42 × 0.20 × 0.18 mm
V = 912.03 (10) Å3
Data collection top
Oxford Diffraction Xcalibur S CCD
diffractometer
3175 independent reflections
Radiation source: Enhance (Mo) X-ray Source2089 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
Detector resolution: 16.0560 pixels mm-1θmax = 25.0°, θmin = 2.7°
ω scansh = 77
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2008)
k = 1314
Tmin = 0.944, Tmax = 0.975l = 1511
7349 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106H-atom parameters constrained
S = 0.96 w = 1/[σ2(Fo2) + (0.0599P)2]
where P = (Fo2 + 2Fc2)/3
3175 reflections(Δ/σ)max < 0.001
240 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C16H18F6O4γ = 96.955 (5)°
Mr = 388.30V = 912.03 (10) Å3
Triclinic, P1Z = 2
a = 6.0166 (4) ÅMo Kα radiation
b = 11.9075 (6) ŵ = 0.14 mm1
c = 13.2798 (8) ÅT = 173 K
α = 104.600 (5)°0.42 × 0.20 × 0.18 mm
β = 91.775 (5)°
Data collection top
Oxford Diffraction Xcalibur S CCD
diffractometer
3175 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2008)
2089 reflections with I > 2σ(I)
Tmin = 0.944, Tmax = 0.975Rint = 0.026
7349 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.106H-atom parameters constrained
S = 0.96Δρmax = 0.27 e Å3
3175 reflectionsΔρmin = 0.29 e Å3
240 parameters
Special details top

Experimental. CrysAlis RED (Oxford Diffraction 2008) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.8004 (4)0.56391 (17)0.16252 (16)0.1130 (8)
F21.0918 (3)0.49063 (18)0.10772 (12)0.1036 (7)
F30.7665 (3)0.39187 (15)0.06173 (11)0.0842 (6)
F41.0556 (2)0.43622 (12)0.40071 (10)0.0537 (4)
F50.9672 (2)0.59099 (11)0.36511 (11)0.0631 (5)
F61.2566 (2)0.51846 (13)0.30212 (11)0.0608 (4)
O10.0648 (2)0.15814 (11)0.13523 (10)0.0286 (4)
H10.02640.10790.07860.043*
O20.6874 (2)0.38842 (11)0.26452 (11)0.0310 (4)
O30.1934 (2)0.05252 (12)0.05543 (11)0.0406 (4)
O40.4173 (2)0.03491 (12)0.19701 (11)0.0391 (4)
C10.6115 (3)0.26537 (16)0.25431 (15)0.0243 (5)
H1A0.74290.22310.26090.029*
C20.4539 (3)0.25339 (16)0.33674 (15)0.0243 (5)
C30.2714 (3)0.17686 (16)0.29615 (15)0.0231 (4)
C40.2677 (3)0.13463 (16)0.17825 (14)0.0227 (4)
C50.4762 (3)0.20733 (17)0.15116 (15)0.0293 (5)
H5A0.56610.15620.10280.035*
H5B0.43110.26730.11770.035*
C60.9030 (3)0.41341 (17)0.23280 (16)0.0299 (5)
H60.96840.33840.20980.036*
C70.8883 (5)0.4666 (2)0.1413 (2)0.0605 (8)
C81.0461 (4)0.4918 (2)0.32484 (18)0.0397 (6)
C90.5107 (3)0.31553 (18)0.44862 (15)0.0367 (6)
H9A0.39430.29020.49120.055*
H9B0.51930.40020.45740.055*
H9C0.65570.29700.47080.055*
C100.0936 (3)0.13487 (17)0.35228 (15)0.0256 (5)
C110.0581 (3)0.09773 (18)0.39548 (16)0.0318 (5)
C120.2433 (4)0.0527 (2)0.44912 (19)0.0486 (6)
H12A0.22560.02700.45250.073*
H12B0.38580.05180.41090.073*
H12C0.24280.10320.52000.073*
C130.2847 (3)0.00474 (17)0.13700 (15)0.0237 (5)
C140.4642 (4)0.15683 (18)0.16071 (17)0.0392 (6)
H140.37780.19490.09260.047*
C150.7079 (4)0.1520 (2)0.1452 (2)0.0602 (8)
H15A0.74750.10450.09630.090*
H15B0.74410.23150.11680.090*
H15C0.79290.11680.21210.090*
C160.3840 (5)0.2186 (2)0.2411 (2)0.0710 (9)
H16A0.46910.18190.30780.107*
H16B0.40640.30110.21840.107*
H16C0.22410.21310.24950.107*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.179 (2)0.0561 (12)0.1164 (16)0.0058 (12)0.0384 (15)0.0547 (11)
F20.1085 (14)0.1364 (17)0.0573 (11)0.0682 (13)0.0018 (10)0.0494 (11)
F30.1084 (12)0.0924 (13)0.0418 (9)0.0499 (10)0.0191 (9)0.0316 (8)
F40.0516 (8)0.0668 (10)0.0425 (8)0.0019 (7)0.0024 (6)0.0191 (7)
F50.0721 (9)0.0333 (8)0.0679 (10)0.0027 (7)0.0029 (8)0.0145 (7)
F60.0357 (8)0.0757 (10)0.0675 (10)0.0151 (7)0.0060 (7)0.0220 (8)
O10.0311 (7)0.0296 (8)0.0227 (8)0.0091 (6)0.0052 (6)0.0008 (6)
O20.0303 (8)0.0201 (7)0.0417 (9)0.0021 (6)0.0045 (6)0.0069 (6)
O30.0513 (9)0.0306 (8)0.0333 (9)0.0110 (7)0.0156 (8)0.0043 (7)
O40.0503 (9)0.0288 (8)0.0346 (9)0.0142 (7)0.0144 (7)0.0006 (7)
C10.0238 (10)0.0183 (10)0.0301 (11)0.0032 (8)0.0018 (9)0.0050 (8)
C20.0275 (10)0.0239 (10)0.0219 (11)0.0061 (8)0.0003 (9)0.0058 (8)
C30.0251 (10)0.0231 (10)0.0214 (10)0.0055 (8)0.0020 (8)0.0051 (8)
C40.0215 (10)0.0265 (10)0.0198 (10)0.0046 (8)0.0000 (8)0.0050 (8)
C50.0327 (11)0.0312 (11)0.0228 (11)0.0001 (9)0.0052 (9)0.0065 (9)
C60.0355 (11)0.0199 (10)0.0337 (12)0.0011 (8)0.0092 (10)0.0073 (9)
C70.0795 (19)0.0498 (18)0.0488 (17)0.0232 (15)0.0063 (15)0.0228 (14)
C80.0365 (13)0.0399 (14)0.0404 (14)0.0015 (10)0.0045 (11)0.0089 (11)
C90.0404 (12)0.0375 (13)0.0276 (12)0.0012 (10)0.0024 (10)0.0022 (10)
C100.0291 (11)0.0266 (11)0.0219 (11)0.0053 (9)0.0001 (9)0.0070 (9)
C110.0309 (12)0.0387 (13)0.0294 (12)0.0042 (10)0.0011 (10)0.0157 (10)
C120.0402 (13)0.0657 (17)0.0502 (16)0.0040 (12)0.0107 (12)0.0342 (13)
C130.0183 (9)0.0294 (11)0.0221 (11)0.0012 (8)0.0025 (9)0.0052 (9)
C140.0536 (14)0.0256 (12)0.0372 (13)0.0147 (10)0.0072 (11)0.0026 (10)
C150.0656 (17)0.0441 (15)0.078 (2)0.0211 (13)0.0294 (15)0.0188 (14)
C160.079 (2)0.0405 (15)0.100 (2)0.0080 (14)0.0324 (18)0.0276 (16)
Geometric parameters (Å, º) top
F1—C71.302 (3)C5—H5A0.9900
F2—C71.339 (3)C5—H5B0.9900
F3—C71.329 (3)C6—C81.507 (3)
F4—C81.341 (3)C6—C71.510 (3)
F5—C81.319 (2)C6—H61.0000
F6—C81.330 (2)C9—H9A0.9800
O1—C41.419 (2)C9—H9B0.9800
O1—H10.8400C9—H9C0.9800
O2—C61.397 (2)C10—C111.192 (3)
O2—C11.452 (2)C11—C121.461 (3)
O3—C131.200 (2)C12—H12A0.9800
O4—C131.318 (2)C12—H12B0.9800
O4—C141.474 (2)C12—H12C0.9800
C1—C21.492 (3)C14—C151.483 (3)
C1—C51.528 (3)C14—C161.502 (4)
C1—H1A1.0000C14—H141.0000
C2—C31.342 (2)C15—H15A0.9800
C2—C91.492 (3)C15—H15B0.9800
C3—C101.434 (3)C15—H15C0.9800
C3—C41.517 (3)C16—H16A0.9800
C4—C131.522 (3)C16—H16B0.9800
C4—C51.541 (3)C16—H16C0.9800
C4—O1—H1109.5F5—C8—F4106.86 (19)
C6—O2—C1115.42 (14)F6—C8—F4106.70 (18)
C13—O4—C14118.33 (14)F5—C8—C6113.48 (18)
O2—C1—C2109.65 (14)F6—C8—C6112.73 (19)
O2—C1—C5112.11 (17)F4—C8—C6109.13 (18)
C2—C1—C5105.10 (14)C2—C9—H9A109.5
O2—C1—H1A110.0C2—C9—H9B109.5
C2—C1—H1A110.0H9A—C9—H9B109.5
C5—C1—H1A110.0C2—C9—H9C109.5
C3—C2—C9127.42 (19)H9A—C9—H9C109.5
C3—C2—C1110.79 (16)H9B—C9—H9C109.5
C9—C2—C1121.69 (16)C11—C10—C3177.6 (2)
C2—C3—C10126.87 (18)C10—C11—C12179.6 (2)
C2—C3—C4112.41 (17)C11—C12—H12A109.5
C10—C3—C4120.72 (15)C11—C12—H12B109.5
O1—C4—C3108.58 (14)H12A—C12—H12B109.5
O1—C4—C13108.35 (13)C11—C12—H12C109.5
C3—C4—C13114.56 (17)H12A—C12—H12C109.5
O1—C4—C5112.55 (16)H12B—C12—H12C109.5
C3—C4—C5103.23 (14)O3—C13—O4124.56 (18)
C13—C4—C5109.61 (15)O3—C13—C4122.24 (17)
C1—C5—C4106.17 (16)O4—C13—C4113.11 (15)
C1—C5—H5A110.5O4—C14—C15107.02 (18)
C4—C5—H5A110.5O4—C14—C16106.87 (18)
C1—C5—H5B110.5C15—C14—C16115.0 (2)
C4—C5—H5B110.5O4—C14—H14109.3
H5A—C5—H5B108.7C15—C14—H14109.3
O2—C6—C8108.60 (17)C16—C14—H14109.3
O2—C6—C7109.24 (18)C14—C15—H15A109.5
C8—C6—C7113.26 (19)C14—C15—H15B109.5
O2—C6—H6108.5H15A—C15—H15B109.5
C8—C6—H6108.5C14—C15—H15C109.5
C7—C6—H6108.5H15A—C15—H15C109.5
F1—C7—F3108.0 (2)H15B—C15—H15C109.5
F1—C7—F2106.8 (2)C14—C16—H16A109.5
F3—C7—F2106.9 (2)C14—C16—H16B109.5
F1—C7—C6113.5 (2)H16A—C16—H16B109.5
F3—C7—C6110.3 (2)C14—C16—H16C109.5
F2—C7—C6111.1 (2)H16A—C16—H16C109.5
F5—C8—F6107.57 (18)H16B—C16—H16C109.5
C6—O2—C1—C2149.56 (16)O2—C6—C7—F160.4 (2)
C6—O2—C1—C594.11 (18)C8—C6—C7—F160.8 (3)
O2—C1—C2—C3133.92 (16)O2—C6—C7—F360.9 (3)
C5—C1—C2—C313.2 (2)C8—C6—C7—F3177.9 (2)
O2—C1—C2—C949.5 (2)O2—C6—C7—F2179.27 (18)
C5—C1—C2—C9170.23 (17)C8—C6—C7—F259.6 (3)
C9—C2—C3—C102.3 (3)O2—C6—C8—F558.6 (2)
C1—C2—C3—C10173.99 (18)C7—C6—C8—F563.0 (3)
C9—C2—C3—C4178.06 (18)O2—C6—C8—F6178.82 (17)
C1—C2—C3—C45.6 (2)C7—C6—C8—F659.6 (3)
C2—C3—C4—O1123.92 (17)O2—C6—C8—F460.5 (2)
C10—C3—C4—O156.4 (2)C7—C6—C8—F4178.0 (2)
C2—C3—C4—C13114.83 (18)C14—O4—C13—O32.1 (3)
C10—C3—C4—C1364.8 (2)C14—O4—C13—C4174.52 (16)
C2—C3—C4—C54.3 (2)O1—C4—C13—O325.9 (2)
C10—C3—C4—C5176.06 (16)C3—C4—C13—O3147.25 (18)
O2—C1—C5—C4134.32 (16)C5—C4—C13—O397.3 (2)
C2—C1—C5—C415.27 (19)O1—C4—C13—O4157.37 (16)
O1—C4—C5—C1128.89 (16)C3—C4—C13—O436.0 (2)
C3—C4—C5—C112.02 (18)C5—C4—C13—O479.5 (2)
C13—C4—C5—C1110.46 (17)C13—O4—C14—C15115.9 (2)
C1—O2—C6—C8119.38 (18)C13—O4—C14—C16120.4 (2)
C1—O2—C6—C7116.65 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O3i0.842.102.8431 (17)148
Symmetry code: (i) x, y, z.

Experimental details

Crystal data
Chemical formulaC16H18F6O4
Mr388.30
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)6.0166 (4), 11.9075 (6), 13.2798 (8)
α, β, γ (°)104.600 (5), 91.775 (5), 96.955 (5)
V3)912.03 (10)
Z2
Radiation typeMo Kα
µ (mm1)0.14
Crystal size (mm)0.42 × 0.20 × 0.18
Data collection
DiffractometerOxford Diffraction Xcalibur S CCD
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2008)
Tmin, Tmax0.944, 0.975
No. of measured, independent and
observed [I > 2σ(I)] reflections
7349, 3175, 2089
Rint0.026
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.106, 0.96
No. of reflections3175
No. of parameters240
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.29

Computer programs: CrysAlis CCD (Oxford Diffraction, 2008), CrysAlis RED (Oxford Diffraction, 2008), SHELXS97 (Sheldrick, 2008), SHELXTL-Plus (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O3i0.842.102.8431 (17)147.5
Symmetry code: (i) x, y, z.
 

References

First citationGosteli, J. (1972). Helv. Chim. Acta, 55, 451–460.  CrossRef CAS PubMed Web of Science Google Scholar
First citationHiersemann, M. (2000). Synthesis, pp. 1279–1290.  CrossRef Google Scholar
First citationLandor, S. R. & Black, D. K. (1965). J. Chem. Soc. pp. 6784–6788.  Google Scholar
First citationNeises, B. & Steglich, W. (1978). Angew. Chem. 90, 556–557.  CrossRef CAS Google Scholar
First citationOxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds