organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,2′-[1,1′-(Ethyl­ene­dioxy­di­nitrilo)di­ethyl­­idyne]di-1-naphthol

aSchool of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou 730070, People's Republic of China
*Correspondence e-mail: dongwk@mail.lzjtu.cn

(Received 11 June 2009; accepted 12 June 2009; online 17 June 2009)

The complete molecule of the title compound, C26H24N2O4, is generated by a crystallographic centre of inversion. There are two intra­molecular O—H⋯N hydrogen bonds. In the crystal structure, inter­molecular C—H⋯O hydrogen bonds result in zigzag chains.

Related literature

For the applications of Shiff base ligands, see: Calligaris & Randaccio (1987[Calligaris, M. & Randaccio, L. (1987). Comprehensive Coordination Chemistry, Vol. 2, edited by G. Wilkinson, pp. 715-738. London: Pergamon.]) For the applications bis­oxime derivatives of salen-type compounds, see: Sun et al. (2004[Sun, S. S., Stern, C. L., Nguyen, S. T. & Hupp, J. T. (2004). J. Am. Chem. Soc. 126, 6314-6326.]); Wang et al. (2007[Wang, L., He, X., Sun, Y. & Xu, L. (2007). Acta Cryst. E63, o4517.]). For related structures, see: Dong et al. (2008a[Dong, W.-K., He, X.-N., Li, L., Lv, Z.-W. & Tong, J.-F. (2008a). Acta Cryst. E64, o1405.],b[Dong, W.-K., Zhao, C.-Y., Zhong, J.-K., Tang, X.-L. & Yu, T.-Z. (2008b). Acta Cryst. E64, o1323.],c[Dong, W.-K., He, X.-N., Guan, Y.-H., Xu, L. & Ren, Z.-L. (2008c). Acta Cryst. E64, o1600-o1601.]);

[Scheme 1]

Experimental

Crystal data
  • C26H24N2O4

  • Mr = 428.47

  • Monoclinic, C 2/c

  • a = 12.6682 (18) Å

  • b = 9.3728 (15) Å

  • c = 18.335 (2) Å

  • β = 97.478 (2)°

  • V = 2158.6 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 K

  • 0.39 × 0.37 × 0.13 mm

Data collection
  • Bruker SMART 1000 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Goöttingen, Germany.]) Tmin = 0.966, Tmax = 0.989

  • 5220 measured reflections

  • 1894 independent reflections

  • 1027 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.122

  • S = 1.06

  • 1894 reflections

  • 145 parameters

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯N1 0.82 1.84 2.562 (3) 146
C10—H10⋯O2i 0.93 2.63 3.446 (3) 146
Symmetry code: (i) [-x+{\script{3\over 2}}, -y-{\script{1\over 2}}, -z+1].

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

There has been considerable interest in Schiff base ligand containing oxygen and imine nitrogen atoms due to their variety of applications, especially for catalysis and enzymatic reactions, magnetism, and supramolecular architectures (Calligaris & Randaccio, 1987). salen-type compounds and its bisoxime derivatives are a new class of multidentate ligand, which can be used as elemental building blocks for construction of supramolecular structures via intermolecular hydrogen bonding or short contact interaction (Sun et al., 2004; Wang et al., 2007). As an extension of our work (Dong et al., 2008a; Dong et al., 2008b) on the structural characterization of salen-type bisoxime compounds, here report the synthesis and structure of the title compound (Fig. 1).

The single-crystal structure of the title compound is built up by discrete C26H24N2O4 molecules, in which all bond lengths are in normal ranges. The molecule has a crystallographic twofold rotation axis (symmetry code: -x, y, 1/2 - z) and screw axis (symmetry code: 1/2 - x, 1/2 + y, 1/2 - z), and adopts a distorted E-configuration. This structure is similar to what was observed in our previously reported E-configuration compounds of 2,2'-[1,1'-Ethylenedioxybis(nitriloethylidyne)]diphenol (Wang et al., 2007). The dihedral angle formed by the two naphthalene rings in each molecule of the title compound is about 43.20 °. There are two intramolecular hydrogen bonds, O2—H2···N1 (d(O2—H2) = 0.82 Å, d(H2···N1) = 1.84 Å, d(O2···N1) = 2.562 (3) Å, <O2—H2···N1 = 146°). Besides in the crystal structure, four intermolecular hydrogen bonds, C10—H10···O2 (d(C10—H10) = 0.93 Å, d(H10···O2) = 2.63 Å, d(C10···O2) = 3.446 (3) Å, <C10—H10···O2 = 146°), link two other molecules into infinite zigzag supramolecular structure (Fig. 2).

Related literature top

For the applications of Shiff base ligands, see: Calligaris & Randaccio (1987) For the applications bisoxime derivatives of salen-type compounds, see: Sun et al. (2004); Wang et al. (2007). For related structures, see: Dong et al. (2008a,b,c);

Experimental top

2,2'-[1,1'-Ethylenedioxybis(nitriloethylidyne)]dinaphthol was synthesized according to an analogous method reported earlier (Dong et al., 2008c). To an ethanol solution (5 ml) of 2-acetyl-1-naphthol (392.1 mg, 2.10 mmol) was added dropwise an ethanol solution (3 ml) of 1,2-bis(aminooxy)ethane (96.2 mg, 1.04 mmol). The mixture solution was stirred at 328–433 K for 72 h. After cooling to room temperature, the precipitate was filtered off, and washed successively three times with ethanol. The product was dried in vacuo and purified by recrystallization from ethanol to yield 313.7 mg (Yield, 70.1%) of powder; m.p. 471–472 K. Colorless block-like single crystals suitable for X-ray diffraction studies were obtained by slow evaporation from a solution of dichloromethane of 2,2'-[1,1'-ethylenedioxybis(nitriloethylidyne)]dinaphthol at room temperature for about three weeks. Anal. Calc. for C26H24N2O4: C, 73.28; H, 5.92; N, 6.33; Found: C, 73.25; H, 5.97; N, 6.29.

Refinement top

Non-H atoms were refined anisotropically. H atoms were treated as riding atoms with distances C—H = 0.97 (CH2), C—H = 0.96 (CH3), 0.93 Å (CH), 0.82 Å (OH), and Uiso(H) = 1.2 Ueq(C) and 1.5 Ueq(O).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SMART (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with atom numbering scheme [Symmetry codes: -x+2, y, -z + 3/2]. Displacement ellipsoids for non-hydrogen atoms are drawn at the 30% probability level.
[Figure 2] Fig. 2. Part of the supramolecular structure of the title compound. Intra- and intermolecular hydrogen bonds are shown as dashed lines.
2,2'-[1,1'-(Ethylenedioxydinitrilo)diethylidyne]di-1-naphthol top
Crystal data top
C26H24N2O4F(000) = 904
Mr = 428.47Dx = 1.318 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 1610 reflections
a = 12.6682 (18) Åθ = 2.2–26.7°
b = 9.3728 (15) ŵ = 0.09 mm1
c = 18.335 (2) ÅT = 298 K
β = 97.478 (2)°Block-shaped, colorless
V = 2158.6 (5) Å30.39 × 0.37 × 0.13 mm
Z = 4
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
1894 independent reflections
Radiation source: fine-focus sealed tube1027 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
ϕ and ω scansθmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1514
Tmin = 0.966, Tmax = 0.989k = 119
5220 measured reflectionsl = 1821
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.122H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.037P)2 + 1.5505P]
where P = (Fo2 + 2Fc2)/3
1894 reflections(Δ/σ)max < 0.001
145 parametersΔρmax = 0.14 e Å3
0 restraintsΔρmin = 0.15 e Å3
Crystal data top
C26H24N2O4V = 2158.6 (5) Å3
Mr = 428.47Z = 4
Monoclinic, C2/cMo Kα radiation
a = 12.6682 (18) ŵ = 0.09 mm1
b = 9.3728 (15) ÅT = 298 K
c = 18.335 (2) Å0.39 × 0.37 × 0.13 mm
β = 97.478 (2)°
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
1894 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1027 reflections with I > 2σ(I)
Tmin = 0.966, Tmax = 0.989Rint = 0.035
5220 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.122H-atom parameters constrained
S = 1.06Δρmax = 0.14 e Å3
1894 reflectionsΔρmin = 0.15 e Å3
145 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.97510 (17)0.0879 (2)0.61829 (11)0.0528 (6)
O11.04967 (14)0.11327 (19)0.68140 (9)0.0610 (5)
O20.84279 (14)0.06506 (17)0.53429 (9)0.0620 (6)
H20.88310.04560.57170.093*
C11.0479 (2)0.0049 (3)0.73030 (14)0.0567 (7)
H1A1.11130.00240.76610.068*
H1B1.04930.09290.70250.068*
C20.9707 (2)0.1902 (3)0.57048 (14)0.0500 (7)
C31.0376 (2)0.3226 (3)0.58230 (16)0.0714 (9)
H3A1.09380.30720.62200.107*
H3B0.99410.40090.59420.107*
H3C1.06780.34440.53820.107*
C40.83740 (19)0.0469 (3)0.48738 (13)0.0464 (6)
C50.89572 (19)0.1710 (2)0.50274 (12)0.0469 (6)
C60.8818 (2)0.2819 (3)0.44918 (15)0.0610 (8)
H60.92020.36600.45820.073*
C70.8146 (2)0.2692 (3)0.38547 (16)0.0676 (8)
H70.80650.34540.35270.081*
C80.7568 (2)0.1424 (3)0.36816 (14)0.0552 (7)
C90.7676 (2)0.0289 (3)0.42035 (13)0.0490 (7)
C100.7106 (2)0.0991 (3)0.40331 (15)0.0632 (8)
H100.71630.17370.43700.076*
C110.6470 (2)0.1137 (4)0.33734 (18)0.0774 (9)
H110.60970.19820.32660.093*
C120.6378 (2)0.0025 (4)0.28598 (17)0.0794 (10)
H120.59570.01460.24090.095*
C130.6896 (2)0.1227 (4)0.30122 (15)0.0707 (9)
H130.68070.19660.26710.085*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0581 (14)0.0524 (13)0.0491 (13)0.0069 (11)0.0112 (11)0.0060 (11)
O10.0618 (12)0.0706 (13)0.0511 (11)0.0170 (10)0.0085 (9)0.0068 (9)
O20.0768 (13)0.0463 (10)0.0591 (12)0.0120 (9)0.0055 (10)0.0078 (9)
C10.0569 (18)0.0582 (17)0.0548 (17)0.0022 (13)0.0063 (13)0.0011 (14)
C20.0553 (16)0.0410 (14)0.0572 (17)0.0059 (13)0.0205 (13)0.0099 (13)
C30.085 (2)0.0560 (18)0.076 (2)0.0235 (16)0.0195 (17)0.0080 (15)
C40.0559 (17)0.0381 (14)0.0474 (15)0.0028 (12)0.0152 (13)0.0019 (12)
C50.0582 (16)0.0398 (14)0.0458 (15)0.0022 (13)0.0176 (13)0.0033 (12)
C60.080 (2)0.0431 (15)0.0637 (19)0.0059 (15)0.0249 (16)0.0047 (14)
C70.086 (2)0.0622 (19)0.0587 (19)0.0079 (17)0.0262 (17)0.0161 (15)
C80.0593 (18)0.0602 (18)0.0491 (16)0.0143 (15)0.0180 (14)0.0030 (14)
C90.0485 (16)0.0489 (16)0.0509 (16)0.0069 (13)0.0117 (13)0.0021 (13)
C100.0617 (18)0.0606 (18)0.0659 (19)0.0008 (15)0.0034 (16)0.0052 (15)
C110.064 (2)0.087 (2)0.079 (2)0.0027 (18)0.0008 (18)0.0190 (19)
C120.061 (2)0.116 (3)0.059 (2)0.016 (2)0.0015 (16)0.012 (2)
C130.065 (2)0.094 (2)0.0537 (19)0.0235 (19)0.0121 (16)0.0088 (17)
Geometric parameters (Å, º) top
N1—C21.295 (3)C5—C61.425 (3)
N1—O11.415 (2)C6—C71.358 (3)
O1—C11.427 (3)C6—H60.9300
O2—C41.353 (3)C7—C81.410 (4)
O2—H20.8200C7—H70.9300
C1—C1i1.490 (5)C8—C131.412 (4)
C1—H1A0.9700C8—C91.426 (3)
C1—H1B0.9700C9—C101.413 (3)
C2—C51.473 (3)C10—C111.370 (3)
C2—C31.504 (3)C10—H100.9300
C3—H3A0.9600C11—C121.400 (4)
C3—H3B0.9600C11—H110.9300
C3—H3C0.9600C12—C131.355 (4)
C4—C51.387 (3)C12—H120.9300
C4—C91.428 (3)C13—H130.9300
C2—N1—O1113.2 (2)C7—C6—C5122.5 (3)
N1—O1—C1108.64 (18)C7—C6—H6118.8
C4—O2—H2109.5C5—C6—H6118.8
O1—C1—C1i112.64 (18)C6—C7—C8121.1 (3)
O1—C1—H1A109.1C6—C7—H7119.5
C1i—C1—H1A109.1C8—C7—H7119.5
O1—C1—H1B109.1C7—C8—C13122.9 (3)
C1i—C1—H1B109.1C7—C8—C9118.4 (2)
H1A—C1—H1B107.8C13—C8—C9118.7 (3)
N1—C2—C5116.6 (2)C10—C9—C8118.9 (2)
N1—C2—C3122.7 (2)C10—C9—C4122.1 (2)
C5—C2—C3120.8 (2)C8—C9—C4118.9 (2)
C2—C3—H3A109.5C11—C10—C9120.3 (3)
C2—C3—H3B109.5C11—C10—H10119.8
H3A—C3—H3B109.5C9—C10—H10119.8
C2—C3—H3C109.5C10—C11—C12120.5 (3)
H3A—C3—H3C109.5C10—C11—H11119.8
H3B—C3—H3C109.5C12—C11—H11119.8
O2—C4—C5122.7 (2)C13—C12—C11120.7 (3)
O2—C4—C9115.4 (2)C13—C12—H12119.7
C5—C4—C9121.9 (2)C11—C12—H12119.7
C4—C5—C6117.2 (2)C12—C13—C8120.9 (3)
C4—C5—C2122.8 (2)C12—C13—H13119.6
C6—C5—C2120.1 (2)C8—C13—H13119.6
C2—N1—O1—C1179.8 (2)C6—C7—C8—C92.2 (4)
N1—O1—C1—C1i75.0 (3)C7—C8—C9—C10179.5 (2)
O1—N1—C2—C5179.31 (19)C13—C8—C9—C100.1 (4)
O1—N1—C2—C30.8 (3)C7—C8—C9—C40.9 (3)
O2—C4—C5—C6179.2 (2)C13—C8—C9—C4178.5 (2)
C9—C4—C5—C61.1 (3)O2—C4—C9—C101.9 (3)
O2—C4—C5—C21.7 (4)C5—C4—C9—C10177.9 (2)
C9—C4—C5—C2178.1 (2)O2—C4—C9—C8179.6 (2)
N1—C2—C5—C44.3 (3)C5—C4—C9—C80.7 (3)
C3—C2—C5—C4175.8 (2)C8—C9—C10—C110.6 (4)
N1—C2—C5—C6176.6 (2)C4—C9—C10—C11177.9 (2)
C3—C2—C5—C63.3 (4)C9—C10—C11—C120.1 (4)
C4—C5—C6—C70.2 (4)C10—C11—C12—C131.5 (5)
C2—C5—C6—C7179.3 (2)C11—C12—C13—C82.1 (5)
C5—C6—C7—C81.8 (4)C7—C8—C13—C12178.1 (3)
C6—C7—C8—C13177.2 (3)C9—C8—C13—C121.3 (4)
Symmetry code: (i) x+2, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···N10.821.842.562 (3)146
C10—H10···O2ii0.932.633.446 (3)146
Symmetry code: (ii) x+3/2, y1/2, z+1.

Experimental details

Crystal data
Chemical formulaC26H24N2O4
Mr428.47
Crystal system, space groupMonoclinic, C2/c
Temperature (K)298
a, b, c (Å)12.6682 (18), 9.3728 (15), 18.335 (2)
β (°) 97.478 (2)
V3)2158.6 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.39 × 0.37 × 0.13
Data collection
DiffractometerBruker SMART 1000 CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.966, 0.989
No. of measured, independent and
observed [I > 2σ(I)] reflections
5220, 1894, 1027
Rint0.035
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.122, 1.06
No. of reflections1894
No. of parameters145
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.14, 0.15

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···N10.821.842.562 (3)145.7
C10—H10···O2i0.932.633.446 (3)146.3
Symmetry code: (i) x+3/2, y1/2, z+1.
 

Acknowledgements

The authors acknowledge finanical support from the `Jing Lan' Talent Engineering Funds of Lanzhou Jiaotong University.

References

First citationCalligaris, M. & Randaccio, L. (1987). Comprehensive Coordination Chemistry, Vol. 2, edited by G. Wilkinson, pp. 715-738. London: Pergamon.  Google Scholar
First citationDong, W.-K., He, X.-N., Guan, Y.-H., Xu, L. & Ren, Z.-L. (2008c). Acta Cryst. E64, o1600–o1601.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDong, W.-K., He, X.-N., Li, L., Lv, Z.-W. & Tong, J.-F. (2008a). Acta Cryst. E64, o1405.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDong, W.-K., Zhao, C.-Y., Zhong, J.-K., Tang, X.-L. & Yu, T.-Z. (2008b). Acta Cryst. E64, o1323.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Goöttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSun, S. S., Stern, C. L., Nguyen, S. T. & Hupp, J. T. (2004). J. Am. Chem. Soc. 126, 6314–6326.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationWang, L., He, X., Sun, Y. & Xu, L. (2007). Acta Cryst. E63, o4517.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds