metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

{2,2′-[1,1′-(Ethyl­ene­dioxy­di­nitrilo)di­ethyl­­idyne]di-1-naphtholato}nickel(II)

aSchool of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou 730070, People's Republic of China
*Correspondence e-mail: dongwk@mail.lzjtu.cn

(Received 11 June 2009; accepted 16 June 2009; online 20 June 2009)

In the title complex, [Ni(C26H22N2O4)], the NiII atom has a slight distortion toward tetra­hedral geometry from a square-planar structure, coordinated by two O and two N atoms of the tetra­dentate salen-type bis­oxime 2,2′-[1,1′-(ethyl­enedioxy­dinitrilo)diethyl­idyne]di-1-naphtholate (L2−) unit, with a mean deviation of 0.022 Å from the N2O2 plane. The N- and O-donor atoms are mutually cis. The dihedral angle between two naphthalene systems of the L2− ligand is 67.59 (4)°. The crystal structure is stabilized by inter­molecular C—H⋯O and C—H⋯π inter­actions, which link neighbouring mol­ecules into extended chains along the b axis.

Related literature

For multidentate salen-type compounds in coordination chemistry, see: Akine et al. (2005[Akine, S., Takanori, T., Taniguchi, T. & Nabeshima, T. (2005). Inorg. Chem. 44, 3270-3274.]); Dong et al. (2009a[Dong, W. K., Duan, J. G., Guan, Y. H., Shi, J. Y. & Zhao, C. Y. (2009a). Inorg. Chim. Acta, 362, 1129-1134.],b[Dong, W. K., Sun, Y. X., Zhang, Y. P., Li, L., He, X. N. & Tang, X. L. (2009b). Inorg. Chim. Acta, 362, 117-124.]); Katsuki (1995[Katsuki, T. (1995). Coord. Chem. Rev. 140, 189-214.]); Ray et al. (2003[Ray, M. S., Mukhopadhyay, G. M., Drew, M. G. B., Lu, T. H., Chaudhuri, S. & Ghosh, A. (2003). Inorg. Chem. Commun. 6, 961-965.]); Sun et al. (2008[Sun, Y.-X., Gao, S.-X., Shi, J.-Y. & Dong, W.-K. (2008). Acta Cryst. E64, m226.]). For the isostructural Cu complex, see: Dong et al. (2009c[Dong, W.-K., Wu, J.-C., Yao, J., Gong, S.-S. & Tong, J.-F. (2009c). Acta Cryst. E65, m802.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C26H22N2O4)]

  • Mr = 485.17

  • Monoclinic, P 21 /n

  • a = 13.6975 (13) Å

  • b = 8.2711 (10) Å

  • c = 19.049 (2) Å

  • β = 95.346 (1)°

  • V = 2148.7 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.94 mm−1

  • T = 298 K

  • 0.43 × 0.16 × 0.06 mm

Data collection
  • Siemens SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.688, Tmax = 0.946

  • 10414 measured reflections

  • 3782 independent reflections

  • 2179 reflections with I > 2σ(I)

  • Rint = 0.073

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.126

  • S = 1.02

  • 3782 reflections

  • 298 parameters

  • H-atom parameters constrained

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15A⋯O3i 0.96 2.45 3.152 (6) 130
C3—H3CCg1ii 0.97 3.17 4.127 (3) 172
C15—H15ACg2iii 0.96 3.53 4.398 (3) 152
Symmetry codes: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x+1, -y, -z; (iii) x+1, y, z.

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Multidentate salen-type compounds play an important role in the development of modern coordination chemistry as they readily form stable complexes with most of the transition metals, in which some could exhibit interesting properties (Katsuki, et al., 1995; Akine, et al., 2005; Ray, et al., 2003). Here, we report a new NiII complex based on the tetradentate salen-type bisoxime ligand 2,2'-[1,1'-ethylenedioxybis(nitriloethylidyne)]dinaphthol (Dong, et al., 2009a; Dong, et al., 2009b).

In this paper, a new mononuclear nickel(II) complex with salen-type bisoxime chelating ligand, 2,2'-[1,1'-ethylenedioxybis(nitriloethylidyne)]dinaphthol, has been synthesized (Sun, et al., 2008). The dihedral angle between the coordination plane of O3—Ni1—N1 and that of O4—Ni1—N2 is 67.59 (4)°, indicating slight distortion toward tetrahedral geometry from the square planar structure, with a mean deviation of 0.022 Å from the N2O2 plane. The crystal structure is further stabilized by intermolecular C15—H15A···O3 hydrogen bond and C3—H3C···π(benzene), C15—H15A···π(naphthalene) interactions (Table 1), which link neighbouring molecules into extended chains along the b axis.

Related literature top

For multidentate salen-type compounds in coordination chemistry, see: Akine et al. (2005); Dong et al. (2009a,b); Katsuki (1995); Ray et al. (2003); Sun et al. (2008). For the isostructural Cu complex, see: Dong et al. (2009c).

Experimental top

A solution of nickel(II) chloride tetrahydrate (2.8 mg, 0.0138 mmol) in methanol (3 ml) was added dropwise to a solution of 2,2'-[1,1'-ethylenedioxybis(nitriloethylidyne)]dinaphthol (4.5 mg, 0.0105 mmol) and 99% triethylamine (0.025 ml) in dichloromethane (3 ml). The color of the mixing solution turns to dark-yellow, immediately, and was allowed to stand at room temperature for about three weeks, the solvent was partially evaporated and obtained brown needle-like single crystals suitable for X-ray crystallographic analysis.

Refinement top

Non-H atoms were refined anisotropically. H atoms were treated as riding atoms with distances C—H = 0.96 (CH3), C—H = 0.97 (CH2), or 0.93 Å (CH), and Uiso(H) = 1.2 Ueq(C) and 1.5 Ueq(O).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecule structure of the title complex. Displacement ellipsoids for non-hydrogen atoms are drawn at the 30% probability level.
[Figure 2] Fig. 2. Part of the supramolecular structure of the title complex Showing the formation of C15—H15A···O3 hydrogen bond and C3—H3C···π(benzene), C15—H15A···π(naphthalene) interactions.
{2,2'-[1,1'-(Ethylenedioxydinitrilo)diethylidyne]di-1-naphtholato}nickel(II) top
Crystal data top
[Ni(C26H22N2O4)]F(000) = 1008
Mr = 485.17Dx = 1.500 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1885 reflections
a = 13.6975 (13) Åθ = 2.9–22.6°
b = 8.2711 (10) ŵ = 0.94 mm1
c = 19.049 (2) ÅT = 298 K
β = 95.346 (1)°Prismatic, brown
V = 2148.7 (4) Å30.43 × 0.16 × 0.06 mm
Z = 4
Data collection top
Siemens SMART 1000 CCD area-detector
diffractometer
3782 independent reflections
Radiation source: fine-focus sealed tube2179 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.073
ϕ and ω scansθmax = 25.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1615
Tmin = 0.688, Tmax = 0.946k = 99
10414 measured reflectionsl = 2221
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.126H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0457P)2 + 0.4257P]
where P = (Fo2 + 2Fc2)/3
3782 reflections(Δ/σ)max < 0.001
298 parametersΔρmax = 0.45 e Å3
0 restraintsΔρmin = 0.38 e Å3
Crystal data top
[Ni(C26H22N2O4)]V = 2148.7 (4) Å3
Mr = 485.17Z = 4
Monoclinic, P21/nMo Kα radiation
a = 13.6975 (13) ŵ = 0.94 mm1
b = 8.2711 (10) ÅT = 298 K
c = 19.049 (2) Å0.43 × 0.16 × 0.06 mm
β = 95.346 (1)°
Data collection top
Siemens SMART 1000 CCD area-detector
diffractometer
3782 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2179 reflections with I > 2σ(I)
Tmin = 0.688, Tmax = 0.946Rint = 0.073
10414 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.126H-atom parameters constrained
S = 1.02Δρmax = 0.45 e Å3
3782 reflectionsΔρmin = 0.38 e Å3
298 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.75831 (4)0.20469 (8)0.22591 (3)0.0404 (2)
N10.7696 (2)0.2159 (5)0.12766 (18)0.0427 (9)
N20.6275 (2)0.2675 (4)0.22573 (18)0.0414 (9)
O10.7023 (2)0.1391 (4)0.07716 (16)0.0612 (10)
O20.5751 (2)0.2984 (4)0.15860 (15)0.0476 (8)
O30.89260 (19)0.1753 (4)0.23858 (14)0.0468 (8)
O40.7640 (2)0.1617 (4)0.31931 (15)0.0513 (9)
C10.6314 (4)0.0466 (6)0.1102 (3)0.0589 (14)
H1A0.66140.00220.15420.071*
H1B0.60930.04280.07980.071*
C20.5455 (3)0.1494 (6)0.1245 (3)0.0548 (14)
H2A0.50700.17280.08040.066*
H2B0.50420.08980.15420.066*
C30.8419 (3)0.2790 (6)0.0185 (2)0.0577 (14)
H3A0.81830.17690.00020.087*
H3B0.90750.29650.00610.087*
H3C0.80010.36400.00100.087*
C40.8418 (3)0.2780 (6)0.0975 (2)0.0422 (12)
C50.9487 (3)0.2779 (5)0.2089 (2)0.0390 (11)
C60.9264 (3)0.3411 (5)0.1412 (2)0.0408 (12)
C70.9930 (4)0.4501 (6)0.1145 (2)0.0511 (13)
H70.97820.49200.06950.061*
C81.0781 (4)0.4966 (6)0.1518 (3)0.0561 (14)
H81.11920.57040.13250.067*
C91.1038 (3)0.4326 (6)0.2199 (3)0.0484 (12)
C101.0395 (3)0.3241 (5)0.2491 (2)0.0407 (11)
C111.0631 (3)0.2647 (6)0.3181 (2)0.0497 (13)
H111.02030.19400.33760.060*
C121.1481 (4)0.3094 (7)0.3565 (3)0.0621 (15)
H121.16300.26980.40190.075*
C131.2124 (4)0.4155 (7)0.3268 (3)0.0709 (17)
H131.27070.44490.35260.085*
C141.1914 (4)0.4762 (6)0.2610 (3)0.0653 (15)
H141.23500.54740.24260.078*
C150.4730 (3)0.3664 (6)0.2637 (2)0.0547 (14)
H15A0.47150.48190.25890.082*
H15B0.43640.33510.30210.082*
H15C0.44430.31770.22090.082*
C160.5777 (3)0.3104 (5)0.2781 (2)0.0396 (11)
C170.7106 (3)0.2156 (6)0.3666 (2)0.0415 (11)
C180.6206 (3)0.2971 (5)0.3500 (2)0.0401 (11)
C190.5721 (3)0.3588 (6)0.4074 (3)0.0544 (13)
H190.51400.41600.39750.065*
C200.6067 (4)0.3380 (6)0.4755 (3)0.0588 (14)
H200.57270.38230.51090.071*
C210.6941 (3)0.2496 (6)0.4937 (2)0.0473 (13)
C220.7463 (3)0.1878 (6)0.4392 (2)0.0408 (11)
C230.8325 (3)0.0997 (6)0.4558 (2)0.0508 (13)
H230.86700.05900.41990.061*
C240.8665 (4)0.0730 (7)0.5248 (3)0.0624 (15)
H240.92390.01450.53540.075*
C250.8152 (4)0.1332 (7)0.5791 (3)0.0692 (17)
H250.83820.11380.62580.083*
C260.7319 (4)0.2199 (7)0.5639 (3)0.0620 (15)
H260.69900.26070.60060.074*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0349 (3)0.0501 (4)0.0356 (4)0.0030 (3)0.0009 (2)0.0056 (3)
N10.033 (2)0.056 (3)0.038 (2)0.010 (2)0.0003 (17)0.002 (2)
N20.041 (2)0.046 (3)0.035 (2)0.0016 (18)0.0066 (17)0.0077 (18)
O10.048 (2)0.091 (3)0.043 (2)0.004 (2)0.0062 (17)0.0145 (18)
O20.0465 (18)0.047 (2)0.0471 (19)0.0065 (17)0.0069 (15)0.0045 (17)
O30.0344 (17)0.063 (2)0.0422 (19)0.0012 (16)0.0013 (14)0.0161 (16)
O40.0446 (18)0.072 (3)0.0380 (19)0.0152 (17)0.0097 (15)0.0141 (16)
C10.056 (3)0.048 (3)0.069 (4)0.001 (3)0.012 (3)0.011 (3)
C20.045 (3)0.057 (4)0.060 (3)0.003 (3)0.010 (2)0.003 (3)
C30.058 (3)0.083 (4)0.033 (3)0.022 (3)0.005 (2)0.009 (3)
C40.044 (3)0.052 (3)0.031 (2)0.019 (2)0.004 (2)0.004 (2)
C50.035 (3)0.042 (3)0.041 (3)0.009 (2)0.008 (2)0.003 (2)
C60.041 (3)0.043 (3)0.039 (3)0.010 (2)0.007 (2)0.010 (2)
C70.058 (3)0.054 (4)0.044 (3)0.011 (3)0.015 (3)0.009 (2)
C80.063 (4)0.043 (3)0.065 (4)0.001 (3)0.023 (3)0.005 (3)
C90.042 (3)0.046 (3)0.058 (3)0.003 (2)0.009 (3)0.004 (3)
C100.037 (3)0.043 (3)0.042 (3)0.008 (2)0.004 (2)0.000 (2)
C110.048 (3)0.053 (3)0.047 (3)0.004 (2)0.000 (2)0.002 (2)
C120.056 (3)0.073 (4)0.053 (3)0.002 (3)0.016 (3)0.005 (3)
C130.053 (4)0.065 (4)0.090 (5)0.001 (3)0.013 (3)0.018 (4)
C140.054 (3)0.055 (4)0.088 (4)0.009 (3)0.012 (3)0.003 (3)
C150.040 (3)0.057 (4)0.067 (3)0.011 (3)0.005 (2)0.006 (3)
C160.033 (2)0.037 (3)0.049 (3)0.002 (2)0.006 (2)0.008 (2)
C170.038 (3)0.045 (3)0.042 (3)0.009 (2)0.006 (2)0.006 (2)
C180.043 (3)0.032 (3)0.046 (3)0.005 (2)0.007 (2)0.005 (2)
C190.050 (3)0.050 (3)0.065 (4)0.000 (3)0.012 (3)0.007 (3)
C200.066 (4)0.056 (4)0.056 (4)0.012 (3)0.019 (3)0.018 (3)
C210.048 (3)0.050 (4)0.044 (3)0.018 (2)0.005 (2)0.001 (2)
C220.041 (3)0.046 (3)0.034 (3)0.014 (2)0.001 (2)0.010 (2)
C230.045 (3)0.063 (4)0.044 (3)0.011 (3)0.002 (2)0.011 (3)
C240.052 (3)0.080 (4)0.054 (3)0.017 (3)0.003 (3)0.010 (3)
C250.071 (4)0.094 (5)0.040 (3)0.031 (4)0.011 (3)0.007 (3)
C260.080 (4)0.064 (4)0.043 (3)0.030 (3)0.007 (3)0.010 (3)
Geometric parameters (Å, º) top
Ni1—O41.809 (3)C10—C111.413 (6)
Ni1—O31.849 (3)C11—C121.367 (6)
Ni1—N21.865 (3)C11—H110.9300
Ni1—N11.894 (3)C12—C131.400 (7)
N1—C41.295 (5)C12—H120.9300
N1—O11.419 (4)C13—C141.355 (7)
N2—C161.309 (5)C13—H130.9300
N2—O21.430 (4)C14—H140.9300
O1—C11.427 (5)C15—C161.508 (5)
O2—C21.434 (5)C15—H15A0.9600
O3—C51.308 (5)C15—H15B0.9600
O4—C171.292 (5)C15—H15C0.9600
C1—C21.498 (6)C16—C181.444 (6)
C1—H1A0.9700C17—C181.415 (6)
C1—H1B0.9700C17—C221.442 (6)
C2—H2A0.9700C18—C191.426 (6)
C2—H2B0.9700C19—C201.349 (6)
C3—C41.506 (5)C19—H190.9300
C3—H3A0.9600C20—C211.419 (7)
C3—H3B0.9600C20—H200.9300
C3—H3C0.9600C21—C261.409 (6)
C4—C61.459 (6)C21—C221.410 (6)
C5—C61.398 (5)C22—C231.398 (6)
C5—C101.449 (6)C23—C241.370 (6)
C6—C71.411 (6)C23—H230.9300
C7—C81.362 (6)C24—C251.395 (7)
C7—H70.9300C24—H240.9300
C8—C91.415 (6)C25—C261.356 (7)
C8—H80.9300C25—H250.9300
C9—C101.407 (6)C26—H260.9300
C9—C141.417 (6)
O4—Ni1—O383.93 (12)C9—C10—C5119.8 (4)
O4—Ni1—N290.58 (14)C11—C10—C5120.7 (4)
O3—Ni1—N2168.72 (15)C12—C11—C10121.0 (5)
O4—Ni1—N1168.87 (14)C12—C11—H11119.5
O3—Ni1—N187.90 (13)C10—C11—H11119.5
N2—Ni1—N198.73 (14)C11—C12—C13119.3 (5)
C4—N1—O1110.6 (3)C11—C12—H12120.3
C4—N1—Ni1126.4 (3)C13—C12—H12120.3
O1—N1—Ni1122.7 (3)C14—C13—C12121.2 (5)
C16—N2—O2112.3 (3)C14—C13—H13119.4
C16—N2—Ni1130.0 (3)C12—C13—H13119.4
O2—N2—Ni1117.0 (2)C13—C14—C9120.8 (5)
N1—O1—C1111.5 (3)C13—C14—H14119.6
N2—O2—C2110.4 (3)C9—C14—H14119.6
C5—O3—Ni1118.4 (3)C16—C15—H15A109.5
C17—O4—Ni1130.0 (3)C16—C15—H15B109.5
O1—C1—C2110.7 (4)H15A—C15—H15B109.5
O1—C1—H1A109.5C16—C15—H15C109.5
C2—C1—H1A109.5H15A—C15—H15C109.5
O1—C1—H1B109.5H15B—C15—H15C109.5
C2—C1—H1B109.5N2—C16—C18120.5 (4)
H1A—C1—H1B108.1N2—C16—C15119.9 (4)
O2—C2—C1112.1 (4)C18—C16—C15119.5 (4)
O2—C2—H2A109.2O4—C17—C18123.1 (4)
C1—C2—H2A109.2O4—C17—C22116.8 (4)
O2—C2—H2B109.2C18—C17—C22120.1 (4)
C1—C2—H2B109.2C17—C18—C19117.2 (4)
H2A—C2—H2B107.9C17—C18—C16121.2 (4)
C4—C3—H3A109.5C19—C18—C16121.5 (4)
C4—C3—H3B109.5C20—C19—C18123.0 (5)
H3A—C3—H3B109.5C20—C19—H19118.5
C4—C3—H3C109.5C18—C19—H19118.5
H3A—C3—H3C109.5C19—C20—C21120.9 (5)
H3B—C3—H3C109.5C19—C20—H20119.5
N1—C4—C6119.1 (4)C21—C20—H20119.5
N1—C4—C3121.2 (4)C26—C21—C22118.0 (5)
C6—C4—C3119.6 (4)C26—C21—C20123.3 (5)
O3—C5—C6123.6 (4)C22—C21—C20118.7 (4)
O3—C5—C10116.9 (4)C23—C22—C21119.8 (4)
C6—C5—C10119.5 (4)C23—C22—C17120.3 (4)
C5—C6—C7118.5 (4)C21—C22—C17119.9 (4)
C5—C6—C4119.1 (4)C24—C23—C22120.3 (5)
C7—C6—C4121.9 (4)C24—C23—H23119.8
C8—C7—C6122.9 (4)C22—C23—H23119.8
C8—C7—H7118.5C23—C24—C25120.3 (5)
C6—C7—H7118.5C23—C24—H24119.9
C7—C8—C9120.0 (5)C25—C24—H24119.9
C7—C8—H8120.0C26—C25—C24120.2 (5)
C9—C8—H8120.0C26—C25—H25119.9
C10—C9—C8119.2 (4)C24—C25—H25119.9
C10—C9—C14118.3 (5)C25—C26—C21121.4 (5)
C8—C9—C14122.5 (5)C25—C26—H26119.3
C9—C10—C11119.4 (4)C21—C26—H26119.3
O4—Ni1—N1—C477.6 (9)C14—C9—C10—C5179.4 (4)
O3—Ni1—N1—C434.9 (4)O3—C5—C10—C9179.2 (4)
N2—Ni1—N1—C4135.9 (4)C6—C5—C10—C90.4 (6)
O4—Ni1—N1—O195.3 (8)O3—C5—C10—C112.4 (6)
O3—Ni1—N1—O1138.1 (3)C6—C5—C10—C11178.8 (4)
N2—Ni1—N1—O151.1 (3)C9—C10—C11—C120.8 (7)
O4—Ni1—N2—C1618.8 (4)C5—C10—C11—C12179.2 (4)
O3—Ni1—N2—C1641.9 (9)C10—C11—C12—C130.1 (7)
N1—Ni1—N2—C16167.3 (4)C11—C12—C13—C140.9 (8)
O4—Ni1—N2—O2171.9 (3)C12—C13—C14—C90.7 (8)
O3—Ni1—N2—O2127.5 (6)C10—C9—C14—C130.2 (7)
N1—Ni1—N2—O22.0 (3)C8—C9—C14—C13178.3 (5)
C4—N1—O1—C1170.0 (4)O2—N2—C16—C18176.5 (4)
Ni1—N1—O1—C13.9 (5)Ni1—N2—C16—C186.7 (6)
C16—N2—O2—C2110.3 (4)O2—N2—C16—C156.5 (6)
Ni1—N2—O2—C278.6 (3)Ni1—N2—C16—C15176.3 (3)
O4—Ni1—O3—C5136.0 (3)Ni1—O4—C17—C1814.1 (6)
N2—Ni1—O3—C574.8 (8)Ni1—O4—C17—C22166.5 (3)
N1—Ni1—O3—C551.5 (3)O4—C17—C18—C19176.3 (4)
O3—Ni1—O4—C17147.7 (4)C22—C17—C18—C194.3 (6)
N2—Ni1—O4—C1722.5 (4)O4—C17—C18—C166.6 (7)
N1—Ni1—O4—C17169.4 (7)C22—C17—C18—C16172.8 (4)
N1—O1—C1—C287.7 (4)N2—C16—C18—C179.8 (7)
N2—O2—C2—C162.0 (5)C15—C16—C18—C17167.3 (4)
O1—C1—C2—O248.8 (5)N2—C16—C18—C19173.2 (4)
O1—N1—C4—C6170.9 (4)C15—C16—C18—C199.8 (7)
Ni1—N1—C4—C62.8 (6)C17—C18—C19—C202.1 (7)
O1—N1—C4—C36.2 (6)C16—C18—C19—C20175.0 (4)
Ni1—N1—C4—C3179.9 (3)C18—C19—C20—C211.0 (7)
Ni1—O3—C5—C639.8 (5)C19—C20—C21—C26178.0 (4)
Ni1—O3—C5—C10141.4 (3)C19—C20—C21—C222.0 (7)
O3—C5—C6—C7179.5 (4)C26—C21—C22—C230.2 (6)
C10—C5—C6—C70.7 (6)C20—C21—C22—C23179.8 (4)
O3—C5—C6—C46.9 (6)C26—C21—C22—C17179.8 (4)
C10—C5—C6—C4171.9 (4)C20—C21—C22—C170.2 (6)
N1—C4—C6—C526.4 (6)O4—C17—C22—C232.9 (6)
C3—C4—C6—C5150.8 (4)C18—C17—C22—C23176.6 (4)
N1—C4—C6—C7161.3 (4)O4—C17—C22—C21177.1 (4)
C3—C4—C6—C721.6 (6)C18—C17—C22—C213.4 (6)
C5—C6—C7—C80.1 (7)C21—C22—C23—C240.1 (7)
C4—C6—C7—C8172.5 (4)C17—C22—C23—C24179.9 (4)
C6—C7—C8—C91.3 (7)C22—C23—C24—C250.2 (7)
C7—C8—C9—C101.6 (7)C23—C24—C25—C260.7 (8)
C7—C8—C9—C14179.9 (5)C24—C25—C26—C211.0 (8)
C8—C9—C10—C11177.6 (4)C22—C21—C26—C250.7 (7)
C14—C9—C10—C111.0 (6)C20—C21—C26—C25179.2 (5)
C8—C9—C10—C50.8 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15A···O3i0.962.453.152 (6)130
C3—H3C···Cg1ii0.973.174.127 (3)172
C15—H15A···Cg2iii0.963.534.398 (3)152
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (ii) x+1, y, z; (iii) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Ni(C26H22N2O4)]
Mr485.17
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)13.6975 (13), 8.2711 (10), 19.049 (2)
β (°) 95.346 (1)
V3)2148.7 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.94
Crystal size (mm)0.43 × 0.16 × 0.06
Data collection
DiffractometerSiemens SMART 1000 CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.688, 0.946
No. of measured, independent and
observed [I > 2σ(I)] reflections
10414, 3782, 2179
Rint0.073
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.126, 1.02
No. of reflections3782
No. of parameters298
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.45, 0.38

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15A···O3i0.962.453.152 (6)129.7
C3—H3C···Cg1ii0.973.1654.127 (3)171.99
C15—H15A···Cg2iii0.963.5294.398 (3)151.74
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (ii) x+1, y, z; (iii) x+1, y, z.
 

Acknowledgements

The authors acknowledge finanical support from the `Jing Lan' Talent Engineering Funds of Lanzhou Jiaotong University.

References

First citationAkine, S., Takanori, T., Taniguchi, T. & Nabeshima, T. (2005). Inorg. Chem. 44, 3270–3274.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationDong, W. K., Duan, J. G., Guan, Y. H., Shi, J. Y. & Zhao, C. Y. (2009a). Inorg. Chim. Acta, 362, 1129–1134.  Web of Science CSD CrossRef CAS Google Scholar
First citationDong, W. K., Sun, Y. X., Zhang, Y. P., Li, L., He, X. N. & Tang, X. L. (2009b). Inorg. Chim. Acta, 362, 117–124.  Web of Science CSD CrossRef CAS Google Scholar
First citationDong, W.-K., Wu, J.-C., Yao, J., Gong, S.-S. & Tong, J.-F. (2009c). Acta Cryst. E65, m802.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKatsuki, T. (1995). Coord. Chem. Rev. 140, 189–214.  CrossRef CAS Web of Science Google Scholar
First citationRay, M. S., Mukhopadhyay, G. M., Drew, M. G. B., Lu, T. H., Chaudhuri, S. & Ghosh, A. (2003). Inorg. Chem. Commun. 6, 961–965.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSun, Y.-X., Gao, S.-X., Shi, J.-Y. & Dong, W.-K. (2008). Acta Cryst. E64, m226.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds