organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,2′-[1,1′-(Propane-1,3-diyldi­oxy­di­nitrilo)di­ethyl­­idyne]di-1-naphthol

aSchool of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou 730070, People's Republic of China
*Correspondence e-mail: dongwk@mail.lzjtu.cn

(Received 13 June 2009; accepted 17 June 2009; online 20 June 2009)

The mol­ecule of the title compound, C27H26N2O4, lies across a crystallographic inversion centre and adopts an L-shaped configuration. Within the mol­ecule, the two naphthalene units are approximately perpendicular, making a dihedral angle of 80.24 (5)°. The two intramolecular O—H⋯N hydrogen bonds, generate S(6) ring motifs. In the crystal structure, every mol­ecule links five other mol­ecules into an infinite cross-linked layered supra­molecular structure via inter­molecular C—H⋯O hydrogen bonds, C—H⋯π inter­actions and ππ stacking inter­actions [centroid–centroid distance = 3.956 (4) Å].

Related literature

For the steric and electronic properties of Schiff bases, see: Yamada (1999[Yamada, S. (1999). Coord. Chem. Rev. 190-192, 537-555.]). For background to this study, see: Dong et al. (2006[Dong, W. K., Feng, J. H. & Yang, X. Q. (2006). Z. Kristallogr. New Cryst. Struct. 221, 447-448.]). For related structures, see: Dong & Duan (2008[Dong, W. K. & Duan, J. G. (2008). J. Coord. Chem. 61, 781-788.]); Dong et al. (2008a[Dong, W.-K., Ding, Y.-J., Luo, Y.-L., Lv, Z.-W. & Wang, L. (2008a). Acta Cryst. E64, o1324.],b[Dong, W.-K., He, X.-N., Guan, Y.-H., Xu, L. & Ren, Z.-L. (2008b). Acta Cryst. E64, o1810.],c[Dong, W.-K., He, X.-N., Zhong, J.-K., Chen, X. & Yu, T.-Z. (2008c). Acta Cryst. E64, o1098.],d[Dong, W. K., Shi, J. Y., Zhong, J. K., Sun, Y. X. & Duan, J. G. (2008d). Struct. Chem. 19, 95-99.]); Duan et al. (2007[Duan, J.-G., Dong, C.-M., Shi, J.-Y., Wu, L. & Dong, W.-K. (2007). Acta Cryst. E63, o2704-o2705.]); He et al. (2008[He, X.-N., Dong, W.-K., Bai, W.-J., Yan, H.-B. & Lv, Z.-W. (2008). Acta Cryst. E64, o1532.]).

[Scheme 1]

Experimental

Crystal data
  • C27H26N2O4

  • Mr = 442.50

  • Triclinic, [P \overline 1]

  • a = 7.4411 (10) Å

  • b = 8.8911 (16) Å

  • c = 18.106 (2) Å

  • α = 100.645 (1)°

  • β = 94.331 (1)°

  • γ = 106.329 (2)°

  • V = 1119.4 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 K

  • 0.50 × 0.42 × 0.37 mm

Data collection
  • Siemens SMART 1000 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.957, Tmax = 0.968

  • 5800 measured reflections

  • 3876 independent reflections

  • 2325 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.145

  • S = 1.04

  • 3876 reflections

  • 298 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯N1 0.82 1.83 2.543 (2) 145
O4—H4⋯N2 0.82 1.82 2.540 (2) 146
C12—H12⋯O3i 0.93 2.68 3.588 (3) 166
C1—H1BCg1ii 0.97 2.78 3.480 (2) 129
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) x+1, y, z+1. Cg1 is the centroid of the C6–C15 ring.

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Schiff bases are compounds containing the azomethine group, –R,R'C=N, prepared by the condensation reaction of a primary amine with active carbonyl group. Due to the versatility of their steric and electronic properties (Yamada, 1999), which can be fine tuned by choosing the appropriate amine and the substituents on an aromatic ring of the carbonyl compound, Schiff base bisoxime compounds have gained increased interest in the field of coordination chemistry (Dong et al., 2008a; He et al., 2008). As a part of our ongoing research (Dong et al., 2006; Duan et al., 2007), the synthesis and crystal structure of the title compound was reported (Fig. 1).

The molecule of the title compound lies across a crystallographic inversion centre (symmetry code: -x, -y, -z) and adopts an L-shaped configuration. This structure is not similar to what was observed in our previously reported series oxime compounds containing four-methene bridge, which always adopt a V-shaped configurations (Dong et al., 2006; Duan et al., 2007; Dong et al., 2008a; Dong & Duan, 2008; Dong et al., 2008b; Dong et al., 2008d; Dong et al., 2008c; He et al., 2008). Within the molecule, the dihedral angle between the plane of oxime functional groups and naphthalene ring is 8.93 (3)° for C6—C15 ring and O1—N1—C5, 5.30 (3)° for C18—C27 ring and O2—N2—C17, respectively. And the two naphthalene units are approximately vertical with the dihedral angle of 80.24 (5)°. The two intramolecular hydrogen bonds, O3—H3···N1 and O4—H4···N2,generate S(6) ring motifs helping to the stabilization of the title molecule.

In the crystal structure, the crystals are held together by an intermolecular C—H···π interaction and C12—H12···O3 hydrogen bonds between the phenolic-oxygen atom and the hydrogen of the naphthalene ring, in which the C1—H1B···π centroid separations are equal 2.782 Å involving the naphthalene ring C6—C15 (centroid, Cg1). In addition, the adjacent aromatic rings are further linked by the intermolecular ππ stacking interactions [centroid-to-centroid distance = 3.596 (4) Å]. Thus, every title compound molecule links five other molecules into an infinite crosslinked layer supramolecular structure via intermolecular C—H···O hydrogen bonds, C—H···π and ππ stacking interactions (Fig. 2).

Related literature top

For the steric and electronic properties of Schiff bases, see: Yamada (1999). For background to this strudy, see: Dong et al. (2006). For related structures, see: Dong & Duan (2008); Dong et al. (2008a,b,c,d); Duan et al. (2007); He et al. (2008). Cg1 is the centroid of the C6–C15 ring.

Experimental top

2,2'-[(Propane-1,3-diyldioxy)bis(nitriloethylidyne)]dinaphthol was synthesized according to an analogous method reported earlier (Dong et al., 2008 e). To an ethanol solution (5 ml) of 2-acetyl-1-naphthol (388.5 mg, 2.06 mmol) was added dropwise an ethanol solution (3 ml) of 1,3-bis(aminooxy)propane (109.7 mg, 1.03 mmol). The mixture solution was stirred at 328–333 K for 72 h. After cooling to room temperature, the precipitate was filtered off, and washed successively three times with ethanol. The product was dried in vacuo and purified by recrystallization from ethanol to yield 320.4 mg (Yield, 70.0%) of powder; m.p. 439–441 K. Colorless block-like single crystals suitable for X-ray diffraction studies were obtained by slow evaporation from a solution of ethyl acetate of 2,2'-[(propane-1,3-diyldioxy)bis(nitriloethylidyne)]dinaphthol at room temperature for about one month. Anal. Calcd. for C27H26N2O4: C, 73.28; H, 5.92; N, 6.33; Found: C, 73.25; H, 5.97; N, 6.29.

Refinement top

Non-H atoms were refined anisotropically. H atoms were treated as riding atoms with distances C—H = 0.97 (CH2), C—H = 0.96 (CH3), 0.93 Å (CH), 0.82 Å (OH), and Uiso(H) = 1.2 Ueq(C) and 1.5 Ueq(O).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with atom numbering scheme. Displacement ellipsoids for non-hydrogen atoms are drawn at the 30% probability level.
[Figure 2] Fig. 2. Part of the supramolecular structure of the title compound. intra- and intermolecular hydrogen bonds, C—H···π interaction and ππ stacking interactions are shown as dashed lines.
2,2'-[1,1'-(Propane-1,3-diyldioxydinitrilo)diethylidyne]di-1-naphthol top
Crystal data top
C27H26N2O4Z = 2
Mr = 442.50F(000) = 468
Triclinic, P1Dx = 1.313 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.4411 (10) ÅCell parameters from 1962 reflections
b = 8.8911 (16) Åθ = 2.3–26.3°
c = 18.106 (2) ŵ = 0.09 mm1
α = 100.645 (1)°T = 298 K
β = 94.331 (1)°Block-like, colorless
γ = 106.329 (2)°0.50 × 0.42 × 0.37 mm
V = 1119.4 (3) Å3
Data collection top
Siemens SMART 1000 CCD area-detector
diffractometer
3876 independent reflections
Radiation source: fine-focus sealed tube2325 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ϕ and ω scansθmax = 25.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 68
Tmin = 0.957, Tmax = 0.968k = 1010
5800 measured reflectionsl = 2021
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.145H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0669P)2 + 0.1652P]
where P = (Fo2 + 2Fc2)/3
3876 reflections(Δ/σ)max < 0.001
298 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C27H26N2O4γ = 106.329 (2)°
Mr = 442.50V = 1119.4 (3) Å3
Triclinic, P1Z = 2
a = 7.4411 (10) ÅMo Kα radiation
b = 8.8911 (16) ŵ = 0.09 mm1
c = 18.106 (2) ÅT = 298 K
α = 100.645 (1)°0.50 × 0.42 × 0.37 mm
β = 94.331 (1)°
Data collection top
Siemens SMART 1000 CCD area-detector
diffractometer
3876 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2325 reflections with I > 2σ(I)
Tmin = 0.957, Tmax = 0.968Rint = 0.025
5800 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.145H-atom parameters constrained
S = 1.04Δρmax = 0.22 e Å3
3876 reflectionsΔρmin = 0.22 e Å3
298 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.4304 (3)0.3291 (2)0.39356 (10)0.0472 (5)
N20.5352 (3)0.4359 (2)0.09736 (10)0.0490 (5)
O10.3227 (2)0.35088 (19)0.33130 (9)0.0531 (5)
O20.6102 (2)0.55995 (19)0.16190 (9)0.0568 (5)
O30.7381 (2)0.38979 (19)0.48069 (9)0.0567 (5)
H30.66930.39900.44530.085*
O40.2690 (2)0.2606 (2)0.00541 (9)0.0589 (5)
H40.31760.32920.03320.088*
C10.4460 (3)0.4646 (3)0.29743 (12)0.0444 (6)
H1A0.55040.42640.28220.053*
H1B0.49710.56630.33360.053*
C20.3361 (3)0.4864 (3)0.22958 (12)0.0494 (6)
H2A0.23000.52160.24510.059*
H2B0.28640.38430.19360.059*
C30.4578 (4)0.6083 (3)0.19140 (13)0.0557 (7)
H3A0.37950.62530.15030.067*
H3B0.50880.70970.22780.067*
C40.1200 (3)0.1930 (3)0.42415 (14)0.0608 (7)
H4A0.07460.24440.38780.091*
H4B0.07180.21840.47100.091*
H4C0.07790.07890.40520.091*
C50.3322 (3)0.2511 (2)0.43736 (12)0.0421 (5)
C60.6336 (3)0.2932 (2)0.52118 (12)0.0409 (5)
C70.4391 (3)0.2236 (2)0.50250 (11)0.0385 (5)
C80.3456 (3)0.1201 (3)0.54803 (13)0.0488 (6)
H80.21560.07250.53660.059*
C90.4393 (4)0.0885 (3)0.60760 (13)0.0510 (6)
H90.37300.01890.63560.061*
C100.6365 (3)0.1598 (3)0.62776 (12)0.0445 (6)
C110.7339 (3)0.2654 (2)0.58449 (12)0.0413 (5)
C120.9311 (3)0.3417 (3)0.60585 (14)0.0552 (7)
H120.99720.41180.57810.066*
C131.0230 (4)0.3126 (3)0.66666 (16)0.0673 (8)
H131.15200.36360.68030.081*
C140.9279 (4)0.2076 (3)0.70901 (16)0.0667 (8)
H140.99330.18880.75040.080*
C150.7397 (4)0.1326 (3)0.69001 (14)0.0585 (7)
H150.67770.06210.71850.070*
C160.8658 (4)0.4430 (3)0.09754 (15)0.0681 (8)
H16A0.88290.51870.14470.102*
H16B0.93500.49520.06200.102*
H16C0.91120.35570.10580.102*
C170.6600 (3)0.3798 (3)0.06659 (12)0.0449 (6)
C180.4008 (3)0.1992 (3)0.03454 (12)0.0419 (5)
C190.5894 (3)0.2506 (3)0.00192 (12)0.0419 (5)
C200.7126 (3)0.1727 (3)0.03704 (14)0.0518 (6)
H200.83900.20470.01610.062*
C210.6529 (3)0.0533 (3)0.10000 (14)0.0552 (6)
H210.73820.00440.12090.066*
C220.4635 (3)0.0022 (3)0.13423 (13)0.0460 (6)
C230.3358 (3)0.0756 (3)0.10137 (12)0.0422 (5)
C240.1464 (4)0.0254 (3)0.13600 (14)0.0582 (7)
H240.06120.07390.11470.070*
C250.0862 (4)0.0921 (3)0.19974 (16)0.0677 (8)
H250.03930.12370.22170.081*
C260.2131 (4)0.1659 (3)0.23247 (15)0.0669 (8)
H260.17150.24670.27610.080*
C270.3962 (4)0.1200 (3)0.20072 (14)0.0604 (7)
H270.47920.16970.22310.072*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0453 (12)0.0502 (11)0.0435 (11)0.0087 (9)0.0039 (9)0.0134 (9)
N20.0551 (13)0.0511 (12)0.0396 (11)0.0148 (10)0.0066 (10)0.0086 (9)
O10.0478 (10)0.0605 (10)0.0468 (9)0.0058 (8)0.0015 (8)0.0198 (8)
O20.0626 (11)0.0590 (11)0.0434 (10)0.0119 (9)0.0087 (8)0.0069 (8)
O30.0413 (9)0.0685 (11)0.0573 (10)0.0017 (8)0.0116 (8)0.0277 (9)
O40.0453 (10)0.0706 (12)0.0605 (11)0.0237 (9)0.0085 (8)0.0031 (9)
C10.0471 (14)0.0396 (12)0.0447 (13)0.0090 (11)0.0113 (11)0.0087 (10)
C20.0585 (16)0.0495 (14)0.0412 (13)0.0188 (12)0.0078 (11)0.0081 (11)
C30.0747 (19)0.0512 (15)0.0442 (14)0.0223 (13)0.0116 (13)0.0113 (11)
C40.0441 (15)0.0763 (18)0.0544 (16)0.0052 (13)0.0058 (12)0.0158 (14)
C50.0420 (13)0.0375 (12)0.0426 (13)0.0075 (10)0.0103 (11)0.0034 (10)
C60.0445 (13)0.0351 (12)0.0408 (13)0.0067 (10)0.0145 (11)0.0071 (10)
C70.0403 (13)0.0343 (11)0.0376 (12)0.0070 (10)0.0084 (10)0.0053 (9)
C80.0430 (13)0.0431 (13)0.0539 (15)0.0020 (11)0.0112 (12)0.0102 (11)
C90.0600 (16)0.0413 (13)0.0504 (15)0.0067 (12)0.0157 (13)0.0164 (11)
C100.0529 (15)0.0363 (12)0.0448 (14)0.0150 (11)0.0103 (12)0.0054 (10)
C110.0424 (13)0.0393 (12)0.0417 (13)0.0127 (10)0.0088 (10)0.0052 (10)
C120.0428 (14)0.0619 (16)0.0589 (16)0.0134 (12)0.0089 (12)0.0107 (13)
C130.0509 (16)0.0782 (19)0.0696 (19)0.0214 (14)0.0028 (14)0.0092 (16)
C140.076 (2)0.0709 (18)0.0596 (17)0.0337 (16)0.0010 (15)0.0152 (14)
C150.0749 (19)0.0511 (15)0.0553 (16)0.0245 (14)0.0129 (14)0.0161 (12)
C160.0544 (17)0.083 (2)0.0582 (17)0.0127 (14)0.0003 (13)0.0089 (14)
C170.0450 (14)0.0517 (14)0.0406 (13)0.0115 (11)0.0052 (11)0.0213 (11)
C180.0390 (13)0.0483 (13)0.0447 (13)0.0163 (11)0.0123 (11)0.0180 (11)
C190.0415 (13)0.0496 (13)0.0389 (13)0.0142 (11)0.0081 (10)0.0187 (10)
C200.0400 (14)0.0594 (16)0.0589 (16)0.0165 (12)0.0073 (12)0.0170 (13)
C210.0497 (16)0.0591 (16)0.0639 (17)0.0251 (13)0.0170 (13)0.0137 (13)
C220.0502 (15)0.0424 (13)0.0500 (14)0.0145 (11)0.0118 (12)0.0182 (11)
C230.0428 (13)0.0426 (13)0.0447 (13)0.0129 (10)0.0072 (11)0.0175 (10)
C240.0511 (16)0.0580 (16)0.0629 (17)0.0149 (13)0.0031 (13)0.0110 (13)
C250.0582 (17)0.0597 (17)0.074 (2)0.0070 (14)0.0095 (15)0.0113 (15)
C260.083 (2)0.0475 (15)0.0576 (17)0.0083 (15)0.0031 (16)0.0039 (13)
C270.074 (2)0.0469 (15)0.0600 (17)0.0194 (14)0.0116 (15)0.0090 (12)
Geometric parameters (Å, º) top
N1—C51.284 (3)C10—C111.413 (3)
N1—O11.408 (2)C11—C121.422 (3)
N2—C171.287 (3)C12—C131.356 (3)
N2—O21.404 (2)C12—H120.9300
O1—C11.426 (2)C13—C141.391 (4)
O2—C31.427 (3)C13—H130.9300
O3—C61.350 (2)C14—C151.357 (4)
O3—H30.8200C14—H140.9300
O4—C181.345 (3)C15—H150.9300
O4—H40.8200C16—C171.498 (3)
C1—C21.497 (3)C16—H16A0.9600
C1—H1A0.9700C16—H16B0.9600
C1—H1B0.9700C16—H16C0.9600
C2—C31.514 (3)C17—C191.473 (3)
C2—H2A0.9700C18—C191.393 (3)
C2—H2B0.9700C18—C231.424 (3)
C3—H3A0.9700C19—C201.417 (3)
C3—H3B0.9700C20—C211.355 (3)
C4—C51.502 (3)C20—H200.9300
C4—H4A0.9600C21—C221.408 (3)
C4—H4B0.9600C21—H210.9300
C4—H4C0.9600C22—C231.405 (3)
C5—C71.469 (3)C22—C271.414 (3)
C6—C71.392 (3)C23—C241.410 (3)
C6—C111.418 (3)C24—C251.356 (3)
C7—C81.420 (3)C24—H240.9300
C8—C91.356 (3)C25—C261.401 (4)
C8—H80.9300C25—H250.9300
C9—C101.414 (3)C26—C271.355 (4)
C9—H90.9300C26—H260.9300
C10—C151.412 (3)C27—H270.9300
C5—N1—O1114.40 (18)C13—C12—C11120.2 (2)
C17—N2—O2113.84 (19)C13—C12—H12119.9
N1—O1—C1107.51 (15)C11—C12—H12119.9
N2—O2—C3108.21 (17)C12—C13—C14121.1 (3)
C6—O3—H3109.5C12—C13—H13119.4
C18—O4—H4109.5C14—C13—H13119.4
O1—C1—C2108.60 (18)C15—C14—C13120.1 (3)
O1—C1—H1A110.0C15—C14—H14119.9
C2—C1—H1A110.0C13—C14—H14119.9
O1—C1—H1B110.0C14—C15—C10121.1 (2)
C2—C1—H1B110.0C14—C15—H15119.4
H1A—C1—H1B108.4C10—C15—H15119.4
C1—C2—C3111.5 (2)C17—C16—H16A109.5
C1—C2—H2A109.3C17—C16—H16B109.5
C3—C2—H2A109.3H16A—C16—H16B109.5
C1—C2—H2B109.3C17—C16—H16C109.5
C3—C2—H2B109.3H16A—C16—H16C109.5
H2A—C2—H2B108.0H16B—C16—H16C109.5
O2—C3—C2112.91 (19)N2—C17—C19116.1 (2)
O2—C3—H3A109.0N2—C17—C16122.3 (2)
C2—C3—H3A109.0C19—C17—C16121.5 (2)
O2—C3—H3B109.0O4—C18—C19123.0 (2)
C2—C3—H3B109.0O4—C18—C23115.8 (2)
H3A—C3—H3B107.8C19—C18—C23121.2 (2)
C5—C4—H4A109.5C18—C19—C20117.3 (2)
C5—C4—H4B109.5C18—C19—C17122.1 (2)
H4A—C4—H4B109.5C20—C19—C17120.6 (2)
C5—C4—H4C109.5C21—C20—C19122.4 (2)
H4A—C4—H4C109.5C21—C20—H20118.8
H4B—C4—H4C109.5C19—C20—H20118.8
N1—C5—C7116.2 (2)C20—C21—C22120.9 (2)
N1—C5—C4122.4 (2)C20—C21—H21119.6
C7—C5—C4121.34 (19)C22—C21—H21119.6
O3—C6—C7122.7 (2)C23—C22—C21118.9 (2)
O3—C6—C11116.03 (19)C23—C22—C27118.5 (2)
C7—C6—C11121.28 (19)C21—C22—C27122.6 (2)
C6—C7—C8117.5 (2)C22—C23—C24118.9 (2)
C6—C7—C5122.24 (19)C22—C23—C18119.4 (2)
C8—C7—C5120.3 (2)C24—C23—C18121.7 (2)
C9—C8—C7122.2 (2)C25—C24—C23121.2 (3)
C9—C8—H8118.9C25—C24—H24119.4
C7—C8—H8118.9C23—C24—H24119.4
C8—C9—C10120.9 (2)C24—C25—C26120.0 (3)
C8—C9—H9119.5C24—C25—H25120.0
C10—C9—H9119.5C26—C25—H25120.0
C15—C10—C11118.6 (2)C27—C26—C25120.2 (2)
C15—C10—C9123.0 (2)C27—C26—H26119.9
C11—C10—C9118.4 (2)C25—C26—H26119.9
C10—C11—C6119.6 (2)C26—C27—C22121.2 (3)
C10—C11—C12118.8 (2)C26—C27—H27119.4
C6—C11—C12121.6 (2)C22—C27—H27119.4
C5—N1—O1—C1168.65 (19)C13—C14—C15—C100.5 (4)
C17—N2—O2—C3178.59 (18)C11—C10—C15—C141.0 (4)
N1—O1—C1—C2178.37 (17)C9—C10—C15—C14177.7 (2)
O1—C1—C2—C3178.99 (18)O2—N2—C17—C19179.28 (16)
N2—O2—C3—C272.6 (2)O2—N2—C17—C160.2 (3)
C1—C2—C3—O263.2 (3)O4—C18—C19—C20178.18 (19)
O1—N1—C5—C7179.14 (16)C23—C18—C19—C201.3 (3)
O1—N1—C5—C41.8 (3)O4—C18—C19—C171.4 (3)
O3—C6—C7—C8178.1 (2)C23—C18—C19—C17179.14 (19)
C11—C6—C7—C81.7 (3)N2—C17—C19—C184.1 (3)
O3—C6—C7—C50.5 (3)C16—C17—C19—C18175.1 (2)
C11—C6—C7—C5179.8 (2)N2—C17—C19—C20175.5 (2)
N1—C5—C7—C67.2 (3)C16—C17—C19—C205.4 (3)
C4—C5—C7—C6171.8 (2)C18—C19—C20—C210.3 (3)
N1—C5—C7—C8171.3 (2)C17—C19—C20—C21179.9 (2)
C4—C5—C7—C89.7 (3)C19—C20—C21—C220.8 (4)
C6—C7—C8—C90.1 (3)C20—C21—C22—C230.9 (3)
C5—C7—C8—C9178.5 (2)C20—C21—C22—C27178.8 (2)
C7—C8—C9—C100.8 (4)C21—C22—C23—C24179.4 (2)
C8—C9—C10—C15178.9 (2)C27—C22—C23—C240.3 (3)
C8—C9—C10—C110.2 (3)C21—C22—C23—C180.1 (3)
C15—C10—C11—C6179.3 (2)C27—C22—C23—C18179.8 (2)
C9—C10—C11—C61.9 (3)O4—C18—C23—C22178.33 (19)
C15—C10—C11—C120.8 (3)C19—C18—C23—C221.2 (3)
C9—C10—C11—C12178.0 (2)O4—C18—C23—C242.2 (3)
O3—C6—C11—C10177.05 (19)C19—C18—C23—C24178.3 (2)
C7—C6—C11—C102.7 (3)C22—C23—C24—C250.3 (3)
O3—C6—C11—C123.1 (3)C18—C23—C24—C25179.8 (2)
C7—C6—C11—C12177.2 (2)C23—C24—C25—C260.1 (4)
C10—C11—C12—C130.2 (3)C24—C25—C26—C270.1 (4)
C6—C11—C12—C13179.9 (2)C25—C26—C27—C220.2 (4)
C11—C12—C13—C140.3 (4)C23—C22—C27—C260.1 (3)
C12—C13—C14—C150.2 (4)C21—C22—C27—C26179.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···N10.821.832.543 (2)145
O4—H4···N20.821.822.540 (2)146
C12—H12···O3i0.932.683.588 (3)166
C1—H1B···Cg1ii0.972.783.480 (2)129
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC27H26N2O4
Mr442.50
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)7.4411 (10), 8.8911 (16), 18.106 (2)
α, β, γ (°)100.645 (1), 94.331 (1), 106.329 (2)
V3)1119.4 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.50 × 0.42 × 0.37
Data collection
DiffractometerSiemens SMART 1000 CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.957, 0.968
No. of measured, independent and
observed [I > 2σ(I)] reflections
5800, 3876, 2325
Rint0.025
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.145, 1.04
No. of reflections3876
No. of parameters298
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.22

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···N10.821.832.543 (2)145.2
O4—H4···N20.821.822.540 (2)145.6
C12—H12···O3i0.932.683.588 (3)165.8
C1—H1B···Cg1ii0.9702.7823.480 (2)129.41
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y, z+1.
 

Acknowledgements

The authors acknowledge finanicial support from the `Jing Lan' Talent Engineering Funds of Lanzhou Jiaotong University.

References

First citationDong, W.-K., Ding, Y.-J., Luo, Y.-L., Lv, Z.-W. & Wang, L. (2008a). Acta Cryst. E64, o1324.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDong, W. K. & Duan, J. G. (2008). J. Coord. Chem. 61, 781–788.  Web of Science CSD CrossRef CAS Google Scholar
First citationDong, W. K., Feng, J. H. & Yang, X. Q. (2006). Z. Kristallogr. New Cryst. Struct. 221, 447–448.  CAS Google Scholar
First citationDong, W.-K., He, X.-N., Guan, Y.-H., Xu, L. & Ren, Z.-L. (2008b). Acta Cryst. E64, o1810.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDong, W.-K., He, X.-N., Zhong, J.-K., Chen, X. & Yu, T.-Z. (2008c). Acta Cryst. E64, o1098.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDong, W. K., Shi, J. Y., Zhong, J. K., Sun, Y. X. & Duan, J. G. (2008d). Struct. Chem. 19, 95–99.  Web of Science CSD CrossRef CAS Google Scholar
First citationDuan, J.-G., Dong, C.-M., Shi, J.-Y., Wu, L. & Dong, W.-K. (2007). Acta Cryst. E63, o2704–o2705.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHe, X.-N., Dong, W.-K., Bai, W.-J., Yan, H.-B. & Lv, Z.-W. (2008). Acta Cryst. E64, o1532.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationYamada, S. (1999). Coord. Chem. Rev. 190–192, 537–555.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds