organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­methyl bi­phenyl-4,4′-di­carboxyl­ate

aInstitut für Anorganische Chemie, RWTH Aachen, Landoltweg 1, 52074 Aachen, Germany
*Correspondence e-mail: ullrich.englert@ac.rwth-aachen.de

(Received 17 June 2009; accepted 19 June 2009; online 24 June 2009)

The asymmetric unit of the title compound, C16H14O4, consists of one half-mol­ecule of an essentially planar biphenyl­dicarboxylic acid ester, with the complete molecule generated by an inversion centre. The maximum deviation from a least-squares plane through all non-H atoms occurs for the peripheric methyl groups and amounts to 0.124 (2) Å. The solid represents a typical mol­ecular crystal without classical hydrogen bonds. The shortest inter­molecular contacts do not differ significantly from the sum of the van der Waals radii of the atoms involved.

Related literature

For standard van der Waals radii, see: Bondi (1964[Bondi, A. (1964). J. Phys. Chem. 68, 441-451.]). For related structures, see: Li & Brisse (1994[Li, X. & Brisse, F. (1994). Macromolecules, 27, 7718-7724.]); Marsh & Clemente (2007[Marsh, R. E. & Clemente, D. A. (2007). Inorg. Chim. Acta, 360, 4017-4024.]); Tashiro et al. (1990[Tashiro, K., Hou, J., Kobayashi, M. & Innoue, T. (1990). J. Am. Chem. Soc. 112, 8273-8279.]).

[Scheme 1]

Experimental

Crystal data
  • C16H14O4

  • Mr = 270.27

  • Orthorhombic, P b c a

  • a = 7.1358 (9) Å

  • b = 5.9752 (8) Å

  • c = 29.709 (4) Å

  • V = 1266.7 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 100 K

  • 0.11 × 0.06 × 0.01 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: none

  • 14661 measured reflections

  • 1585 independent reflections

  • 1242 reflections with I > 2σ(I)

  • Rint = 0.061

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.142

  • S = 1.08

  • 1585 reflections

  • 92 parameters

  • H-atom parameters constrained

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.19 e Å−3

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 1999[Bruker (1999). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In the context of a study devoted to fruit esters, we attempted to enclathrate these compounds as guests into 4,4'-biphenylcarboxylic acid dimethylester as the host structure. In one of these experiments, the potential host was dissolved in boiling ethylacetate and slowly recrystallized. The platelet-shaped crystals obtained did not include any guest molecule but rather enabled us to study the hitherto unknown crystal structure of the pure title compound. Esters of the same acid had been structurally characterized as derivatives of aliphatic (Li & Brisse, 1994) and aromatic alcohols (Tashiro et al., 1990; Marsh & Clemente, 2007). Interesting degrees of freedom in our structure are associated with rotation around the central biphenyl axis and the single bond between the carboxylic C atom C7 (Fig. 1) and the aromatic ring. The former is fixed to planarity for symmetry reasons because the molecules occupy inversion centers in space group Pbca. The 1,6 contact between the ortho H atoms next to the central C1—C1i bond is therefore rather short and amounts to 2.02 Å. Interestingly, Tashiro and coworkers (Tashiro et al., 1990) have found both coplanar and non-coplanar biphenyl systems for two different crystalline modifications of the same compound. The second degree of freedom results in a rather small dihedral angle of 6.37 (10) ° subtended by least-squares planes through C1—C6 on the one and C7, C8, O1 and O2 on the other hand. The precise molecular symmetry is therefore Ci, with only small deviations from the supergroup C2 h. The packing of the molecules reveals a herringbone-like structure as seen in Fig. 2, in which the methyl groups can avoid each other. When standard van-der-Waals radii (C 1.70, H 1.20, O 1.52 Å, Bondi 1964) are taken into account, an overall packing coefficient of 74.3% is calculated (Spek 2009).

Related literature top

For standard van der Waals radii, see: Bondi (1964). For related structures, see: Li & Brisse (1994); Marsh & Clemente (2007); Tashiro et al. (1990).

Experimental top

About 300 mg (1.1 mmol) of 4,4'-Biphenylcarboxylic acid dimethylester was dissolved in 20 ml of boiling ethylacetate (350 K). The solution was refluxed for about 15 minutes and after hot filtration very slowly (15 h) cooled to 320 K. Several hours later, ca 50 mg of platelet-shaped colourless crystals were recovered by filtration.

Refinement top

Hydrogen atoms were included as riding in standard geometry (Caryl—H 0.95 Å, Cmethyl—H 0.98 Å).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 1999); data reduction: SAINT-Plus (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. : PLATON (Spek, 2009) plot with displacement ellipsoids at 90% probability; H atoms are not shown. Symmetry code (i) -x + 1,-y,-z.
[Figure 2] Fig. 2. : View of the herringbone like packing (Spek, 2009).
Dimethyl biphenyl-4,4'-dicarboxylate top
Crystal data top
C16H14O4F(000) = 568
Mr = 270.27Dx = 1.417 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 2384 reflections
a = 7.1358 (9) Åθ = 2.7–27.9°
b = 5.9752 (8) ŵ = 0.10 mm1
c = 29.709 (4) ÅT = 100 K
V = 1266.7 (3) Å3Plate, colourless
Z = 40.11 × 0.06 × 0.01 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
1242 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.061
Graphite monochromatorθmax = 28.4°, θmin = 2.7°
ω scansh = 99
14661 measured reflectionsk = 87
1585 independent reflectionsl = 3939
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.142H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.07P)2 + 0.4P]
where P = (Fo2 + 2Fc2)/3
1585 reflections(Δ/σ)max < 0.001
92 parametersΔρmax = 0.46 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C16H14O4V = 1266.7 (3) Å3
Mr = 270.27Z = 4
Orthorhombic, PbcaMo Kα radiation
a = 7.1358 (9) ŵ = 0.10 mm1
b = 5.9752 (8) ÅT = 100 K
c = 29.709 (4) Å0.11 × 0.06 × 0.01 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
1242 reflections with I > 2σ(I)
14661 measured reflectionsRint = 0.061
1585 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.142H-atom parameters constrained
S = 1.08Δρmax = 0.46 e Å3
1585 reflectionsΔρmin = 0.19 e Å3
92 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.43822 (17)0.51545 (19)0.16205 (4)0.0236 (3)
O20.55690 (18)0.1972 (2)0.19068 (4)0.0299 (3)
C10.49919 (19)0.0457 (2)0.02340 (4)0.0127 (3)
C20.42227 (19)0.2566 (2)0.03299 (5)0.0152 (3)
H20.37060.34280.00920.018*
C30.41984 (19)0.3421 (2)0.07637 (5)0.0155 (3)
H30.36750.48570.08190.019*
C40.49395 (19)0.2179 (3)0.11195 (5)0.0153 (3)
C50.5698 (2)0.0075 (2)0.10315 (5)0.0171 (3)
H50.61940.07910.12720.021*
C60.5736 (2)0.0766 (2)0.05963 (5)0.0165 (3)
H60.62740.21950.05420.020*
C70.4997 (2)0.3039 (3)0.15895 (5)0.0178 (3)
C80.4498 (3)0.6139 (3)0.20658 (6)0.0271 (4)
H8A0.36760.53180.22720.041*
H8B0.41040.77080.20520.041*
H8C0.57930.60550.21740.041*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0335 (7)0.0195 (6)0.0177 (6)0.0065 (5)0.0029 (5)0.0049 (4)
O20.0465 (8)0.0260 (7)0.0172 (6)0.0084 (6)0.0047 (5)0.0001 (5)
C10.0095 (6)0.0129 (7)0.0157 (7)0.0016 (5)0.0015 (5)0.0009 (5)
C20.0142 (7)0.0144 (7)0.0170 (7)0.0016 (5)0.0017 (5)0.0024 (5)
C30.0129 (7)0.0133 (7)0.0204 (8)0.0013 (5)0.0006 (5)0.0008 (5)
C40.0142 (7)0.0166 (7)0.0152 (7)0.0012 (6)0.0013 (5)0.0003 (5)
C50.0170 (8)0.0168 (7)0.0174 (7)0.0021 (6)0.0009 (6)0.0023 (5)
C60.0172 (7)0.0131 (7)0.0193 (7)0.0028 (5)0.0009 (6)0.0005 (5)
C70.0180 (8)0.0181 (8)0.0173 (7)0.0009 (6)0.0007 (6)0.0000 (5)
C80.0343 (10)0.0261 (9)0.0210 (8)0.0033 (7)0.0019 (7)0.0092 (7)
Geometric parameters (Å, º) top
O1—C71.3409 (19)C3—H30.95
O1—C81.4502 (19)C4—C51.394 (2)
O2—C71.2093 (18)C4—C71.488 (2)
C1—C21.4035 (19)C5—C61.387 (2)
C1—C61.4052 (19)C5—H50.95
C1—C1i1.494 (3)C6—H60.95
C2—C31.386 (2)C8—H8A0.98
C2—H20.95C8—H8B0.98
C3—C41.395 (2)C8—H8C0.98
C7—O1—C8115.23 (12)C6—C5—H5119.7
C2—C1—C6117.32 (13)C4—C5—H5119.7
C2—C1—C1i121.35 (15)C5—C6—C1121.21 (13)
C6—C1—C1i121.33 (16)C5—C6—H6119.4
C3—C2—C1121.64 (13)C1—C6—H6119.4
C3—C2—H2119.2O2—C7—O1123.63 (14)
C1—C2—H2119.2O2—C7—C4123.96 (14)
C2—C3—C4120.23 (13)O1—C7—C4112.39 (13)
C2—C3—H3119.9O1—C8—H8A109.5
C4—C3—H3119.9O1—C8—H8B109.5
C5—C4—C3118.99 (14)H8A—C8—H8B109.5
C5—C4—C7118.47 (13)O1—C8—H8C109.5
C3—C4—C7122.52 (13)H8A—C8—H8C109.5
C6—C5—C4120.60 (14)H8B—C8—H8C109.5
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC16H14O4
Mr270.27
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)100
a, b, c (Å)7.1358 (9), 5.9752 (8), 29.709 (4)
V3)1266.7 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.11 × 0.06 × 0.01
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
14661, 1585, 1242
Rint0.061
(sin θ/λ)max1)0.669
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.142, 1.08
No. of reflections1585
No. of parameters92
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.46, 0.19

Computer programs: SMART (Bruker, 2001), SAINT-Plus (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek 2009).

 

References

First citationBondi, A. (1964). J. Phys. Chem. 68, 441–451.  CrossRef CAS Web of Science Google Scholar
First citationBruker (1999). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLi, X. & Brisse, F. (1994). Macromolecules, 27, 7718–7724.  CSD CrossRef CAS Web of Science Google Scholar
First citationMarsh, R. E. & Clemente, D. A. (2007). Inorg. Chim. Acta, 360, 4017–4024.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTashiro, K., Hou, J., Kobayashi, M. & Innoue, T. (1990). J. Am. Chem. Soc. 112, 8273–8279.  CSD CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds