organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-(Hy­droxy­meth­yl)phenol

aDepartment of Chemistry, State Key Laboratory of Applied Organic Chemistry, College of Chemical Engineering, Lanzhou University, Lanzhou 730000, People's Republic of China, bState Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093, People's Republic of China, and cCollege of Chemistry and Chemical Engineering and State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, People's Republic of China
*Correspondence e-mail: liuws@lzu.edu.cn

(Received 15 May 2009; accepted 12 June 2009; online 27 June 2009)

In the mol­ecule of the title compound, C7H8O2, the phenol O and hydroxy­methyl C atoms lie in the ring plane [deviations of −0.015 (3) and and 0.013 (3) Å, respectively]. In the crystal structure, inter­molecular O—H⋯O hydrogen bonds link mol­ecules into a network. A weak C—H⋯π inter­action is also found.

Related literature

For a related structure, see: Tale et al. (2003[Tale, R.-H., Patil, K.-M. & Dapurkar, S.-E. (2003). Tetrahedron Lett. 44, 3427-3428.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C7H8O2

  • Mr = 124.13

  • Orthorhombic, P n a 21

  • a = 9.524 (3) Å

  • b = 11.006 (4) Å

  • c = 5.942 (2) Å

  • V = 622.9 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 298 K

  • 0.65 × 0.62 × 0.55 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.940, Tmax = 0.949

  • 3751 measured reflections

  • 1414 independent reflections

  • 1200 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.076

  • S = 1.00

  • 1414 reflections

  • 84 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2i 0.82 1.86 2.668 (3) 169
O2—H2⋯O1ii 0.82 2.01 2.817 (3) 167
C1—H1BCg1iii 0.97 2.77 3.694 (3) 159
Symmetry codes: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-1]; (iii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z+{\script{1\over 2}}]. Cg1 is the centroid of the C2–C7 ring.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL and PLATON.

Supporting information


Comment top

The reduction of carboxylic acids to alcohols is a key synthetic transformation in organic chemistry. There are several ways to bring about this transformation. It is conventionally carried out using sodium borohydride as a reducing agent. We report herein the crystal structure of the title compound.

In the molecule of the title compound (Fig 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges. Ring A (C2-C7) is, of course, planar. Atoms O1, O2 and C1 are -0.015 (3), 1.279 (3) and 0.013 (3) Å away from the ring plane, respectively.

In the crystal structure, intermolecular O-H···O hydrogen bonds (Table 1) link the molecules into a network, in which they may be effective in the stabilization of the structure. There also exists a weak C—H···π interaction (Table 1).

Related literature top

For a related structure, see: Tale et al. (2003). For bond-length data, see: Allen et al. (1987). Cg1 is the centroid of the C2–C7 ring.

Experimental top

The title compound was prepared by reducing corresponding carboxylic acid using sodium borohydride in THF solution according to a literatue method (Tale et al., 2003). Crystals suitable for X-ray analysis were obtained by slow evaporation of an ethyl acetate solution.

Refinement top

H atoms were positioned geometrically, with O-H = 0.82 Å (for OH) and C-H = 0.93 and 0.97 Å for aromatic and methylene H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C,O), where x = 1.5 for OH H and x = 1.2 for all other H atoms. The absolute structure could not be determined reliably, and 605 Friedel pairs were averaged before the last cycle of refinement.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.
4-(Hydroxymethyl)phenol top
Crystal data top
C7H8O2F(000) = 264
Mr = 124.13Dx = 1.324 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 1897 reflections
a = 9.524 (3) Åθ = 2.8–27.9°
b = 11.006 (4) ŵ = 0.10 mm1
c = 5.942 (2) ÅT = 298 K
V = 622.9 (4) Å3Block, colorless
Z = 40.65 × 0.62 × 0.55 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
1414 independent reflections
Radiation source: fine-focus sealed tube1200 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
ϕ and ω scansθmax = 27.8°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 128
Tmin = 0.940, Tmax = 0.949k = 1414
3751 measured reflectionsl = 77
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.076H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0125P)2 + 0.2042P]
where P = (Fo2 + 2Fc2)/3
1414 reflections(Δ/σ)max < 0.001
84 parametersΔρmax = 0.15 e Å3
1 restraintΔρmin = 0.17 e Å3
Crystal data top
C7H8O2V = 622.9 (4) Å3
Mr = 124.13Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 9.524 (3) ŵ = 0.10 mm1
b = 11.006 (4) ÅT = 298 K
c = 5.942 (2) Å0.65 × 0.62 × 0.55 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
1414 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1200 reflections with I > 2σ(I)
Tmin = 0.940, Tmax = 0.949Rint = 0.036
3751 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0351 restraint
wR(F2) = 0.076H-atom parameters constrained
S = 1.00Δρmax = 0.15 e Å3
1414 reflectionsΔρmin = 0.17 e Å3
84 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.65915 (14)0.47478 (11)0.5585 (2)0.0477 (3)
H10.62060.53440.50360.072*
O20.99603 (14)0.15137 (10)0.1224 (3)0.0470 (3)
H21.05420.11830.20370.071*
C11.05125 (18)0.26412 (15)0.0417 (3)0.0422 (4)
H1A1.06960.31800.16750.051*
H1B1.13910.25000.03660.051*
C20.94754 (17)0.32168 (14)0.1149 (3)0.0351 (4)
C30.87551 (17)0.42678 (14)0.0552 (3)0.0367 (4)
H30.89290.46260.08380.044*
C40.77818 (18)0.47925 (15)0.1993 (3)0.0356 (4)
H40.73040.54920.15630.043*
C50.75251 (16)0.42727 (13)0.4065 (3)0.0349 (4)
C60.82324 (18)0.32200 (15)0.4694 (3)0.0406 (4)
H60.80580.28640.60860.049*
C70.91947 (18)0.27084 (15)0.3239 (3)0.0411 (4)
H70.96660.20060.36680.049*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0571 (8)0.0424 (7)0.0437 (8)0.0143 (6)0.0121 (7)0.0079 (6)
O20.0487 (7)0.0391 (6)0.0532 (8)0.0069 (6)0.0148 (6)0.0085 (6)
C10.0361 (9)0.0379 (8)0.0526 (11)0.0041 (7)0.0067 (8)0.0032 (9)
C20.0326 (8)0.0322 (8)0.0404 (10)0.0045 (7)0.0004 (7)0.0027 (7)
C30.0432 (9)0.0326 (8)0.0345 (9)0.0051 (7)0.0014 (8)0.0037 (8)
C40.0412 (9)0.0277 (7)0.0381 (10)0.0003 (7)0.0028 (8)0.0030 (7)
C50.0365 (8)0.0308 (7)0.0374 (9)0.0000 (6)0.0008 (7)0.0008 (7)
C60.0475 (10)0.0382 (9)0.0362 (9)0.0035 (8)0.0012 (8)0.0088 (7)
C70.0425 (9)0.0353 (8)0.0454 (10)0.0079 (7)0.0023 (8)0.0035 (8)
Geometric parameters (Å, º) top
O1—H10.8200C3—H30.9300
O2—H20.8200C4—C51.380 (2)
C1—O21.430 (2)C4—H40.9300
C1—C21.498 (2)C5—O11.371 (2)
C1—H1A0.9700C5—C61.391 (2)
C1—H1B0.9700C6—C71.380 (3)
C2—C71.388 (3)C6—H60.9300
C2—C31.391 (2)C7—H70.9300
C3—C41.388 (2)
C5—O1—H1109.5C2—C3—H3119.4
C1—O2—H2109.5C5—C4—C3119.76 (15)
O2—C1—C2109.44 (13)C5—C4—H4120.1
O2—C1—H1A109.8C3—C4—H4120.1
C2—C1—H1A109.8O1—C5—C4123.00 (14)
O2—C1—H1B109.8O1—C5—C6117.03 (16)
C2—C1—H1B109.8C4—C5—C6119.96 (16)
H1A—C1—H1B108.2C7—C6—C5119.52 (17)
C7—C2—C3117.92 (16)C7—C6—H6120.2
C7—C2—C1120.83 (15)C5—C6—H6120.2
C3—C2—C1121.25 (16)C6—C7—C2121.61 (16)
C4—C3—C2121.22 (17)C6—C7—H7119.2
C4—C3—H3119.4C2—C7—H7119.2
O2—C1—C2—C768.9 (2)C3—C4—C5—C60.6 (2)
O2—C1—C2—C3110.49 (18)O1—C5—C6—C7179.38 (16)
C7—C2—C3—C40.2 (2)C4—C5—C6—C70.4 (3)
C1—C2—C3—C4179.21 (16)C5—C6—C7—C20.2 (3)
C2—C3—C4—C50.5 (2)C3—C2—C7—C60.1 (3)
C3—C4—C5—O1179.21 (15)C1—C2—C7—C6179.37 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.821.862.668 (3)169
O2—H2···O1ii0.822.012.817 (3)167
C1—H1B···Cg1iii0.972.773.694 (3)159
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (ii) x+1/2, y+1/2, z1; (iii) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC7H8O2
Mr124.13
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)298
a, b, c (Å)9.524 (3), 11.006 (4), 5.942 (2)
V3)622.9 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.65 × 0.62 × 0.55
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.940, 0.949
No. of measured, independent and
observed [I > 2σ(I)] reflections
3751, 1414, 1200
Rint0.036
(sin θ/λ)max1)0.656
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.076, 1.00
No. of reflections1414
No. of parameters84
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.17

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.821.862.668 (3)169
O2—H2···O1ii0.822.012.817 (3)167
C1—H1B···Cg1iii0.972.773.694 (3)159
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (ii) x+1/2, y+1/2, z1; (iii) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

The authors thank the National Natural Science Foundation of China (grant Nos. 20771048 and 20621091) for financial support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTale, R.-H., Patil, K.-M. & Dapurkar, S.-E. (2003). Tetrahedron Lett. 44, 3427–3428.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds