metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 7| July 2009| Pages m739-m740

Di­chloridobis(phenanthridine-κN)zinc(II)

aIslamic Azad University, Shahr-e-Rey Branch, Tehran, Iran, bDepartment of Chemistry, Islamic Azad University, Kazerun Branch, Kazerun, Fars, Iran, and cDamghan University of Basic Sciences, School of Chemistry, Damghan, Iran
*Correspondence e-mail: alizadeh@dubs.ac.ir

(Received 20 May 2009; accepted 22 May 2009; online 6 June 2009)

In the mol­ecule of the title compound, [ZnCl2(C13H9N)2], the ZnII atom is four-coordinated in a distorted tetra­hedral configuration by two N atoms from two phenanthridine ligands and by two terminal Cl atoms. The dihedral angle between the planes of the phenanthridine ring systems is 69.92 (3)°. An intra­molecular C—H⋯Cl inter­action results in the formation of a planar five-membered ring, which is oriented at a dihedral angle of 8.32 (3)° with respect to the adjacent phenanthridine ring system. In the crystal structure, ππ contacts between the phenanthridine systems [centroid–centroid distances = 3.839 (2), 3.617 (1) and 3.682 (1) Å] may stabilize the structure. Two weak C—H⋯π inter­actions are also found.

Related literature

For related structures, see: Ahmadi et al. (2008[Ahmadi, R., Kalateh, K., Ebadi, A., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1266.]); Çelik et al. (2004[Çelik, Ö., İde, S., Kurt, M. & Yurdakul, Ş. (2004). Acta Cryst. E60, m1134-m1136.]); Cui et al. (1998[Cui, Y., Long, D., Chen, W. & Huang, J. (1998). Acta Cryst. C54, 1605-1607.]); Gruia et al. (2007[Gruia, L. M., Rochon, F. D. & Beauchamp, A. L. (2007). Inorg. Chim. Acta, 360, 1825-1840.]); Khalighi et al. (2008[Khalighi, A., Ahmadi, R., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1211-m1212.]); Khan & Tuck (1984[Khan, M. A. & Tuck, D. G. (1984). Acta Cryst. C40, 60-62.]); Khavasi et al. (2008[Khavasi, H. R., Abedi, A., Amani, V., Notash, B. & Safari, N. (2008). Polyhedron, 27, 1848-1854.]); Kozhevnikov et al. (2006[Kozhevnikov, D. N., Shabunina, O. V., Kopchuk, D. S., Slepukhin, P. A. & Kozhevnikov, V. N. (2006). Tetrahedron Lett. 47, 7025-7029.]); Liu et al. (2004[Liu, Q. D., Wang, R. & Wang, S. (2004). Dalton Trans. pp. 2073-2079.]); Markowitz et al. (2006[Markowitz, B. M. E., Turnbull, M. M. & Awwadi, F. F. (2006). Acta Cryst. E62, m1278-m1280.]); Musie et al. (2004[Musie, G. T., Li, X. & Powell, D. R. (2004). Acta Cryst. E60, m471-m472.]); Preston & Kennard (1969[Preston, H. S. & Kennard, C. H. L. (1969). J. Chem. Soc. A, pp. 1965-1968.]); Reimann et al. (1966[Reimann, C. W., Block, S. & Perloff, A. (1966). Inorg. Chem. 5, 1185-1189.]); Shen et al. (2004[Shen, L., Li, M. C., Jin, Z. M., Hu, M. L. & Xuan, R. C. (2004). Acta Cryst. E60, m330-m331.]); Steffen & Palenik (1977[Steffen, W. L. & Palenik, G. J. (1977). Inorg. Chem. 16, 1119-1127.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • [ZnCl2(C13H9N)2]

  • Mr = 494.71

  • Monoclinic, P 21 /c

  • a = 16.193 (3) Å

  • b = 10.101 (2) Å

  • c = 14.491 (3) Å

  • β = 116.02 (3)°

  • V = 2130.0 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.42 mm−1

  • T = 298 K

  • 0.45 × 0.30 × 0.22 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS, Madison, Wisconsin, USA.]) Tmin = 0.610, Tmax = 0.740

  • 16947 measured reflections

  • 5732 independent reflections

  • 4612 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.086

  • S = 1.09

  • 5732 reflections

  • 280 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Selected geometric parameters (Å, °)

Cl1—Zn1 2.2234 (7)
Cl2—Zn1 2.2456 (7)
N1—Zn1 2.0785 (17)
N2—Zn1 2.0775 (17)
N2—Zn1—N1 105.19 (7)
N2—Zn1—Cl1 108.18 (5)
N1—Zn1—Cl1 106.23 (5)
N2—Zn1—Cl2 113.54 (5)
N1—Zn1—Cl2 107.46 (6)
Cl1—Zn1—Cl2 115.49 (3)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯Cl1 0.93 2.77 3.434 (3) 129
C17—H17⋯Cg6i 0.93 2.82 3.535 (3) 134
C24—H24⋯Cg5ii 0.93 2.81 3.508 (3) 132
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z-{\script{1\over 2}}]; (ii) [x, -y-{\script{1\over 2}}, z-{\script{1\over 2}}]. Cg5 and Cg6 are the centroids of the C15–C20 and C21–C26 rings, respectively.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS, Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS, Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

There are several ZnII complexes, with formula, [ZnCl2(N)2], such as [ZnCl2(AMS)2], (II) (Shen et al., 2004), [ZnCl2(4-CNpy)2], (III) (Steffen & Palenik, 1977), [ZnCl2(pht)2], (IV) (Çelik et al., 2004), [ZnCl2(quin)2], (V) (Cui et al., 1998), [ZnCl2(quino)2], (VI) (Markowitz et al., 2006) and [ZnCl2(meim)2], (VII) (Musie et al., 2004) [where AMS is 3-Amino-5-methylisoxazole, 4-CNpy is 4-cyanopyridine, pht is phthalazine, quin is quinoline, quino is quinoxaline and meim is 1-methylimidazole] have been synthesized and characterized by single-crystal X-ray diffraction methods.

There are also several ZnII complexes, with formula, [ZnCl2(N—N)], such as [ZnCl2(bipy)], (VIII) (Khan & Tuck, 1984), [ZnCl2(biim)], (IX) (Gruia et al., 2007), [ZnCl2(phbipy)], (X) (Kozhevnikov et al., 2006), [ZnCl2(phen)], (XI) (Reimann et al., 1966), [ZnCl2(dmphen)], (XII) (Preston & Kennard, 1969), [ZnCl2(dpdmbip)], (XIII) (Liu et al., 2004), [ZnCl2(dm4bt)], (XIV) (Khavasi et al., 2008), [ZnCl2(5,5'-dmbpy)], (XV) (Khalighi et al., 2008) and [ZnCl2(6-mbipy)], (XVI) (Ahmadi et al., 2008) [where bipy is 2,2'-bipyridine, biim is 2,2'-biimidazole, phbipy is 5-phenyl-2,2'-bipyridine, phen is 1,10-phenanthroline, dmphen is 2,9-dimethyl-1,10-phenanthroline, dpdmbip is 4,4'-diphenyl-6,6'-dimethyl-2,2'-bipyrimidine, dm4bt is 2,2'-dimethyl-4,4'-bithiazole, 5,5'-dmbpy is 5,5'-dimethyl-2,2'-bipyridine and 6-mbipy is 6-methyl-2,2'-bipyridine] have been synthesized and characterized by single-crystal X-ray diffraction methods. We report herein the synthesis and crystal structure of the title compound, (I).

In the molecule of the title compound (Fig 1), ZnII atom is four-coordinated in a distorted tetrahedral configuration by two N atoms from two phenanthridine and two terminal Cl atoms (Table 1). The bond lengths (Allen et al., 1987) and angles are within normal ranges. Phenanthridine ring systems A (N1/C1-C13) and B (N2/C14-C26) are, of course, planar and the dihedral angle between them is A/B = 69.92 (3)°. Intramolecular C-H···Cl interaction (Table 2) results in the formation of a planar five-membered ring C (Zn1/Cl1/N1/C1/H1), which is oriented with respect to the adjacent phenanthridine ring system A at a dihedral angle of 8.32 (3)°.

In the crystal structure (Fig. 2), the ππ contacts between the phenanthridine rings, Cg2—Cg3i, Cg4—Cg6ii and Cg6—Cg6ii, [symmetry codes: (i) 1 - x, -y, -z, (ii) -x, -y, -z, where Cg2, Cg3, Cg4 and Cg6 are centroids of the rings (C2-C7), (C8-C13), (N2/C14/C15/C20/C21/C26) and (C21-C26), respectively] may stabilize the structure, with centroid-centroid distances of 3.839 (2), 3.617 (1) and 3.682 (1) Å, respectively. There also exist two weak C—H···π interactions (Table 2).

Related literature top

For related structures, see: Ahmadi et al. (2008); Çelik et al. (2004); Cui et al. (1998); Gruia et al. (2007); Khalighi et al. (2008); Khan & Tuck (1984); Khavasi et al. (2008); Kozhevnikov et al. (2006); Liu et al. (2004); Markowitz et al. (2006); Musie et al. (2004); Preston & Kennard (1969); Reimann et al. (1966); Shen et al. (2004); Steffen & Palenik (1977). For bond-length data, see: Allen et al. (1987). Cg5 and Cg6 are the centroids of the C15–C20 and C21–C26 rings, respectively. .

Experimental top

For the preparation of the title compound, (I), a solution of phenanthridine (0.30 g, 1.66 mmol) in methanol (15 ml) was added to a solution of ZnCl2 (0.11 g, 0.83 mmol) in acetonitrile (30 ml) and the resulting colorless solution was stirred for 30 min at 313 K, and then it was left to evaporate slowly at room temperature. After one week, colorless prismatic crystals of the title compound were isolated (yield; 0.31 g, 75.5%).

Refinement top

H atoms were positioned geometrically, with C-H = 0.93 Å for aromatic H and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 40% probability level.
[Figure 2] Fig. 2. A partial packing diagram of the title compound.
Dichloridobis(phenanthridine-κN)zinc(II) top
Crystal data top
[ZnCl2(C13H9N)2]F(000) = 1008
Mr = 494.71Dx = 1.543 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1987 reflections
a = 16.193 (3) Åθ = 2.5–29.3°
b = 10.101 (2) ŵ = 1.42 mm1
c = 14.491 (3) ÅT = 298 K
β = 116.02 (3)°Prism, colorless
V = 2130.0 (9) Å30.45 × 0.30 × 0.22 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
5732 independent reflections
Radiation source: fine-focus sealed tube4612 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
ϕ and ω scansθmax = 29.3°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
h = 2222
Tmin = 0.610, Tmax = 0.740k = 1313
16947 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.086H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.038P)2 + 0.5741P]
where P = (Fo2 + 2Fc2)/3
5732 reflections(Δ/σ)max = 0.013
280 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.39 e Å3
Crystal data top
[ZnCl2(C13H9N)2]V = 2130.0 (9) Å3
Mr = 494.71Z = 4
Monoclinic, P21/cMo Kα radiation
a = 16.193 (3) ŵ = 1.42 mm1
b = 10.101 (2) ÅT = 298 K
c = 14.491 (3) Å0.45 × 0.30 × 0.22 mm
β = 116.02 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
5732 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
4612 reflections with I > 2σ(I)
Tmin = 0.610, Tmax = 0.740Rint = 0.041
16947 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.086H-atom parameters constrained
S = 1.09Δρmax = 0.28 e Å3
5732 reflectionsΔρmin = 0.39 e Å3
280 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.259400 (15)0.26111 (2)0.120119 (17)0.03590 (7)
Cl10.25049 (4)0.47913 (5)0.09659 (5)0.05264 (14)
Cl20.27473 (4)0.19233 (6)0.27420 (4)0.05102 (14)
N10.37559 (11)0.19993 (17)0.10537 (13)0.0373 (3)
N20.14942 (10)0.17454 (16)0.00248 (12)0.0338 (3)
C10.42820 (14)0.2930 (2)0.09724 (16)0.0410 (4)
H10.40560.37910.08630.049*
C20.51762 (14)0.2716 (2)0.10399 (16)0.0417 (4)
C30.57131 (17)0.3780 (3)0.09923 (19)0.0528 (6)
H30.54810.46370.09020.063*
C40.65812 (18)0.3558 (3)0.1079 (2)0.0626 (7)
H40.69360.42600.10390.075*
C50.69249 (18)0.2273 (3)0.1228 (2)0.0674 (8)
H50.75120.21240.12830.081*
C60.64215 (16)0.1227 (3)0.1293 (2)0.0574 (6)
H60.66720.03800.14010.069*
C70.55249 (14)0.1417 (2)0.11974 (15)0.0432 (5)
C80.49487 (14)0.0368 (2)0.12662 (15)0.0409 (4)
C90.52121 (17)0.0978 (2)0.13981 (17)0.0503 (5)
H90.57820.12180.14410.060*
C100.46418 (19)0.1931 (2)0.14633 (18)0.0548 (6)
H100.48280.28120.15470.066*
C110.37861 (18)0.1601 (2)0.14065 (18)0.0517 (5)
H110.34040.22590.14530.062*
C120.35073 (16)0.0305 (2)0.12812 (16)0.0448 (5)
H120.29390.00840.12510.054*
C130.40733 (14)0.0686 (2)0.11980 (14)0.0377 (4)
C140.16296 (13)0.12723 (19)0.07864 (15)0.0360 (4)
H140.22220.13160.07360.043*
C150.09352 (13)0.06958 (18)0.16859 (14)0.0348 (4)
C160.11488 (16)0.0160 (2)0.24580 (16)0.0417 (4)
H160.17470.02030.23890.050*
C170.04765 (18)0.0419 (2)0.33016 (18)0.0486 (5)
H170.06150.07710.38100.058*
C180.04216 (17)0.0482 (2)0.34024 (18)0.0510 (5)
H180.08760.08810.39810.061*
C190.06479 (15)0.0033 (2)0.26642 (17)0.0454 (5)
H190.12500.00220.27460.054*
C200.00307 (13)0.06448 (18)0.17833 (14)0.0343 (4)
C210.01463 (13)0.12123 (18)0.09734 (15)0.0343 (4)
C220.10280 (14)0.1282 (2)0.10056 (17)0.0430 (5)
H220.15310.09520.15740.052*
C230.11556 (15)0.1830 (2)0.02101 (19)0.0481 (5)
H230.17430.18720.02470.058*
C240.04179 (17)0.2319 (2)0.06441 (19)0.0476 (5)
H240.05100.26780.11830.057*
C250.04526 (15)0.2277 (2)0.07015 (17)0.0417 (4)
H250.09470.26080.12790.050*
C260.05989 (12)0.17376 (18)0.01046 (14)0.0328 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.02853 (11)0.03705 (12)0.03880 (12)0.00174 (9)0.01173 (8)0.00362 (9)
Cl10.0510 (3)0.0376 (3)0.0687 (4)0.0014 (2)0.0258 (3)0.0007 (2)
Cl20.0481 (3)0.0596 (3)0.0436 (3)0.0047 (3)0.0185 (2)0.0027 (2)
N10.0312 (8)0.0388 (8)0.0385 (8)0.0034 (7)0.0120 (7)0.0012 (7)
N20.0265 (7)0.0339 (7)0.0374 (8)0.0007 (6)0.0107 (6)0.0010 (6)
C10.0341 (10)0.0424 (10)0.0442 (11)0.0019 (8)0.0149 (8)0.0014 (8)
C20.0317 (9)0.0543 (12)0.0367 (10)0.0003 (9)0.0127 (8)0.0022 (9)
C30.0439 (12)0.0640 (15)0.0506 (13)0.0062 (11)0.0207 (10)0.0017 (11)
C40.0429 (13)0.087 (2)0.0608 (15)0.0129 (13)0.0250 (12)0.0031 (14)
C50.0333 (11)0.104 (2)0.0666 (16)0.0047 (14)0.0232 (11)0.0006 (15)
C60.0354 (11)0.0780 (17)0.0564 (14)0.0117 (12)0.0178 (10)0.0020 (12)
C70.0311 (9)0.0620 (13)0.0325 (10)0.0082 (9)0.0103 (8)0.0010 (9)
C80.0339 (9)0.0511 (11)0.0306 (9)0.0092 (9)0.0075 (7)0.0005 (8)
C90.0453 (12)0.0557 (13)0.0419 (11)0.0201 (11)0.0116 (10)0.0029 (10)
C100.0656 (16)0.0453 (12)0.0409 (11)0.0180 (12)0.0116 (11)0.0035 (9)
C110.0556 (14)0.0425 (11)0.0462 (12)0.0001 (10)0.0123 (10)0.0037 (9)
C120.0395 (11)0.0457 (11)0.0430 (11)0.0007 (9)0.0125 (9)0.0004 (9)
C130.0329 (9)0.0412 (10)0.0317 (9)0.0044 (8)0.0074 (7)0.0023 (8)
C140.0286 (9)0.0373 (9)0.0394 (10)0.0009 (7)0.0125 (8)0.0010 (8)
C150.0346 (9)0.0313 (9)0.0351 (9)0.0016 (7)0.0121 (8)0.0008 (7)
C160.0436 (11)0.0391 (10)0.0431 (11)0.0040 (9)0.0198 (9)0.0000 (8)
C170.0593 (14)0.0412 (11)0.0448 (12)0.0011 (10)0.0223 (11)0.0077 (9)
C180.0519 (13)0.0433 (11)0.0459 (12)0.0085 (10)0.0105 (10)0.0100 (9)
C190.0383 (10)0.0408 (10)0.0488 (12)0.0094 (9)0.0116 (9)0.0039 (9)
C200.0313 (9)0.0286 (8)0.0375 (9)0.0026 (7)0.0099 (7)0.0025 (7)
C210.0306 (9)0.0295 (8)0.0405 (10)0.0020 (7)0.0133 (8)0.0036 (7)
C220.0307 (9)0.0444 (11)0.0513 (12)0.0046 (8)0.0155 (9)0.0001 (9)
C230.0359 (10)0.0465 (11)0.0676 (15)0.0004 (9)0.0278 (10)0.0024 (10)
C240.0468 (12)0.0447 (11)0.0588 (13)0.0003 (10)0.0302 (11)0.0060 (10)
C250.0378 (10)0.0409 (10)0.0455 (11)0.0024 (8)0.0175 (9)0.0062 (8)
C260.0287 (8)0.0290 (8)0.0394 (9)0.0012 (7)0.0138 (7)0.0014 (7)
Geometric parameters (Å, º) top
Cl1—Zn12.2234 (7)C12—H120.9300
Cl2—Zn12.2456 (7)C13—N11.405 (3)
N1—Zn12.0785 (17)C14—N21.306 (2)
N2—Zn12.0775 (17)C14—C151.420 (3)
C1—N11.308 (3)C14—H140.9300
C1—C21.424 (3)C15—C201.410 (3)
C1—H10.9300C15—C161.416 (3)
C2—C31.402 (3)C16—C171.361 (3)
C2—C71.407 (3)C16—H160.9300
C3—C41.374 (4)C17—C181.398 (4)
C3—H30.9300C17—H170.9300
C4—C51.392 (4)C18—C191.376 (3)
C4—H40.9300C18—H180.9300
C5—C61.363 (4)C19—C201.410 (3)
C5—H50.9300C19—H190.9300
C6—C71.410 (3)C20—C211.443 (3)
C6—H60.9300C21—C221.410 (3)
C7—C81.444 (3)C21—C261.411 (3)
C8—C91.412 (3)C22—C231.374 (3)
C8—C131.414 (3)C22—H220.9300
C9—C101.366 (4)C23—C241.380 (3)
C9—H90.9300C23—H230.9300
C10—C111.392 (4)C24—C251.376 (3)
C10—H100.9300C24—H240.9300
C11—C121.371 (3)C25—C261.400 (3)
C11—H110.9300C25—H250.9300
C12—C131.398 (3)C26—N21.403 (2)
N2—Zn1—N1105.19 (7)C11—C12—C13120.3 (2)
N2—Zn1—Cl1108.18 (5)C11—C12—H12119.8
N1—Zn1—Cl1106.23 (5)C13—C12—H12119.8
N2—Zn1—Cl2113.54 (5)C12—C13—N1118.57 (18)
N1—Zn1—Cl2107.46 (6)C12—C13—C8120.43 (19)
Cl1—Zn1—Cl2115.49 (3)N1—C13—C8121.00 (19)
C1—N1—C13118.80 (18)N2—C14—C15124.52 (18)
C1—N1—Zn1116.76 (14)N2—C14—H14117.7
C13—N1—Zn1123.65 (14)C15—C14—H14117.7
C14—N2—C26118.60 (16)C20—C15—C16120.69 (18)
C14—N2—Zn1118.54 (13)C20—C15—C14118.46 (18)
C26—N2—Zn1122.69 (13)C16—C15—C14120.84 (19)
N1—C1—C2124.6 (2)C17—C16—C15119.8 (2)
N1—C1—H1117.7C17—C16—H16120.1
C2—C1—H1117.7C15—C16—H16120.1
C3—C2—C7120.6 (2)C16—C17—C18119.9 (2)
C3—C2—C1120.9 (2)C16—C17—H17120.0
C7—C2—C1118.4 (2)C18—C17—H17120.0
C4—C3—C2120.2 (3)C19—C18—C17121.4 (2)
C4—C3—H3119.9C19—C18—H18119.3
C2—C3—H3119.9C17—C18—H18119.3
C3—C4—C5119.3 (3)C18—C19—C20120.1 (2)
C3—C4—H4120.3C18—C19—H19119.9
C5—C4—H4120.3C20—C19—H19119.9
C6—C5—C4121.5 (2)C15—C20—C19118.01 (19)
C6—C5—H5119.2C15—C20—C21118.19 (17)
C4—C5—H5119.2C19—C20—C21123.80 (18)
C5—C6—C7120.6 (3)C22—C21—C26117.92 (18)
C5—C6—H6119.7C22—C21—C20123.54 (18)
C7—C6—H6119.7C26—C21—C20118.54 (17)
C2—C7—C6117.8 (2)C23—C22—C21121.0 (2)
C2—C7—C8118.03 (19)C23—C22—H22119.5
C6—C7—C8124.2 (2)C21—C22—H22119.5
C9—C8—C13117.5 (2)C22—C23—C24120.5 (2)
C9—C8—C7123.3 (2)C22—C23—H23119.8
C13—C8—C7119.14 (19)C24—C23—H23119.8
C10—C9—C8121.0 (2)C25—C24—C23120.2 (2)
C10—C9—H9119.5C25—C24—H24119.9
C8—C9—H9119.5C23—C24—H24119.9
C9—C10—C11120.9 (2)C24—C25—C26120.4 (2)
C9—C10—H10119.6C24—C25—H25119.8
C11—C10—H10119.6C26—C25—H25119.8
C12—C11—C10119.8 (2)C25—C26—N2118.43 (17)
C12—C11—H11120.1C25—C26—C21119.96 (18)
C10—C11—H11120.1N2—C26—C21121.61 (17)
N1—C1—C2—C3177.0 (2)C18—C19—C20—C21179.9 (2)
N1—C1—C2—C70.5 (3)C15—C20—C21—C22176.71 (18)
C7—C2—C3—C41.3 (3)C19—C20—C21—C223.7 (3)
C1—C2—C3—C4178.7 (2)C15—C20—C21—C262.7 (3)
C2—C3—C4—C50.8 (4)C19—C20—C21—C26176.82 (19)
C3—C4—C5—C60.2 (4)C26—C21—C22—C230.8 (3)
C4—C5—C6—C70.8 (4)C20—C21—C22—C23179.8 (2)
C3—C2—C7—C60.7 (3)C21—C22—C23—C240.4 (3)
C1—C2—C7—C6178.2 (2)C22—C23—C24—C250.8 (4)
C3—C2—C7—C8178.41 (19)C23—C24—C25—C260.0 (3)
C1—C2—C7—C80.9 (3)C24—C25—C26—N2178.40 (19)
C5—C6—C7—C20.4 (4)C24—C25—C26—C211.2 (3)
C5—C6—C7—C8179.4 (2)C22—C21—C26—C251.5 (3)
C2—C7—C8—C9178.4 (2)C20—C21—C26—C25179.01 (17)
C6—C7—C8—C92.5 (3)C22—C21—C26—N2178.02 (17)
C2—C7—C8—C131.5 (3)C20—C21—C26—N21.4 (3)
C6—C7—C8—C13177.6 (2)C2—C1—N1—C131.3 (3)
C13—C8—C9—C100.4 (3)C2—C1—N1—Zn1168.86 (16)
C7—C8—C9—C10179.7 (2)C12—C13—N1—C1179.80 (18)
C8—C9—C10—C110.3 (4)C8—C13—N1—C10.7 (3)
C9—C10—C11—C120.2 (4)C12—C13—N1—Zn110.7 (2)
C10—C11—C12—C130.8 (3)C8—C13—N1—Zn1168.77 (14)
C11—C12—C13—N1179.0 (2)C15—C14—N2—C262.6 (3)
C11—C12—C13—C81.5 (3)C15—C14—N2—Zn1177.82 (14)
C9—C8—C13—C121.3 (3)C25—C26—N2—C14178.37 (18)
C7—C8—C13—C12178.80 (18)C21—C26—N2—C141.2 (3)
C9—C8—C13—N1179.20 (18)C25—C26—N2—Zn13.3 (2)
C7—C8—C13—N10.7 (3)C21—C26—N2—Zn1176.23 (13)
N2—C14—C15—C201.2 (3)C14—N2—Zn1—N115.81 (16)
N2—C14—C15—C16177.53 (18)C26—N2—Zn1—N1169.13 (14)
C20—C15—C16—C170.4 (3)C14—N2—Zn1—Cl197.39 (14)
C14—C15—C16—C17178.30 (19)C26—N2—Zn1—Cl177.67 (14)
C15—C16—C17—C180.0 (3)C14—N2—Zn1—Cl2133.03 (13)
C16—C17—C18—C190.2 (4)C26—N2—Zn1—Cl251.91 (15)
C17—C18—C19—C200.1 (3)C1—N1—Zn1—N2121.89 (15)
C16—C15—C20—C190.7 (3)C13—N1—Zn1—N268.46 (16)
C14—C15—C20—C19178.05 (18)C1—N1—Zn1—Cl17.32 (16)
C16—C15—C20—C21179.75 (17)C13—N1—Zn1—Cl1176.97 (14)
C14—C15—C20—C211.5 (3)C1—N1—Zn1—Cl2116.83 (14)
C18—C19—C20—C150.6 (3)C13—N1—Zn1—Cl252.82 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···Cl10.932.773.434 (3)129
C17—H17···Cg6i0.932.823.535 (3)134
C24—H24···Cg5ii0.932.813.508 (3)132
Symmetry codes: (i) x, y1/2, z1/2; (ii) x, y1/2, z1/2.

Experimental details

Crystal data
Chemical formula[ZnCl2(C13H9N)2]
Mr494.71
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)16.193 (3), 10.101 (2), 14.491 (3)
β (°) 116.02 (3)
V3)2130.0 (9)
Z4
Radiation typeMo Kα
µ (mm1)1.42
Crystal size (mm)0.45 × 0.30 × 0.22
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.610, 0.740
No. of measured, independent and
observed [I > 2σ(I)] reflections
16947, 5732, 4612
Rint0.041
(sin θ/λ)max1)0.688
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.086, 1.09
No. of reflections5732
No. of parameters280
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.39

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXTL (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
Cl1—Zn12.2234 (7)N1—Zn12.0785 (17)
Cl2—Zn12.2456 (7)N2—Zn12.0775 (17)
N2—Zn1—N1105.19 (7)N2—Zn1—Cl2113.54 (5)
N2—Zn1—Cl1108.18 (5)N1—Zn1—Cl2107.46 (6)
N1—Zn1—Cl1106.23 (5)Cl1—Zn1—Cl2115.49 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···Cl10.932.773.434 (3)129
C17—H17···Cg6i0.932.823.535 (3)134
C24—H24···Cg5ii0.932.813.508 (3)132
Symmetry codes: (i) x, y1/2, z1/2; (ii) x, y1/2, z1/2.
 

Acknowledgements

We are grateful to Damghan University of Basic Sciences for financial support.

References

First citationAhmadi, R., Kalateh, K., Ebadi, A., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1266.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (1998). SMART, SAINT and SADABS. Bruker AXS, Madison, Wisconsin, USA.  Google Scholar
First citationÇelik, Ö., İde, S., Kurt, M. & Yurdakul, Ş. (2004). Acta Cryst. E60, m1134–m1136.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCui, Y., Long, D., Chen, W. & Huang, J. (1998). Acta Cryst. C54, 1605–1607.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGruia, L. M., Rochon, F. D. & Beauchamp, A. L. (2007). Inorg. Chim. Acta, 360, 1825–1840.  Web of Science CSD CrossRef CAS Google Scholar
First citationKhalighi, A., Ahmadi, R., Amani, V. & Khavasi, H. R. (2008). Acta Cryst. E64, m1211–m1212.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKhan, M. A. & Tuck, D. G. (1984). Acta Cryst. C40, 60–62.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKhavasi, H. R., Abedi, A., Amani, V., Notash, B. & Safari, N. (2008). Polyhedron, 27, 1848–1854.  Web of Science CSD CrossRef CAS Google Scholar
First citationKozhevnikov, D. N., Shabunina, O. V., Kopchuk, D. S., Slepukhin, P. A. & Kozhevnikov, V. N. (2006). Tetrahedron Lett. 47, 7025–7029.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiu, Q. D., Wang, R. & Wang, S. (2004). Dalton Trans. pp. 2073–2079.  Web of Science CSD CrossRef PubMed Google Scholar
First citationMarkowitz, B. M. E., Turnbull, M. M. & Awwadi, F. F. (2006). Acta Cryst. E62, m1278–m1280.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMusie, G. T., Li, X. & Powell, D. R. (2004). Acta Cryst. E60, m471–m472.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPreston, H. S. & Kennard, C. H. L. (1969). J. Chem. Soc. A, pp. 1965–1968.  Google Scholar
First citationReimann, C. W., Block, S. & Perloff, A. (1966). Inorg. Chem. 5, 1185–1189.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShen, L., Li, M. C., Jin, Z. M., Hu, M. L. & Xuan, R. C. (2004). Acta Cryst. E60, m330–m331.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSteffen, W. L. & Palenik, G. J. (1977). Inorg. Chem. 16, 1119–1127.  CSD CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 7| July 2009| Pages m739-m740
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds