organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 2-(3-chloro-2-pyridyl)-5-oxopyrazolidine-3-carboxylate

aDepartment of Applied Chemistry, College of Science, Nanjing University of Technology, Nanjing 210009, People's Republic of China, and bJiangsu Pesticide Research Institute Co Ltd, Nanjing 210036, People's Republic of China
*Correspondence e-mail: zhuhj@njut.edu.cn

(Received 20 May 2009; accepted 1 June 2009; online 6 June 2009)

In the mol­ecule of the title compound, C11H12ClN3O3, the five membered ring adopts an envelope conformation. In the crystal structure, inter­molecular N—H⋯O hydrogen bonds link the mol­ecules into centrosymmetric dimers.

Related literature

For the synthetic procedure, see: Lahm et al. (2007[Lahm, G. P., Stevenson, T. M., Selby, T. P., Freudenberger, J. H., Cordova, D., Flexner, L., Bellin, C. A., Dubas, C. M., Smith, B. K., Hughes, K. A., Hollingshaus, J. G., Clark, C. E. & Benner, E. A. (2007). Bioorg. Med. Chem. Lett. 17, 6274-6279.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C11H12ClN3O3

  • Mr = 269.69

  • Orthorhombic, P b c a

  • a = 15.488 (3) Å

  • b = 10.009 (2) Å

  • c = 16.249 (3) Å

  • V = 2518.9 (8) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.31 mm−1

  • T = 298 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.913, Tmax = 0.970

  • 4453 measured reflections

  • 2273 independent reflections

  • 1635 reflections with I > 2σ(I)

  • Rint = 0.029

  • 3 standard reflections frequency: 120 min intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.110

  • S = 1.03

  • 2273 reflections

  • 164 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O2i 0.86 2.14 2.910 (3) 149
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: CAD-4 Software (Enraf–Nonius, 1985[Enraf-Nonius (1985). CAD-4 Software. Enraf-Nonius, Delft. The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound is one of the most important intermediates used for the synthesis of Rynaxypyre, a new insecticidal anthranilic diamide as a potent and selective ryanodine receptor activator (Lahm et al., 2007). We report herein the crystal structure of the title compound.

In the molecule of the title compound (Fig 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges. Ring B (N3/C7-C11) is, of course, planar. Ring A (N1/N2/C4-C6) adopts envelope conformation with atom C4 displaced by -0.375 (3) Å from the plane of the other ring atoms.

In the crystal structure, intermolecular N-H···O hydrogen bonds (Table 1) link the molecules into centrosymmetric dimers (Fig. 2), in which they may be effective in the stabilization of the structure.

Related literature top

For a related structure, see: Lahm et al. (2007). For bond-length data, see: Allen et al. (1987).

Experimental top

The title compound was synthesized according to a literature method (Lahm et al., 2007). Crystals suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution.

Refinement top

H atoms were positioned geometrically, with N-H = 0.86 Å (for NH) and C-H = 0.93, 0.98, 0.97 and 0.96 Å for aromatic, methine, methylene and methyl H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C,N), where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1985); cell refinement: CAD-4 Software (Enraf–Nonius, 1985); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.
Ethyl 2-(3-chloro-2-pyridyl)-5-oxopyrazolidine-3-carboxylate top
Crystal data top
C11H12ClN3O3F(000) = 1120
Mr = 269.69Dx = 1.422 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 25 reflections
a = 15.488 (3) Åθ = 0.9–1.0°
b = 10.009 (2) ŵ = 0.31 mm1
c = 16.249 (3) ÅT = 298 K
V = 2518.9 (8) Å3Block, colorless
Z = 80.30 × 0.20 × 0.10 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
1635 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.029
Graphite monochromatorθmax = 25.3°, θmin = 2.5°
ω/2θ scansh = 018
Absorption correction: ψ scan
(North et al., 1968)
k = 012
Tmin = 0.913, Tmax = 0.970l = 1919
4453 measured reflections3 standard reflections every 120 min
2273 independent reflections intensity decay: none
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.110 w = 1/[σ2(Fo2) + (0.0473P)2 + 0.824P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
2273 reflectionsΔρmax = 0.29 e Å3
164 parametersΔρmin = 0.23 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0065 (7)
Crystal data top
C11H12ClN3O3V = 2518.9 (8) Å3
Mr = 269.69Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 15.488 (3) ŵ = 0.31 mm1
b = 10.009 (2) ÅT = 298 K
c = 16.249 (3) Å0.30 × 0.20 × 0.10 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
1635 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.029
Tmin = 0.913, Tmax = 0.9703 standard reflections every 120 min
4453 measured reflections intensity decay: none
2273 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.110H-atom parameters constrained
S = 1.03Δρmax = 0.29 e Å3
2273 reflectionsΔρmin = 0.23 e Å3
164 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl0.45523 (4)0.14184 (7)0.43566 (5)0.0629 (3)
O10.30427 (10)0.43898 (19)0.31272 (11)0.0561 (5)
O20.34478 (11)0.4578 (2)0.44373 (11)0.0597 (5)
O30.55616 (12)0.7407 (2)0.33051 (13)0.0667 (6)
N10.54947 (12)0.55100 (18)0.40815 (12)0.0372 (5)
H1A0.57760.58140.44970.045*
N20.51613 (11)0.41865 (17)0.40548 (11)0.0328 (4)
N30.66149 (12)0.3566 (2)0.37919 (13)0.0456 (5)
C10.1756 (2)0.3232 (4)0.3592 (2)0.0876 (11)
H1B0.11630.33580.37450.131*
H1C0.20690.28630.40490.131*
H1D0.17890.26310.31330.131*
C20.21401 (15)0.4539 (3)0.3359 (2)0.0666 (9)
H2A0.18200.49150.29020.080*
H2B0.20960.51520.38200.080*
C30.36204 (14)0.4419 (2)0.37295 (15)0.0389 (6)
C40.45184 (14)0.4216 (2)0.33772 (13)0.0363 (5)
H4A0.45420.33810.30630.044*
C50.48079 (15)0.5388 (3)0.28374 (15)0.0471 (6)
H5A0.51540.50780.23780.056*
H5B0.43150.58780.26270.056*
C60.53378 (15)0.6246 (3)0.34130 (15)0.0434 (6)
C70.58184 (14)0.3194 (2)0.39697 (13)0.0332 (5)
C80.72260 (16)0.2612 (3)0.37550 (18)0.0565 (8)
H8A0.77900.28720.36390.068*
C90.70658 (18)0.1279 (3)0.38781 (17)0.0548 (7)
H9A0.75090.06550.38420.066*
C100.62367 (17)0.0884 (3)0.40552 (16)0.0490 (6)
H10A0.61040.00130.41340.059*
C110.56048 (14)0.1858 (2)0.41127 (15)0.0389 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl0.0487 (4)0.0514 (4)0.0885 (6)0.0128 (3)0.0079 (4)0.0135 (4)
O10.0322 (9)0.0815 (14)0.0546 (11)0.0039 (9)0.0095 (8)0.0041 (10)
O20.0367 (10)0.0944 (16)0.0479 (11)0.0071 (10)0.0002 (8)0.0127 (11)
O30.0629 (12)0.0508 (12)0.0864 (16)0.0110 (10)0.0068 (10)0.0283 (11)
N10.0399 (10)0.0307 (10)0.0411 (11)0.0008 (8)0.0056 (9)0.0020 (9)
N20.0301 (9)0.0308 (10)0.0374 (10)0.0009 (8)0.0036 (8)0.0011 (8)
N30.0314 (10)0.0402 (12)0.0650 (14)0.0003 (9)0.0035 (10)0.0027 (10)
C10.0537 (19)0.097 (3)0.112 (3)0.0200 (19)0.0081 (19)0.017 (2)
C20.0295 (13)0.087 (2)0.084 (2)0.0059 (14)0.0081 (14)0.0055 (18)
C30.0339 (12)0.0399 (14)0.0429 (14)0.0027 (10)0.0047 (11)0.0039 (11)
C40.0342 (11)0.0409 (13)0.0339 (12)0.0046 (10)0.0039 (9)0.0051 (10)
C50.0389 (13)0.0647 (17)0.0377 (13)0.0061 (12)0.0017 (10)0.0091 (12)
C60.0364 (13)0.0465 (16)0.0474 (15)0.0045 (11)0.0034 (11)0.0107 (12)
C70.0318 (11)0.0340 (12)0.0337 (12)0.0022 (10)0.0027 (10)0.0002 (10)
C80.0323 (12)0.0542 (18)0.083 (2)0.0046 (12)0.0019 (13)0.0045 (15)
C90.0498 (16)0.0481 (16)0.0666 (19)0.0201 (13)0.0077 (14)0.0037 (13)
C100.0581 (16)0.0342 (13)0.0548 (15)0.0072 (13)0.0068 (13)0.0069 (12)
C110.0379 (13)0.0351 (13)0.0439 (14)0.0019 (10)0.0037 (10)0.0032 (11)
Geometric parameters (Å, º) top
Cl—C111.735 (2)C2—H2A0.9700
O1—C21.456 (3)C2—H2B0.9700
O1—C31.326 (3)C3—C41.518 (3)
O2—C31.191 (3)C4—C51.531 (3)
O3—C61.226 (3)C4—H4A0.9800
N1—N21.422 (2)C5—C61.512 (4)
N1—C61.335 (3)C5—H5A0.9700
N1—H1A0.8600C5—H5B0.9700
N2—C41.485 (3)C7—C111.396 (3)
N2—C71.429 (3)C8—C91.372 (4)
N3—C71.321 (3)C8—H8A0.9300
N3—C81.346 (3)C9—C101.374 (4)
C1—C21.485 (4)C9—H9A0.9300
C1—H1B0.9600C10—C111.385 (3)
C1—H1C0.9600C10—H10A0.9300
C1—H1D0.9600
C3—O1—C2117.0 (2)C3—C4—H4A110.1
N2—N1—H1A122.5C5—C4—H4A110.1
C6—N1—N2115.02 (19)C6—C5—C4103.85 (18)
C6—N1—H1A122.5C6—C5—H5A111.0
N1—N2—C7113.08 (17)C4—C5—H5A111.0
N1—N2—C4104.33 (16)C6—C5—H5B111.0
C7—N2—C4114.82 (17)C4—C5—H5B111.0
C7—N3—C8117.8 (2)H5A—C5—H5B109.0
C2—C1—H1B109.5O3—C6—N1126.0 (2)
C2—C1—H1C109.5O3—C6—C5127.1 (2)
H1B—C1—H1C109.5N1—C6—C5106.8 (2)
C2—C1—H1D109.5N3—C7—C11121.9 (2)
H1B—C1—H1D109.5N3—C7—N2119.3 (2)
H1C—C1—H1D109.5C11—C7—N2118.7 (2)
O1—C2—C1111.1 (2)N3—C8—C9123.8 (2)
O1—C2—H2A109.4N3—C8—H8A118.1
C1—C2—H2A109.4C9—C8—H8A118.1
O1—C2—H2B109.4C8—C9—C10118.6 (2)
C1—C2—H2B109.4C8—C9—H9A120.7
H2A—C2—H2B108.0C10—C9—H9A120.7
O2—C3—O1124.3 (2)C9—C10—C11118.2 (2)
O2—C3—C4126.0 (2)C9—C10—H10A120.9
O1—C3—C4109.70 (19)C11—C10—H10A120.9
N2—C4—C3109.73 (17)C10—C11—C7119.7 (2)
N2—C4—C5104.11 (18)C10—C11—Cl120.06 (19)
C3—C4—C5112.46 (19)C7—C11—Cl120.25 (17)
N2—C4—H4A110.1
C6—N1—N2—C7108.8 (2)C4—C5—C6—O3164.6 (2)
C6—N1—N2—C416.6 (2)C4—C5—C6—N113.3 (2)
C3—O1—C2—C185.7 (3)C8—N3—C7—C110.3 (3)
C2—O1—C3—O21.2 (4)C8—N3—C7—N2176.9 (2)
C2—O1—C3—C4178.6 (2)N1—N2—C7—N310.9 (3)
N1—N2—C4—C397.1 (2)C4—N2—C7—N3108.6 (2)
C7—N2—C4—C3138.54 (19)N1—N2—C7—C11166.3 (2)
N1—N2—C4—C523.4 (2)C4—N2—C7—C1174.1 (3)
C7—N2—C4—C5100.9 (2)C7—N3—C8—C91.1 (4)
O2—C3—C4—N22.4 (3)N3—C8—C9—C100.5 (4)
O1—C3—C4—N2177.44 (18)C8—C9—C10—C110.9 (4)
O2—C3—C4—C5113.0 (3)C9—C10—C11—C71.7 (4)
O1—C3—C4—C567.2 (2)C9—C10—C11—Cl178.6 (2)
N2—C4—C5—C622.5 (2)N3—C7—C11—C101.1 (4)
C3—C4—C5—C696.2 (2)N2—C7—C11—C10178.3 (2)
N2—N1—C6—O3179.8 (2)N3—C7—C11—Cl179.22 (18)
N2—N1—C6—C51.8 (3)N2—C7—C11—Cl2.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2i0.862.142.910 (3)149
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC11H12ClN3O3
Mr269.69
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)298
a, b, c (Å)15.488 (3), 10.009 (2), 16.249 (3)
V3)2518.9 (8)
Z8
Radiation typeMo Kα
µ (mm1)0.31
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.913, 0.970
No. of measured, independent and
observed [I > 2σ(I)] reflections
4453, 2273, 1635
Rint0.029
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.110, 1.03
No. of reflections2273
No. of parameters164
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.23

Computer programs: CAD-4 Software (Enraf–Nonius, 1985), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2i0.862.142.910 (3)149
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

The authors thank Dr Shan Liu and Dr Rui Liu of the College of Science, Nanjing University of Technology, for useful discussions and the Center of Testing and Analysis, Nanjing University, for support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.  CrossRef Web of Science Google Scholar
First citationEnraf–Nonius (1985). CAD-4 Software. Enraf–Nonius, Delft. The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationLahm, G. P., Stevenson, T. M., Selby, T. P., Freudenberger, J. H., Cordova, D., Flexner, L., Bellin, C. A., Dubas, C. M., Smith, B. K., Hughes, K. A., Hollingshaus, J. G., Clark, C. E. & Benner, E. A. (2007). Bioorg. Med. Chem. Lett. 17, 6274–6279.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds