organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Phenyl N-(1,3-thia­zol-2-yl)carbamate

aCollege of Science, Nanjing University of Technology, Xinmofan Road No. 5 Nanjing, Nanjing 210009, People's Republic of China, and bDepartment of Applied Chemistry, Nanjing College of Chemical Technology, Geguan Road No. 625 Dachang District Nanjing, Nanjing 210048, People's Republic of China
*Correspondence e-mail: guocheng@njut.edu.cn

(Received 25 May 2009; accepted 27 May 2009; online 6 June 2009)

In the title compound, C10H8N2O2S, the planes of the aromatic rings are oriented at a dihedral angle of 66.69 (3)°. In the crystal structure, inter­molecular N—H⋯N and C—H⋯O inter­actions link the mol­ecules into a two-dimensional network, forming R22(8) ring motifs. ππ contacts between the thia­zole rings [centroid–centroid distance = 3.535 (1) Å] may further stabilize the structure. A weak C—H⋯π inter­action is also found.

Related literature

For a related structure, see: Araujo et al. (2006[Araujo, M., Eduarda, M. & Norberto, F. (2006). J. Chem. Res. 10, 664-667.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For ring-motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C10H8N2O2S

  • Mr = 220.24

  • Monoclinic, P 21 /c

  • a = 5.6430 (11) Å

  • b = 7.3910 (15) Å

  • c = 25.134 (5) Å

  • β = 91.21 (3)°

  • V = 1048.0 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 294 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.918, Tmax = 0.972

  • 2084 measured reflections

  • 1880 independent reflections

  • 1346 reflections with I > 2σ(I)

  • Rint = 0.027

  • 3 standard reflections frequency: 120 min intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.160

  • S = 1.00

  • 1880 reflections

  • 136 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯N2i 0.86 2.01 2.864 (4) 171
C3—H3A⋯O2ii 0.93 2.46 3.335 (4) 156
C5—H5ACg2iii 0.93 2.98 3.736 (3) 139
Symmetry codes: (i) -x, -y+2, -z; (ii) x-1, y, z; (iii) x, y+1, z. Cg2 is the centroid of the S/N2/C8–C10 ring.

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97 and PLATON.

Supporting information


Comment top

Some derivatives of phenol are important chemical materials. We report herein the crystal structure of the title compound.

In the molecule of the title compound (Fig 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges. Rings A (C1-C6) and B (S/N2/C8-C10) are, of course, planar and they are oriented at a dihedral angle of 66.69 (3)°. Atoms O1, O2, N1, C4, C7, H1A, H9A and H10B are 0.118 (3), -0.063 (3), 0.028 (3), 0.172 (3), 0.023 (3), 0.051 (3), 0.002 (3) and -0.002 (3) Å away from the plane of ring B, respectively.

In the crystal structure, intermolecular N-H···N and C-H···O interactions (Table 1) link the molecules into a two-dimensional network forming R22(8) ring motifs (Bernstein et al., 1995) (Fig. 2), in which they may be effective in the stabilization of the structure. The ππ contact between the thiazole rings, Cg2—Cg2i, [symmetry code: (i) 1 - x, -y, -z, where Cg2 is centroid of the ring B (S/N2/C8-C10)] may further stabilize the structure, with centroid-centroid distance of 3.535 (1) Å. There also exists a weak C—H···π interaction (Table 1).

Related literature top

For a related structure, see: Araujo et al. (2006). For bond-length data, see: Allen et al. (1987). For ring-motifs, see: Bernstein et al. (1995). Cg2 is the centroid of the S/N2/C8–C10 ring B.

Experimental top

For the preparation of the title compound, phenyl chloroformate (1.0 ml) was added slowly to a cold solution of thiazol-2-amine (1.0 g) and triethylamine (0.8 ml) in methylene chloride (10 ml) at 273 K. The mixture was then warmed and stirred for 1 h at room temperature. Then, it was washed with water (20 ml), dried and concentrated to give the title compound (yield; 1.3 g) (Araujo et al., 2006). Crystals suitable for X-ray analysis were obtained by slow evaporation of a methanol solution.

Refinement top

H atoms were positioned geometrically, with N-H = 0.86 Å (for NH) and C-H = 0.93 Å for aromatic H and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C,N).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.
Phenyl N-(1,3-thiazol-2-yl)carbamate top
Crystal data top
C10H8N2O2SF(000) = 456
Mr = 220.24Dx = 1.396 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 5.6430 (11) Åθ = 9–13°
b = 7.3910 (15) ŵ = 0.29 mm1
c = 25.134 (5) ÅT = 294 K
β = 91.21 (3)°Block, colorless
V = 1048.0 (4) Å30.30 × 0.20 × 0.10 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
1346 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.027
Graphite monochromatorθmax = 25.3°, θmin = 1.6°
ω/2θ scansh = 06
Absorption correction: ψ scan
(North et al., 1968)
k = 08
Tmin = 0.918, Tmax = 0.972l = 3030
2084 measured reflections3 standard reflections every 120 min
1880 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.160H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.07P)2 + 1.2P]
where P = (Fo2 + 2Fc2)/3
1880 reflections(Δ/σ)max < 0.001
136 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C10H8N2O2SV = 1048.0 (4) Å3
Mr = 220.24Z = 4
Monoclinic, P21/cMo Kα radiation
a = 5.6430 (11) ŵ = 0.29 mm1
b = 7.3910 (15) ÅT = 294 K
c = 25.134 (5) Å0.30 × 0.20 × 0.10 mm
β = 91.21 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1346 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.027
Tmin = 0.918, Tmax = 0.9723 standard reflections every 120 min
2084 measured reflections intensity decay: 1%
1880 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.160H-atom parameters constrained
S = 1.00Δρmax = 0.23 e Å3
1880 reflectionsΔρmin = 0.28 e Å3
136 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S0.50888 (16)0.91653 (14)0.09893 (4)0.0578 (3)
O10.0749 (4)1.3216 (4)0.10691 (9)0.0584 (7)
O20.2490 (4)1.1925 (4)0.14685 (10)0.0604 (7)
N10.0988 (5)1.0912 (4)0.06773 (11)0.0522 (8)
H1A0.01561.10500.04490.063*
N20.2450 (5)0.8574 (4)0.01638 (11)0.0535 (8)
C10.1494 (7)1.7169 (6)0.22167 (16)0.0653 (11)
H1B0.16901.80720.24700.078*
C20.3070 (7)1.5775 (6)0.21820 (16)0.0700 (12)
H2B0.43361.57280.24130.084*
C30.2801 (6)1.4432 (5)0.18072 (15)0.0583 (10)
H3A0.38801.34840.17810.070*
C40.0921 (6)1.4522 (5)0.14755 (13)0.0476 (8)
C50.0675 (7)1.5907 (5)0.15058 (15)0.0592 (10)
H5A0.19451.59430.12760.071*
C60.0395 (8)1.7244 (6)0.18762 (16)0.0666 (11)
H6A0.14701.81960.18990.080*
C70.1061 (6)1.2010 (5)0.11072 (14)0.0494 (9)
C80.2638 (6)0.9587 (5)0.05834 (13)0.0446 (8)
C90.4328 (7)0.7386 (5)0.01506 (16)0.0617 (10)
H9A0.44940.65520.01230.074*
C100.5867 (7)0.7498 (6)0.05473 (17)0.0651 (11)
H10B0.72060.67720.05850.078*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S0.0439 (5)0.0727 (7)0.0563 (6)0.0038 (5)0.0113 (4)0.0105 (5)
O10.0530 (14)0.0639 (17)0.0574 (15)0.0055 (13)0.0160 (12)0.0165 (13)
O20.0554 (15)0.0714 (18)0.0536 (15)0.0004 (13)0.0156 (12)0.0085 (13)
N10.0431 (15)0.0635 (19)0.0493 (16)0.0000 (15)0.0130 (13)0.0135 (15)
N20.0532 (17)0.0526 (17)0.0542 (17)0.0043 (15)0.0076 (14)0.0044 (15)
C10.066 (3)0.072 (3)0.058 (2)0.010 (2)0.0082 (19)0.014 (2)
C20.053 (2)0.094 (3)0.063 (2)0.003 (2)0.0069 (19)0.007 (2)
C30.0443 (19)0.067 (3)0.064 (2)0.0096 (18)0.0019 (17)0.002 (2)
C40.0482 (19)0.049 (2)0.0453 (19)0.0013 (16)0.0090 (15)0.0020 (16)
C50.057 (2)0.065 (3)0.055 (2)0.011 (2)0.0101 (17)0.0055 (19)
C60.072 (3)0.062 (2)0.066 (3)0.016 (2)0.003 (2)0.009 (2)
C70.0454 (19)0.052 (2)0.051 (2)0.0129 (17)0.0057 (16)0.0003 (17)
C80.0433 (18)0.0499 (19)0.0403 (18)0.0062 (16)0.0056 (14)0.0051 (15)
C90.068 (2)0.056 (2)0.062 (2)0.007 (2)0.0016 (19)0.0001 (19)
C100.054 (2)0.061 (2)0.080 (3)0.0108 (19)0.001 (2)0.017 (2)
Geometric parameters (Å, º) top
S—C101.722 (4)C1—H1B0.9300
S—C81.729 (3)C2—C31.379 (5)
O1—C41.410 (4)C2—H2B0.9300
O1—C71.358 (4)C3—C41.364 (5)
O2—C71.203 (4)C3—H3A0.9300
N1—C71.351 (4)C4—C51.365 (5)
N1—C81.375 (4)C5—C61.369 (5)
N1—H1A0.8600C5—H5A0.9300
N2—C81.296 (4)C6—H6A0.9300
N2—C91.377 (5)C9—C101.311 (6)
C1—C21.363 (6)C9—H9A0.9300
C1—C61.382 (6)C10—H10B0.9300
C10—S—C887.71 (18)C4—C5—C6119.6 (4)
C7—O1—C4117.5 (2)C4—C5—H5A120.2
C7—N1—C8123.7 (3)C6—C5—H5A120.2
C7—N1—H1A118.1C5—C6—C1119.6 (4)
C8—N1—H1A118.1C5—C6—H6A120.2
C2—C1—C6120.1 (4)C1—C6—H6A120.2
C2—C1—H1B120.0O2—C7—N1125.5 (3)
C6—C1—H1B120.0O2—C7—O1125.4 (3)
C8—N2—C9109.8 (3)N1—C7—O1109.1 (3)
C1—C2—C3120.4 (4)N2—C8—N1120.5 (3)
C1—C2—H2B119.8N2—C8—S115.2 (3)
C3—C2—H2B119.8N1—C8—S124.3 (2)
C4—C3—C2118.7 (4)C10—C9—N2116.0 (4)
C4—C3—H3A120.6C10—C9—H9A122.0
C2—C3—H3A120.6N2—C9—H9A122.0
C3—C4—C5121.5 (3)C9—C10—S111.2 (3)
C3—C4—O1118.4 (3)C9—C10—H10B124.4
C5—C4—O1119.9 (3)S—C10—H10B124.4
C6—C1—C2—C30.2 (6)C4—O1—C7—O22.5 (5)
C1—C2—C3—C40.5 (6)C4—O1—C7—N1178.0 (3)
C2—C3—C4—C50.3 (6)C9—N2—C8—N1178.6 (3)
C2—C3—C4—O1175.6 (3)C9—N2—C8—S0.2 (4)
C7—O1—C4—C3112.5 (4)C7—N1—C8—N2179.5 (3)
C7—O1—C4—C572.1 (4)C7—N1—C8—S1.8 (5)
C3—C4—C5—C60.1 (6)C10—S—C8—N20.1 (3)
O1—C4—C5—C6175.2 (3)C10—S—C8—N1178.6 (3)
C4—C5—C6—C10.3 (6)C8—N2—C9—C100.2 (5)
C2—C1—C6—C50.2 (6)N2—C9—C10—S0.2 (5)
C8—N1—C7—O23.3 (6)C8—S—C10—C90.0 (3)
C8—N1—C7—O1177.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···N2i0.862.012.864 (4)171
C3—H3A···O2ii0.932.463.335 (4)156
C5—H5A···Cg2iii0.932.983.736 (3)139
Symmetry codes: (i) x, y+2, z; (ii) x1, y, z; (iii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC10H8N2O2S
Mr220.24
Crystal system, space groupMonoclinic, P21/c
Temperature (K)294
a, b, c (Å)5.6430 (11), 7.3910 (15), 25.134 (5)
β (°) 91.21 (3)
V3)1048.0 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.29
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.918, 0.972
No. of measured, independent and
observed [I > 2σ(I)] reflections
2084, 1880, 1346
Rint0.027
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.160, 1.00
No. of reflections1880
No. of parameters136
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.28

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···N2i0.862.012.864 (4)171
C3—H3A···O2ii0.932.463.335 (4)156
C5—H5A···Cg2iii0.932.983.736 (3)139
Symmetry codes: (i) x, y+2, z; (ii) x1, y, z; (iii) x, y+1, z.
 

Acknowledgements

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationAraujo, M., Eduarda, M. & Norberto, F. (2006). J. Chem. Res. 10, 664–667.  Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds